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Recap: Knowledge driven learning

● Two general ways of integrating structured knowledge with ML:

! Model architecture (inductive bias)

! Integrating knowledge through learning (loss, constraints)

§ Weak supervision

§ Posterior regularization

§ Integer linear programming (ILP)
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Outline
● Reinforcement Learning

● 1 Paper presentations (15 mins)
! Kewen Zhao: Task-Agnostic Meta-Learning for Few-shot Learning

4Slides adapted from Stanford CS231n 2017 Lecture 14



So far… Supervised Learning
Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Cat

Classification
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So far… Unsupervised Learning
Data: x
no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

2-d density estimation

2-d density images left and right 
are CC0 public domain

1-d density estimation
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Today: Reinforcement Learning

Problems involving an agent 
interacting with an environment, 
which provides numeric reward 
signals

Goal: Learn how to take actions 
in order to maximize reward
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Overview

- What is Reinforcement Learning?
- Markov Decision Processes
- Q-Learning
- Policy Gradients
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Agent

Reinforcement Learning

Environment
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Agent

Environment

State st

Reinforcement Learning
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Agent

Environment

Action at
State st

Reinforcement Learning
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Agent

Environment

Action at
State st Reward rt

Reinforcement Learning
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Agent

Environment

Action a t
State st

Reinforcement Learning

Reward rt 
Next state s

t+1
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Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright

This image is CC0 public domain14

https://creativecommons.org/publicdomain/zero/1.0/deed.en


Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints 
Action: Torques applied on joints 
Reward: 1 at each time step upright + 
forward movement
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Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step
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Go

Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

This image is CC0 public domain

Lecture 14 -
17

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Agent

Environment

Action a t
State st

How can we mathematically formalize the RL
problem?

Reward rt 
Next state s

t+1
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Markov Decision Process
- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the 

world

Defined by:

: set of possible states
: set of possible actions
: distribution of reward given (state, action) pair
: transition probability i.e. distribution over next state given (state, action) pair
: discount factor
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Markov Decision Process
- At time step t=0, environment samples initial state s0 ~ p(s0)
- Then, for t=0 until done:

- Agent selects action at
- Environment samples reward rt ~ R( . | st, at)
- Environment samples next state st+1 ~ P( . | st, at)
- Agent receives reward rt and next state st+1

- A policy π is a function from S to A that specifies what action to take in  
each state

- Objective: find policy π* that maximizes cumulative discounted reward:
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A simple MDP: Grid World

★

★

}

Objective: reach one of terminal states (greyed out) in 
least number of actions

actions = {

1. right

2. left

3. up

4. down

Set a negative “reward” 
for each transition

(e.g. r = -1)

states
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A simple MDP: Grid World

Random Policy Optimal Policy

★

★

★

★
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The optimal policy π*
We want to find optimal policy π* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?
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The optimal policy π*
We want to find optimal policy π* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)? 
Maximize the expected sum of rewards!

Formally: with
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Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …
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Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy 
from state s:
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Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy 
from state s:

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from 
taking action a in state s and then following the policy:
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The optimal Q-value function Q* is the maximum expected cumulative reward achievable 
from a given (state, action) pair:

Bellman equation
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Bellman equation

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known, 
then the optimal strategy is to take the action that maximizes the expected value of

The optimal Q-value function Q* is the maximum expected cumulative reward achievable 
from a given (state, action) pair:
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Bellman equation

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known, 
then the optimal strategy is to take the action that maximizes the expected value of

The optimal policy π* corresponds to taking the best action in any state as specified by Q*

The optimal Q-value function Q* is the maximum expected cumulative reward achievable 
from a given (state, action) pair:
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Solving for the optimal policy

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update
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Qi will converge to Q* as i -> infinity

What’s the problem with this?

Solving for the optimal policy
Value iteration algorithm: Use Bellman equation as an iterative update
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Qi will converge to Q* as i -> infinity

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state 
pixels, computationally infeasible to compute for entire state space!

Solving for the optimal policy
Value iteration algorithm: Use Bellman equation as an iterative update
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Qi will converge to Q* as i -> infinity

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state 
pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

Solving for the optimal policy
Value iteration algorithm: Use Bellman equation as an iterative update
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Q-learning: Use a function approximator to estimate the action-value function

Solving for the optimal policy: Q-learning
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Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

If the function approximator is a deep neural network => deep q-learning!

36



Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

function parameters (weights)

If the function approximator is a deep neural network => deep q-learning!
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Remember: want to find a Q-function that satisfies the Bellman Equation:

Solving for the optimal policy: Q-learning
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Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass 
Loss function:

where

Solving for the optimal policy: Q-learning
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Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass 
Loss function:

where

Backward Pass
Gradient update (with respect to Q-function parameters θ):

Solving for the optimal policy: Q-learning
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Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass 
Loss function:

where

Backward Pass
Gradient update (with respect to Q-function parameters θ):

Solving for the optimal policy: Q-learning

close to the target value (y ) it
should have, if Q-function
corresponds to optimal Q*
(and optimal policy π*)
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Case Study: Playing Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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:
neural network 
with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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:
neural network 
with weights

Q-network Architecture

Input: state st

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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:
neural network 
with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

Familiar conv layers, 
FC layer

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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:
neural network 
with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d
output (if 4 actions), 
corresponding to Q(st, 
a1), Q(st, a2), Q(st, a3), 
Q(st,a4)

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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:
neural network 
with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d
output (if 4 actions), 
corresponding to Q(st, 
a1), Q(st, a2), Q(st, a3), 
Q(st,a4)

Number of actions between 4-18 
depending on Atari game

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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:
neural network 
with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d
output (if 4 actions), 
corresponding to Q(st, 
a1), Q(st, a2), Q(st, a3), 
Q(st,a4)

Number of actions between 4-18 
depending on Atari game

A single feedforward pass 
to compute Q-values for all 
actions from the current 
state => efficient!

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass 
Loss function:

where

Backward Pass
Gradient update (with respect to Q-function parameters θ):

Recap: Solving for the optimal policy: Q-learning

close to the target value (y ) it
should have, if Q-function
corresponds to optimal Q*
(and optimal policy π*)
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Training the Q-network: Experience Replay
Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Training the Q-network: Experience Replay
Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (st, at, rt, st+1) as game 

(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory, 

instead of consecutive samples

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Training the Q-network: Experience Replay
Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (st, at, rt, st+1) as game 

(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples Each transition can also contribute 
to multiple weight updates
=> greater data efficiency

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Putting it together: Deep Q-Learning with Experience Replay
[Mnih et al. NIPS Workshop 2013; Nature 2015]



Putting it together: Deep Q-Learning with Experience Replay

Initialize replay memory, Q-network

[Mnih et al. NIPS Workshop 2013; Nature 2015]



Putting it together: Deep Q-Learning with Experience Replay

Play M episodes (full games)

[Mnih et al. NIPS Workshop 2013; Nature 2015]



Initialize state 
(starting game 
screen pixels) at the 
beginning of each 
episode

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay
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Putting it together: Deep Q-Learning with Experience Replay

For each timestep t 
of the game

[Mnih et al. NIPS Workshop 2013; Nature 2015]



With small probability, 
select a random 
action (explore), 
otherwise select 
greedy action from 
current policy

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay
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Take the action (at), 
and observe the 
reward rt and next 
state st+1

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay
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Store transition in
replay memory

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay
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Experience Replay:
Sample a random 
minibatch of transitions 
from replay memory 
and perform a gradient 
descent step

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay
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Policy Gradients
What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard 
to learn exact value of every (state, action) pair
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Policy Gradients
What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard 
to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand
Can we learn a policy directly, e.g. finding the best policy from a collection of 
policies?
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Formally, let’s define a class of parametrized policies:

For each policy, define its value:

Policy Gradients
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Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this?

Policy Gradients
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Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this?
Gradient ascent on policy parameters!

Policy Gradients
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REINFORCE algorithm
Mathematically, we can write:

Where r(r) is the reward of a trajectory
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Expected reward:

REINFORCE algorithm
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REINFORCE algorithm

Now let’s differentiate this:

Expected reward:
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REINFORCE algorithm

Intractable! Gradient of an 
expectation is problematic when p 
depends on θ

Now let’s differentiate this:

Expected reward:
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REINFORCE algorithm

Intractable! Gradient of an 
expectation is problematic when p 
depends on θ

Now let’s differentiate this:

However, we can use a nice trick:

Expected reward:
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REINFORCE algorithm

Intractable! Gradient of an 
expectation is problematic when p 
depends on θ

Can estimate with 
Monte Carlo sampling

Now let’s differentiate this:

However, we can use a nice trick: 
If we inject this back:

Expected reward:
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REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have:
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REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have: 

Thus:
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REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have: 

Thus:

And when differentiating:
Doesn’t depend on 

transition probabilities!
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REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have: 

Thus:

And when differentiating:

Therefore when sampling a trajectory r, we can estimate J(8) with

Doesn’t depend on 
transition probabilities!
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Intuition
Gradient estimator:

Interpretation:
- If r(r) is high, push up the probabilities of the actions seen
- If r(r) is low, push down the probabilities of the actions seen
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Intuition
Gradient estimator:

Interpretation:
- If r(r) is high, push up the probabilities of the actions seen
- If r(r) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 
good. But in expectation, it averages out!
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Intuition
Gradient estimator:

Interpretation:
- If r(r) is high, push up the probabilities of the actions seen
- If r(r) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is 
really hard. Can we help the estimator?
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Gradient estimator:

Variance reduction

80



Variance reduction
Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative 
future reward from that state
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Variance reduction
Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative 
future reward from that state

Second idea: Use discount factor γ to ignore delayed effects

82



Variance reduction: Baseline
Problem: The raw value of a trajectory isn’t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.

What is important then? Whether a reward is better or worse than what you 
expect to get

Idea: Introduce a baseline function dependent on the state. 
Concretely, estimator is now:
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A simple baseline: constant moving average of rewards experienced so far 
from all trajectories

How to choose the baseline?
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How to choose the baseline?

A simple baseline: constant moving average of rewards experienced so far 
from all trajectories

Variance reduction techniques seen so far are typically used in “Vanilla 
REINFORCE”
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How to choose the baseline?
A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

86



How to choose the baseline?
A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of? 

A: Q-function and value function!

87



How to choose the baseline?
A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of? 

A: Q-function and value function!

Intuitively, we are happy with an action at in a state st if
is large. On the contrary, we are unhappy with an action if it’s small.
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How to choose the baseline?
A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of? 

A: Q-function and value function!

Intuitively, we are happy with an action at in a state st if
is large. On the contrary, we are unhappy with an action if it’s small.

Using this, we get the estimator:
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Actor-Critic Algorithm
Problem: we don’t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning 
by training both an actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor 
how good its action was and how it should adjust

- Also alleviates the task of the critic as it only has to learn the values 
of (state, action) pairs generated by the policy

- Can also incorporate Q-learning tricks e.g. experience replay
- Remark: we can define by the advantage function how much an 

action was better than expected
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Actor-Critic Algorithm
Initialize policy parameters 8, critic parameters ø
For iteration=1, 2 … do

Sample m trajectories under the current policy

For i=1, …, m do
For t=1, ... , T do

End for
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More policy gradients: AlphaGo

- Featurize the board (stone color, move legality, bias, …)
- Initialize policy network with supervised training from professional go games, 

then continue training using policy gradient (play against itself from random 
previous iterations, +1 / -1 reward for winning / losing)

- Also learn value network (critic)
- Finally, combine combine policy and value networks in a Monte Carlo Tree 

Search algorithm to select actions by lookahead search

Overview:
- Mix of supervised learning and reinforcement learning
- Mix of old methods (Monte Carlo Tree Search) and 

recent ones (deep RL)

How to beat the Go world champion:

[Silver et al., 
Nature 2016]

This image is CC0 public domain

Lecture 14 -
100

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Key Takeaways
- Markov Decision Process (MDP)
- Q-learning

- Bellman equation
- Deep Q-learning, experience replay

- Policy gradients

- Guarantees:
- Policy Gradients: Converges to a local minima of J(𝜃), often good enough!
- Q-learning: Zero guarantees since you are approximating Bellman

equation with a complicated function approximator
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Questions?
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