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Outline

e Meta learning (50mins)

e 2 Paper presentations (30 mins)

o Yuan Gao: NeRF: Representing Scenes as Neural Radiance Fields for View
Synthesis

o Lechuan Wang: UNIPELT: A Unified Framework for Parameter-Efficient
Language Model Tuning



Learning with multiple tasks

e Multi-task learning

e Transfer learning

e Meta learning

e (Continual/Lifelong learning, ..)



Learning with multiple tasks

Multi-Task Learning Transfer Learning
Solve multiple tasks I ¢, «++, J pat once. Solve target task I, after solving source task I,
T by transferring knowledge learned from
mgin 21 20, 2)) assumption: Cannot access data &, during transfer.
i=

Transfer learning is a valid solution to multi-task learning.
(but not vice versa)

Question: What are some problems/applications where transfer learning might make sense?

when & is very large when you don't care about solving
(don't want to retain & retrain on ) I & T, simultaneously

Slide courtesy: Finn, Stanford CS 330, Fall 2021 5



Transfer learning

Parameters pre-trained on 4,

/
¢ — 60— CMV@[:(Q, Dtr)
R training data

(typically for many gradient steps) ~ for new task 7,

Pre-trained Dataset PASCAL SUN
Original 58.3 52.2
Random 41.3[21] 35.7 [2]

Some common practices

What makes ImageNet good for transfer learning? Huh, Agrawal, Efros. ‘16 ) ) )
- Fine-tune with a smaller learning rate

Where do you get the pre-trained parameters? - Smaller learning rate for earlier layers

- ImageNet classification - Freeze earlier layers, gradually unfreeze

- Models trained on large language corpora (BERT, LMs) - Reinitialize last layer

- Other unsupervised learning techniques - Search over hyperparameters via cross-val
- Whatever large, diverse dataset you might have - Architecture choices matter (e.g. ResNets)

Pre-trained models often available online.
Slide courtesy: Finn, Stanford CS 330, Fall 2021 6



Universal Language Model Fine-Tuning for Text Classification. Howard, Ruder. ‘18

—— From scratch
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Figure 3: Validation error rates for supervised and semi-supervised ULMFiIT vs. training from scratch
with different numbers of training examples on IMDb, TREC-6, and AG (from left to right).

Fine-tuning doesn’t work well with very small target task datasets

This is where meta-learning can help.

Slide courtesy: Finn, Stanford CS 330, Fall 2021



Example: Meta-learning for few-shot learning

Given 1 example of 5 classes: Classify new examples

training data Dy ,in testset Xtest

Slide courtesy: Finn, Stanford CS 330, Fall 2021



Example: Meta-learning for few-shot learning

training
classes

meta-training

meta-testing 7.«

4. F L
] i . 1
z A Sk

training data Dy, 4in testset Xtest

. e any ML
Can replace image classification with: regression, language generation, skill learning, problem

Slide courtesy: Finn, Stanford CS 330, Fall 2021 9



Two views of meta-learning

e Mechanistic view

o Deep network that reads an entire dataset and then makes predictions for new
datapoints

o Dataset — datapoint; therefore we now have meta-dataset of datasets

e Probabilistic view

o Extract prior from a set of (meta-training) tasks that allows efficient learning of new
tasks

o A new task uses this prior plus small training set to infer most likely parameters

Leveraging related tasks, either in terms of data or computations
e Learning to learn from few examples (few-shot learning)

e Learning to optimize

e AutoML, architecture search, meta-learning new algorithms

o ...
Slide courtesy: Andreas, MIT 6.884 10
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The Meta-Learning Problem

Given data from I

15 -++sJ ,, quickly solve new task T ¢est

Key assumption: meta-training tasks and meta-test task drawn i.i.d. from same task distribution
57&,... ”V}?(Gv)

T~ p(T)

Like before, tasks must share structure.

What do the tasks correspond to?

- recognizing handwritten digits from different languages
- giving feedback to students on different exams

- classifying species in different regions of the world

- a robot performing different tasks

A 55 R

How many tasks do you need?

Slide courtesy: Finn, Stanford CS 330, Fall 2021

The more the better.
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Terminology

task training set D" “support set” task test dataset Dtest

( A \ ‘ ! ‘query set”

meta-training

meta-testing

k-shot learning: learning with k examples per class ~ N-way classification: choosing between N classes

(or k examples total for regression)
Slide courtesy: Finn, Stanford CS 330, Fall 2021 13



Problem Settings Recap

Multi-Task Learning Transfer Learning
Solve multiple tasks I ¢, «++, I pat once. Solve target task I, after solving source task 7,
. I by transferring knowledge learned from 7,
min 2 L0,
0

i=1

The Meta-Learning Problem

Given data from I, ..., I, , quickly solve new task T ¢est

In transfer learning and meta-learning:
generally impractical to access prior tasks

In all settings: tasks must share structure.
Slide courtesy: Finn, Stanford CS 330, Fall 2021



Meta-Learning Methods

trainin )
J Untrained
test N\ parameters
It’s fine for the model to —
have access to this test!
Meta-train |E -
\___

. Adaptable
training, - parameters

This adaptability can take many forms
LSTM, memory, gradient update, other optimizations

Small adaptation

test

>Q{n_ot fine for the model to have access to this test

| This is the only number we care about to measure
apply how good our model is.

Meta-test

Slide courtesy: Andreas, MIT 6.884



Meta-Learning Methods

e Initialization based methods
o Learning how to initialize the model for the new task

e Black-box adaptation methods

e Non-parametric methods

16



Model-Agnostic Meta Learning (MAML)

e Goal: train a model that can be fast adapted to different tasks via few
shots

e MAML idea: directly optimize for an initial representation that can be
effectively fine-tuned from a small number of examples

| Few Modellw
N samples
Bigdata | | Model
from multi- initialization
tasks
| Few | Model 2
samples

Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.

Slide courtesy: Zhang, SJTU CS420, 2019 17



Recall: Fine-tuning

/pre-trained parameters
Fine-tuning ¢ — 0 — CMV@ﬁ(@, DY

) training data
for new task

Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.

Slide courtesy: Finn, Stanford CS 330, Fall 2021 18



Model-Agnostic Meta Learning (MAML)

/pre-trained parameters
Fine-tuning ¢ — 0 — CMV@ﬁ(Q, DY

. ) training data
[test-time]

for new task

learning 10 - Dir), Dt
Meta-learning melﬂtzl;[f(e (XVQ,C(Q, i )7 ) )

Key idea: Over many tasks, learn parameter vector 6 that transfers via fine-tuning

Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.

Slide courtesy: Finn, Stanford CS 330, Fall 2021 19



Algorithm 2 MAML for Few-Shot Supervised Learning

Require: p(7): distribution over tasks
Require: «. [3: step size hyperparameters

)
- while not done do

7

Zao

3:

0:
10:

11:

randomly initialize ¢

Sample batch of tasks 7; ~ p(7T)

for all 7; do | |
Sample K datapoints D = {x'7),y"7)} from T;
Evaluate Vo LT, ( fo) using D and L7, in Equation (2)
or (3)
Compute adapted parameters with gradient descent:
0; =0 — aVeLlT.(fo)
Sample datapoints D) = {x'), y"7’} from 7; for the
meta-update

end for

Update 0 < 0 — Vo 3 1 1) LT, (fo;) using each D

and L, in Equation 2 or 3

end while

Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.

20



Model-Agnostic Meta Learning (MAML)

. . tr ts
min Z L(O—aVeL(0,D;"),D;)

task 1

_ — meta-learning
9 ---- learning/adaptation

VLs

V£1 _”° 9?’;

’
sk // \\ *
e o
1 0,
Slide courtesy: Zhang, SJTU CS420, 2019

* This brings up second-order derivatives

 Supported by standard deep learning

libraries such as PyTorch/TensorFlow

21



Recall Lecture#7: Meta-learning data weights/augmentation

e Can we learn ¢; automatically?

min — Ey, p [ ¢; log po (x;) |

e Training set D, a held-out "validation” set D,

e Intuition: after training the model 6 on the weighted data, the model
gets better performance on the validation set

0’ = argénin —Ey~p | ¢ log e (x;) |

o @' is afunction of ¢, i.e., 8’ = 8'(¢p)

¢’ = argming — [Ey . p, [108 Por(p) (Xi) ]

Ren et al., “Learning to reweight examples for robust deep learning”
Hu et al., “Learning Data Manipulation for Augmentation and Weighting” 22



Meta-Learning Methods

e Initialization based methods
o Learning how to initialize the model for the new task

e Black-box adaptation methods

e Non-parametric methods

23



Black-Box Adaptation

Key idea: Train a neural network to represent ¢;
Predict test points with y* =

fo y"
I
T T T T
(3317?/1> (:E27y2) (£C3,y3) xtS
C——_ ——
D?r D’;est

Slide courtesy: Finn, Stanford CS 330, Fall 2021

— fe(D‘L?r) “learner"

XtS)

Train with standard supervised learning!

maxy ) - loggs, (ylo)

Ti (xfy)NDgeSt

|
£(¢“ D‘;est)

maXZL' fo(DLY), Dtest)

24



Black-Box Adaptation

Key idea: Train a neural network to represent ¢; = fo(D}").

ts
fo J
| 1. Sample task T; (or mini batch of tasks)
T ) : | : — i gfb i 2. Sample disjoint datasets D;", Di**" from D;
ts

(z1,91) (x2,92) (3,Y3) L

t
Slide courtesy: Finn, Stanford CS 330, Fall 2021 Dir DteSt



Black-Box Adaptation

Key idea: Train a neural network to represent ¢; = fo(D}").

ts
fo J
| 1. Sample task T; (or mini batch of tasks)
T ) : B T — ¢ gfb : 2. Sample disjoint datasets D;", Di**" from D;
(z1,y1) (72,92) (3,y3) s\ 3. Compute ¢; fo(Di)
S — 4. Update 0 using VoL (¢;, D)

tr test
D; D;




Black-Box Adaptation

Key idea: Train a neural network to represent ¢;

Challenge

= fo(D;").

Outputting all neural net parameters does not seem scalable?

Idea: Do not need to output all parameters of neural net, only sufficient statistics

fo

T T T

(z1,91) (T2,92) (23,Y3)

V
D

ts

Y

A

9o

A

X

test
Di

ts

(Santoro et al. MANN, Mishra et al. SNAIL)

low-dimensional vector h;
represents contextual task information

84 fiiters 32filters 32 filters
7777777 N & E fully fully fully
X side 2 | [, 5x5conv| [ ]y5x5 conv
I I ° RelU RelU ReLy _. B Rretu RelU _ [H linear y
re c a [ ]

general form: Y = fo (Dfra ’)

Slide courtesy: Finn, Stanford CS 330, Fall 2021 What architecture should we use for f9?



Meta-Learning Methods

e Initialization based methods
o Learning how to initialize the model for the new task

e Black-box adaptation methods

e Non-parametric methods

28



Non-parametric methods

Key Idea: Use non-parametric learner.

, t
test datapoint L >

training data D"

Compare test image with training images

In what space do you compare? With what distance metric?

¢, distance in pixel space?

Slide courtesy: Finn, Stanford CS 330, Fall 2021 7



In what space do you compare? With what distance metric?

¢, distance in pixel space?

Slide courtesy: Finn, Stanford CS 330, Fall 2021 8 Zhang et al. (arXiv 1801-03924)



Non-parametric methods

Key Idea: Use non-parametric learner.
: ts
training data D" test datapoint T

Compare test image with training images

In what space do you compare? With what distance metric?
Question: What distance metric would you use instead?

| | |ldea: Learn to compare using meta-training data
Slide courtesy: Finn, Stanford CS 330, Fall 2021



Non-parametric methods

Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class

Input Hidden Distance Output
layer layer layer layer

Slide courtesy: Finn, Stanford CS 330, Fall 2021 10 Koch et al., ICML ‘15
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Non-parametric methods

Key Idea: Use non-parametric learner.

Prototypes: aggregate class information to create a prototypical embedding

=g 2. Hw=n
(z,y) €D}
B ~exp(—d(fo(z),cn))
Poly =nlz) = S o d(fo(@) o))

d: Euclidean, or cosine distance

Slide courtesy: Finn, Stanford CS 330, Fall 2021 16 Snell et al. Prototypical Networks, NeurlPS ‘17



Summary: Meta-Learning Methods

e Initialization based methods

Key idea: embed optimization inside the inner learning process

+ structure of optimization - typically requires

embedded into meta-learner second-order optimization
Slide courtesy: Finn, Stanford CS 330, Fall 2021



Summary: Meta-Learning Methods

e Black-box adaptation methods
fo

2.
Q
3

Key idea: parametrize learner as a neural network

Sice courtey: Firn, Starford G5 30, el 2021+ @XPF@SSIVE - challenging optimization problem



Summary: Meta-Learning Methods

e Non-parametric methods

tr
Di

Key idea: non-parametric learner with parametric embedding / distance
(e.g. kNN to examples/prototypes)

+ easy to optimize, - largely restricted to
Slide courtesy: Finn, Stanford CS 330, Fall 2021 computaﬁona"y fast CIaSSiﬁcation



Key Takeaways

e Learning with multiple tasks:
o Multi-task learning, transfer learning, mete-learning

e Meta-learning problem setting

e Meta-learning methods
o Initialization-based methods
o Black-box adaptation

o Non-parametric methods .--- ,

meta-training

meta-testing

40






