DSC190: Machine Learning with Few Labels

Reinforcement learning

Zhiting Hu Lecture 14, November 9, 2021

HALICIOĞLU DATA SCIENCE INSTITUTE

Logistics

- No class this Thursday (Veterans Day Holiday)
- Mid-term survey this week

Outline

- Reinforcement Learning
- 1 Paper presentations (15 mins)
 - Yuan Gao: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Goal: Learn how to take actions in order to maximize reward

Recap: Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the world

Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{P}, \gamma)$

- ${\cal S}$: set of possible states
- ${\cal A}$: set of possible actions
- ${\cal R}$: distribution of reward given (state, action) pair
- ℙ : transition probability i.e. distribution over next state given (state, action) pair
- γ : discount factor

Recap: Markov Decision Process

- At time step t=0, environment samples initial state $s_0 \sim p(s_0)$
- Then, for t=0 until done:
 - Agent selects action a_t
 - Environment samples reward $r_t \sim R(. | s_t, a_t)$
 - Environment samples next state $s_{t+1} \sim P(.|s_t, a_t)$
 - Agent receives reward r_t and next state s_{t+1}

- A policy $\pi \, \textsc{is}$ a function from S to A that specifies what action to take in each state
- **Objective**: find policy π^* that maximizes cumulative discounted reward:

Recap: Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable from a given (state, action) pair:

$$Q^*(s,a) = \max_{\pi} \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi\right]$$

Q* satisfies the following **Bellman equation**:

$$Q^*(s,a) = \mathbb{E}_{s'\sim\mathcal{E}}\left[r + \gamma \max_{a'} Q^*(s',a')|s,a\right]$$

Intuition: if the optimal state-action values for the next time-step Q*(s',a') are known, then the optimal strategy is to take the action that maximizes the expected value of $r + \gamma Q^*(s',a')$

The optimal policy π^* corresponds to taking the best action in any state as specified by Q^{*}

Recap: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$Q^*(s,a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s',a') | s, a \right]$$

Q-learning: Use a function approximator to estimate the actionvalue function $Q(x,y) = Q^*(x,y)$

$$Q(s,a;\theta) \approx Q^*(s,a)$$

Loss function:
$$L_i(heta_i) = \mathbb{E}_{s,a \sim
ho(\cdot)} \left[(y_i - Q(s,a; heta_i))^2
ight]$$

where $y_i = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s',a'; heta_{i-1}) | s, a
ight]$

Recap: Training the Q-network - Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing action is to move left, training samples will be dominated by samples from left-hand size) => can lead to bad feedback loops

Address these problems using **experience replay**

- Continually update a replay memory table of transitions (s_t, a_t, r_t, s_{t+1}) as game (experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory, instead of consecutive samples

Recap: Training the Q-network - Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing action is to move left, training samples will be dominated by samples from left-hand size) => can lead to bad feedback loops

Address these problems using **experience replay**

- Continually update a replay memory table of transitions (s_t, a_t, r_t, s_{t+1}) as game (experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory, instead of consecutive samples

Each transition can also contribute to multiple weight updates => greater data efficiency

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \\ \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 end for end for

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize replay memory, Q-network Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 end for end for

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights ——— Play M episodes (full games) for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \\ \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 end for end for

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ Initialize state for t = 1, T do (starting game With probability ϵ select a random action a_t screen pixels) at the otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ beginning of each Execute action a_t in emulator and observe reward r_t and image x_{t+1} episode Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 end for end for

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t With small probability, otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ select a random Execute action a_t in emulator and observe reward r_t and image x_{t+1} action (explore), Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ otherwise select Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} greedy action from Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D} current policy Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ Perform a gradient descent step on $(y_i - Q(\phi_i, a_i; \theta))^2$ according to equation 3 end for end for

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Take the action (a_i) , and observe the Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D} reward r, and next Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ state s_{t+1} Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 end for end for

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition in Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} replay memory Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 end for end for

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Experience Replay: Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ Sample a random minibatch of transitions Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 from replay memory and perform a gradient end for descent step end for

What is a problem with Q-learning? The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard to learn exact value of every (state, action) pair

What is a problem with Q-learning? The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand Can we learn a policy directly, e.g. finding the best policy from a collection of policies?

Formally, let's define a class of parametrized policies: $\Pi = \{\pi_{\theta}, \theta \in \mathbb{R}^m\}$

For each policy, define its value:

$$J(\theta) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | \pi_{\theta}\right]$$

Formally, let's define a class of parametrized policies: $\Pi = \{\pi_{\theta}, \theta \in \mathbb{R}^m\}$

For each policy, define its value:

$$J(\theta) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | \pi_{\theta}\right]$$

We want to find the optimal policy $\theta^* = \arg \max_{\theta} J(\theta)$

How can we do this?

Formally, let's define a class of parametrized policies: $\Pi = \{\pi_{\theta}, \theta \in \mathbb{R}^m\}$

For each policy, define its value:

$$J(\theta) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | \pi_{\theta}\right]$$

We want to find the optimal policy $\theta^* = \arg \max_{\theta} J(\theta)$

How can we do this?

Gradient ascent on policy parameters!

Mathematically, we can write:

$$J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)} [r(\tau)]$$
$$= \int_{\tau} r(\tau) p(\tau;\theta) d\tau$$

Where r(r) is the reward of a trajectory $au = (s_0, a_0, r_0, s_1, \ldots)$

Expected reward:

$$J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)} [r(\tau)]$$
$$= \int_{\tau} r(\tau) p(\tau;\theta) d\tau$$

Expected reward: $J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)} [r(\tau)]$

$$= \int_{\tau} r(\tau) p(\tau; \theta) d\tau$$
$$= \int_{\tau} r(\tau) p(\tau; \theta) d\tau$$

Now let's differentiate this: ∇_{θ}

$$\partial J(\theta) = \int_{\tau} r(\tau) \nabla_{\theta} p(\tau; \theta) \mathrm{d} \tau$$

Expected reward: $J(\theta) = \mathbb{E}_{\theta}$

$$) = \mathbb{E}_{\tau \sim p(\tau;\theta)} [r(\tau)]$$
$$= \int_{\tau} r(\tau) p(\tau;\theta) d\tau$$

Now let's differentiate this: $\nabla_{\theta} J(\theta) = \int_{\tau} r(\tau) \nabla_{\theta} p(\tau; \theta) d\tau$

Intractable! Gradient of an expectation is problematic when p depends on
$$\boldsymbol{\theta}$$

Expected reward: $J(\theta) = \mathbb{E}_{\tau \sim p(\tau:\theta)} [r(\tau)]$

$$\int_{\tau} \sum_{\tau} p(\tau;\theta) \left[r(\tau) \right]$$
$$= \int_{\tau} r(\tau) p(\tau;\theta) d\tau$$

Now let's differentiate this: $\nabla_{\theta} J(\theta)$

$$(heta) = \int_{\tau} r(\tau) \nabla_{\theta} p(\tau; \theta) \mathrm{d} au$$

1

Intractable! Gradient of an expectation is problematic when p depends on θ

However, we can use a nice trick:
$$\nabla_{\theta} p(\tau; \theta) = p(\tau; \theta) \frac{\nabla_{\theta} p(\tau; \theta)}{p(\tau; \theta)} = p(\tau; \theta) \nabla_{\theta} \log p(\tau; \theta)$$

Expected reward: $J(\theta) = \mathbb{E}_{\tau \sim n(\tau;\theta)} [r(\tau)]$

$$\int_{\tau} \sum_{\tau} p(\tau;\theta) \left[r(\tau) \right]$$
$$= \int_{\tau} r(\tau) p(\tau;\theta) d\tau$$

Now let's differentiate this: $\nabla_{\theta} J(\theta) = \int_{-\pi} r(\tau) \nabla_{\theta} p(\tau; \theta) d\tau$

Intractable! Gradient of an expectation is problematic when p depends on θ

However, we can use a nice trick: $\nabla_{\theta} p(\tau; \theta) = p(\tau; \theta) \frac{\nabla_{\theta} p(\tau; \theta)}{p(\tau; \theta)} = p(\tau; \theta) \nabla_{\theta} \log p(\tau; \theta)$ If we inject this back:

$$\begin{aligned} \nabla_{\theta} J(\theta) &= \int_{\tau} \left(r(\tau) \nabla_{\theta} \log p(\tau; \theta) \right) p(\tau; \theta) \mathrm{d}\tau \\ &= \mathbb{E}_{\tau \sim p(\tau; \theta)} \left[r(\tau) \nabla_{\theta} \log p(\tau; \theta) \right] \end{aligned} \begin{array}{l} \text{Can estimate with} \\ \text{Monte Carlo sampling} \end{aligned}$$

Can we compute those quantities without knowing the transition probabilities?

We have: $p(\tau; \theta) = \prod_{t \ge 0} p(s_{t+1}|s_t, a_t) \pi_{\theta}(a_t|s_t)$

Can we compute those quantities without knowing the transition probabilities?

We have:

$$p(\tau;\theta) = \prod_{t \ge 0} p(s_{t+1}|s_t, a_t) \pi_{\theta}(a_t|s_t)$$
Thus:

$$\log p(\tau;\theta) = \sum_{t \ge 0} \log p(s_{t+1}|s_t, a_t) + \log \pi_{\theta}(a_t|s_t)$$

Can we compute those quantities without knowing the transition probabilities?

We have:
$$p(\tau; \theta) = \prod_{t \ge 0} p(s_{t+1}|s_t, a_t) \pi_{\theta}(a_t|s_t)$$

Thus: $\log p(\tau; \theta) = \sum_{t \ge 0}^{t \ge 0} \log p(s_{t+1}|s_t, a_t) + \log \pi_{\theta}(a_t|s_t)$
And when differentiating: $\nabla_{\theta} \log p(\tau; \theta) = \sum_{t \ge 0} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$ tra

Doesn't depend on transition probabilities!

$$\nabla_{\theta} J(\theta) = \int_{\tau} \left(r(\tau) \nabla_{\theta} \log p(\tau; \theta) \right) p(\tau; \theta) d\tau$$
$$= \mathbb{E}_{\tau \sim p(\tau; \theta)} \left[r(\tau) \nabla_{\theta} \log p(\tau; \theta) \right]$$

Can we compute those quantities without knowing the transition probabilities?

We have:

$$p(\tau;\theta) = \prod_{t\geq 0} p(s_{t+1}|s_t, a_t) \pi_{\theta}(a_t|s_t)$$
Thus:

$$\log p(\tau;\theta) = \sum_{t\geq 0}^{t\geq 0} \log p(s_{t+1}|s_t, a_t) + \log \pi_{\theta}(a_t|s_t)$$
Doesn't de transition provided the transition provided to the trans

Doesn't depend on ransition probabilities!

Therefore when sampling a trajectory τ , we can estimate $J(\theta)$ with

$$\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Intuition

Gradient estimator:

$$\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Interpretation:

- If $r(\tau)$ is high, push up the probabilities of the actions seen
- If $r(\tau)$ is low, push down the probabilities of the actions seen

Intuition

Gradient estimator:

$$\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Interpretation:

- If $r(\tau)$ is high, push up the probabilities of the actions seen
- If $r(\tau)$ is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were good. But in expectation, it averages out!

Intuition

Gradient estimator:

$$\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Interpretation:

- If $r(\tau)$ is high, push up the probabilities of the actions seen
- If $r(\tau)$ is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is really hard. Can we help the estimator?

Variance reduction

Gradient estimator:

:
$$\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Variance reduction Gradient estimator: $\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$

First idea: Push up probabilities of an action seen, only by the cumulative future reward from that state

$$\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} \left(\sum_{t' \ge t} r_{t'} \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Variance reduction Gradient estimator: $\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$

First idea: Push up probabilities of an action seen, only by the cumulative future reward from that state

$$\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} \left(\sum_{t' \ge t} r_{t'} \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Second idea: Use discount factor γ to ignore delayed effects

$$\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} \left(\sum_{t' \ge t} \gamma^{t'-t} r_{t'} \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Variance reduction: Baseline

Problem: The raw value of a trajectory isn't necessarily meaningful. For example, if rewards are all positive, you keep pushing up probabilities of actions.

What is important then? Whether a reward is better or worse than what you expect to get

Idea: Introduce a baseline function dependent on the state. Concretely, estimator is now:

$$\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} \left(\sum_{t' \ge t} \gamma^{t'-t} r_{t'} - b(s_t) \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

$$\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} \left(\sum_{t' \ge t} \gamma^{t'-t} r_{t'} - b(s_t) \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

A simple baseline: constant moving average of rewards experienced so far from all trajectories

How to choose the baseline? $\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} \left(\sum_{t' \ge t} \gamma^{t'-t} r_{t'} - b(s_t) \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$

A simple baseline: constant moving average of rewards experienced so far from all trajectories

Variance reduction techniques seen so far are typically used in "Vanilla REINFORCE"

A better baseline: Want to push up the probability of an action from a state, if this action was better than the **expected value of what we should get from that state**.

Q: What does this remind you of?

A better baseline: Want to push up the probability of an action from a state, if this action was better than the **expected value of what we should get from that state**.

Q: What does this remind you of?

A: Q-function and value function!

A better baseline: Want to push up the probability of an action from a state, if this action was better than the **expected value of what we should get from that state**.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a_t in a state s_t if $Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$ is large. On the contrary, we are unhappy with an action if it's small.

A better baseline: Want to push up the probability of an action from a state, if this action was better than the **expected value of what we should get from that state**.

Q: What does this remind you of?

A: Q-function and value function!

$$egin{aligned} Q^{\pi}(s,a) &= \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi
ight] \ V^{\pi}(s) &= \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | s_0 = s, \pi
ight] \end{aligned}$$

Intuitively, we are happy with an action a_t in a state s_t if $Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$ is large. On the contrary, we are unhappy with an action if it's small.

Using this, we get the estimator:
$$\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} (Q^{\pi_{\theta}}(s_t, a_t) - V^{\pi_{\theta}}(s_t)) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Actor-Critic Algorithm

Problem: we don't know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training both an **actor** (the policy) and a **critic** (the Q-function).

- The actor decides which action to take, and the critic tells the actor how good its action was and how it should adjust
- Also alleviates the task of the critic as it only has to learn the values of (state, action) pairs generated by the policy
- Can also incorporate Q-learning tricks e.g. experience replay
- **Remark:** we can define by the **advantage function** how much an action was better than expected $A^{\pi}(a, a) = O^{\pi}(a, b)$

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

Actor-Critic Algorithm

Initialize policy parameters θ , critic parameters ϕ **For** iteration=1, 2 ... **do** Sample m trajectories under the current policy $\Delta\theta \leftarrow 0$ **For** i=1, ..., m **do For** t=1, ..., T **do** $A_t = \sum_{t' \ge t} \gamma^{t'-t} r_t^i - V_\phi(s_t^i)$ $\Delta \theta \leftarrow \Delta \theta + A_t \nabla_\theta \log(a_t^i | s_t^i)$ $\Delta \phi \leftarrow \sum \sum \nabla_{\phi} ||A_t^i||^2$ $\theta \leftarrow \alpha \Delta \overline{\theta}^{i}$ $\phi \leftarrow \beta \Delta \phi$

End for

More policy gradients: AlphaGo

Overview:

- Mix of supervised learning and reinforcement learning
- Mix of old methods (Monte Carlo Tree Search) and recent ones (deep RL)

How to beat the Go world champion:

- Featurize the board (stone color, move legality, bias, ...)
- Initialize policy network with supervised training from professional go games, then continue training using policy gradient (play against itself from random previous iterations, +1 / -1 reward for winning / losing)
- Also learn value network (critic)
- Finally, combine combine policy and value networks in a Monte Carlo Tree Search algorithm to select actions by lookahead search

[Silver et al.,

Nature 20161

Key Takeaways

- Markov Decision Process (MDP)
- Q-learning
 - Bellman equation
 - Deep Q-learning, experience replay
- Policy gradients
- Actor-critic
- Guarantees:
 - Policy Gradients: Converges to a local minima of $J(\theta)$, often good enough!
 - Q-learning: Zero guarantees since you are approximating Bellman equation with a complicated function approximator

Questions?