DSC190: Machine Learning with Few Lab

Reinforcement learning

Zhiting Hu
Lecture 13, November 4, 2021

UCSan Diego

HALICIOGLU DATA SCIENCE INSTITUTE

Recap: Knowledge driven learning

e Two general ways of integrating structured knowledge with ML:
o Model architecture (inductive bias)

o Integrating knowledge through learning (loss, constraints)
= Weak supervision
= Posterior regularization

= Integer linear programming (ILP)

Outline

e Reinforcement Learning

e 1 Paper presentations (15 mins)
o Kewen Zhao: Task-Agnostic Meta-Learning for Few-shot Learning

Slides adapted from Stanford CS231n 2017 Lecture 14

So far... Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y —» Cat

Examples: Classification,
regression, object detection,
semantic segmentation, image Classification
captioning, etc.

So far... Unsupervised Learning

Data: x
no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

1-d density estimation

https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Today: Reinforcement Learning

Problems involving an agent

interacting with an environment, Pl
which provides numeric reward

signals

Reward r
Next state 8

Action a,

Environment

Goal: Learn how to take actions
In order to maximize reward

Atari games figure copyright Volodymyr Mnih et al., 2013. Reproyuced with permission.

Overview

What is Reinforcement Learning?
Markov Decision Processes
Q-Learning

Policy Gradients

Reinforcement Learning

Environment

Reinforcement Learning

State s,

Environment

10

Reinforcement Learning

State s,

Environment

Action a,

11

Reinforcement Learning

State s,

Reward r,

Environment

Action a,

12

Reinforcement Learning

State s,

Reward r,

Next state st+1

Environment

Actionat

13

Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright

_’
M %

L1777 777777777777 7777777777777

14

https://creativecommons.org/publicdomain/zero/1.0/deed.en

Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright +
forward movement

Figures copyright John Schulman et al., 2016. Reproduced with permission.

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

16
Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

19
18
17
16
15
14
13
12
11
10

o

= N W & U N @

Go

A BCDETFGH)] KLMNUOPOQRST

N
ST 78 856
L
. 2

o°

S

_/

2

QE

e
P

\[/

AR € D'E FFG H | K L M:N O P Q RS T

T
O = N W & U v N @ 0

= N W A Uy N @

Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

17

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

How can we mathematically formalize the RL
problem?

State s, Reward r,

Action a
Next state ... t

Environment

18

Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the

world

Defined by: (8, A, R, IP, 7)

. set of possible states

. set of possible actions

. distribution of reward given (state, action) pair

. transition probability i.e. distribution over next state given (state, action) pair
. discount factor

LY AW

19

Markov Decision Process

At time step t=0, environment samples initial state s, ~ p(s,)
Then, for t=0 until done:

- Agent selects action a,

- Environment samples reward r, ~ R(. | s,, a,)

- Environment samples next state s,,, ~ P(.|s,, a,)

- Agentreceives reward r, and next state s,

A policy TTis a function from S to A that specifies what action to take in
each state

Objective: find policy 1 that maximizes cumulative discounted reward: Z’YtTt
t>0

20

A simple MDP: Grid World

actions = { states
1. right «— *
2. left <— Set a negative “reward”
3. u I * for each transition
B (e.g.r=-1)
4. down I
}

Objective: reach one of terminal states (greyed out) in
least number of actions

21

A simple MDP: Grid World

*

+

+

+

+

+

+

*

+

+

+

+

Random Policy

Optimal Policy

22

The optimal policy 1r*

We want to find optimal policy 1Tt that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?

23

The optimal policy 1r*

We want to find optimal policy 1Tt that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

Formally: #* = arg maxE ny relm| with sg ~ p(sg), @z ~ m(+|8¢), Sta1 ~ p(+|8¢, at)
 £>0

24

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s,, a,, ry, S, a4, Iy, ...

25

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s,, a,, ry, S, a4, Iy, ..

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
VT(s)=E Z'ytrt|so =8,

>0

26

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s,, a,, ry, S, a4, Iy, ..

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
VT(s) = Z'y r¢|so = 8, T

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Q" (s,a) =E |:Z fytrt|so = 8,ap = a, 71':|

t>0

27

Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) =maxE | ¥ 4're|so = 5,00 = a,m
>0

28

Bellman equation
The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

R*(s,a) = mgx]E nytrt|30 —=s,a0=a,T
>0

Q* satisfies the following Bellman equation:
Q*(5,0) =Egng |7+ ymaxQ*(s',a)|s,

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+yQ*(s',a)

29

Bellman equation
The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) =maxE | ¥ 4're|so = 5,00 = a,m
>0

Q* satisfies the following Bellman equation:
Q*(5,0) =Egng |7+ ymaxQ*(s',a)|s,

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+yQ*(s',a)

The optimal policy ™ corresponds to taking the best action in any state as specified by Q*

30

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Ritr1(s,a) =E [’r +ymax Q;(s’,a’)|s, a]
a

Q, will converge to Q* as i -> infinity

31

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Ritr1(s,a) =E [’r +ymax Q;(s’,a’)|s, a]
a

Q, will converge to Q* as i -> infinity

What's the problem with this?

32

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Qit1(s,a) =E [7‘ +ymax Q;(s’,a’)|s, a]
a

Q, will converge to Q* as i -> infinity

What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

33

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Qit1(s,a) =E [7‘ +ymax Q;(s’,a’)|s, a]
a

Q, will converge to Q* as i -> infinity

What's the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

34

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) ~ Q*(s,a)

35

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) ~ Q*(s,a)

If the function approximator is a deep neural network => deep g-learning!

36

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Qe ai0) ¥ @"(s:0)

function parameters (weights)

If the function approximator is a deep neural network => deep g-learning!

37

Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
R*(s,a) =Eg~¢ [7’ + v max Q*(s',a’)ls, a,]

38

Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

R*(s,a) =Eg~¢ ['r' + v max Q*(s',a’)ls, a,]
Forward Pass

Loss function: L;(0;) = Es g p() [(yz — Q(s, a; Gi))z]

where ¥; = Eg g [7“ + v max Q(s',a";0;_1)|s, a]

39

Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:

R*(s,a) =Eg~¢ [7’ +ymaxQ*(s’,a’)|s, a,]
Forward Pass "

Loss function: L;(0;) = Es g p() [(yz — Q(s, a; Gi))z]

where ¥; = Eg g [7“ + v max Q(s',a";0;_1)|s, a]

Backward Pass
Gradient update (with respect to Q-function parameters 6}

Vesz(Hz) — Es,awp(-);S’Ng [’I" + 7y nf’lx Q(S’7 CL,; 9'&'—1) o Q(Sa a, 9%))V91Q(57 a, 9%)]

40

Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
R*(s,a) =Eg~¢ ['r' + v max Q*(s',a’)ls, a,]

Forward Pass
Loss function: L;(6;) = Es anp() | (¥i w

where Ui = Eg~g [7“ + 7Y max Q(S’, a’; 9z‘—1)|3, a] close to the target value (y) it
@ should have, if Q-function
corresponds to optimal Q*
Backward Pass (and optimal policy 11%)

Gradient update (with respect to Q-function parameters 6}

Vesz(gz) — Es,awp(-);S’Ng [’I" + 7y nffx Q(S’7 CL,; 9'&'—1) o Q(Sa a, &J)ngQ(S, a, 9%)]

41

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Case Study: Playing Atari Games

_I- - O
™ ™ ~ ™ ~e ™
ra M m ™ m

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

4
Figures copyright Volodymyr Mnih et al., 2013. Reproguced with permission.

Q-network Architecture

Q(s,a;0):
neural network
with weights g

FC-4 (Q-values)

FC-256

1

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

43

Q-network Architecture

Q(s,a;0):
neural network
with weights g

FC-4 (Q-values)

FC-256

1

[Mnih et al. NIPS Workshop 2013; Nature 2015]

- Input: state s,

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

44

Q-network Architecture

Q(s,a;0):
neural network
with weights g

FC-4 (Q-values)

FC-256

1

[Mnih et al. NIPS Workshop 2013; Nature 2015]

< Familiar conv layers,

FC layer

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

45

Q-network Architecture

Q(s,a;0):
neural network
with weights g

FC-4 (Q-values)

FC-256

1

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Last FC layer has 4-d
output (if 4 actions),
corresponding to Q(s,,
ay), Q(s, ay), Q(s,, ay),
Q(sy,a,)

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

46

Q-network Architecture

Q(s,a;0):

FC-4 (Q-values)

neural network

with weights @ FC-256

1

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Last FC layer has 4-d
output (if 4 actions),
corresponding to Q(s,,
ay), Q(s,, ay), Q(s, a),
Q(sy.a,)

Number of actions between 4-18
depending on Atari game

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

47

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(S ,a;0) : FC-4 (O-values) < Last FC layer has 4-d

neural network output (if 4 actions),

with weights @ FC-256 corresponding to Q(s,,
ay), Q(s, a,), Qls,, a,),
Q(s,,a,)

A single feedforward pass
to compute Q-values for all

actions from the current Number of actions between 4-18

state => efficient! 11— depending on Atari game

11—

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

48

Recap: Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
R*(s,a) =Eg~¢ ['r' + v max Q*(s',a’)ls, a,]

Forward Pass
Loss function: L;(6;) = Es anp() | (¥i w

where Ui = Eg~g [7“ + 7Y max Q(S’, a’; 9z‘—1)|3, a] close to the target value (y) it
@ should have, if Q-function
corresponds to optimal Q*
Backward Pass (and optimal policy 11%)

Gradient update (with respect to Q-function parameters 6}

Vesz(gz) — Es,awp(-);S’Ng [’I" + 7y nffx Q(S’7 CL,; 9'&'—1) o Q(Sa a, &J)ngQ(S, a, 9%)]

49

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

50

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (s,, a, r, s,,1) as game
(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,
instead of consecutive samples

51

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (s,, a, r, s,,1) as game
(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples Each transition can also contribute

to multiple weight updates
=> greater data efficiency

52

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do
With probability € select a random action a,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess ¢y11 = O(S¢+1)
Store transition (¢y, a;, 74, 1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
S - { Tj for terminal ¢, 1
Y=Y .. - : .
r; +vmaxy Q(¢j+1,a';0) for non-terminal ¢4
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N - Initialize replay memory, Q-network
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do
With probability € select a random action a,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess ¢y11 = O(S¢+1)
Store transition (¢y, a;, 74, 1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
S - { Tj for terminal ¢, 1
Y=Y .. - : .
r; +vmaxy Q(¢j+1,a';0) for non-terminal ¢4
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights

for episode = 1, M do <] Play M episodes (full games)
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do

With probability € select a random action a,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess ¢y11 = O(S¢+1)
Store transition (¢y, a;, 74, 1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
S - { Tj for terminal ¢, 1
U= . o JBTS : |
r; +vmaxy Q(¢j+1,a';0) for non-terminal ¢4
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do

Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;) <
fort=1,T do

With probability € select a random action a,

otherwise select a; = max, Q*(¢(s;),a;0)

Execute action a, in emulator and observe reward r; and image x; ;

Set 8411 = 8¢, ay, Ty41 and preprocess ¢y11 = O(S¢+1)

Store transition (¢y, a;, 74, 1+1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S - { Tj for terminal ¢, 1

ety; = A ; g S : :

r; +vmaxy Q(¢j+1,a';0) for non-terminal ¢4

Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

Initialize state
(starting game
screen pixels) at the
beginning of each
episode

56

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do - For each timestep t
With probability € select a random action a, of the game
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess ¢y11 = O(S¢+1)
Store transition (¢y, a;, 74, 1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
S - { Tj for terminal ¢, 1
Y=Y .. - : .
r; +vmaxy Q(¢j+1,a';0) for non-terminal ¢4
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N

Initialize action-value function () with random weights

for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do

With probability € select a random action a, <
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess @yr1 = O(S¢41)
Store transition (¢y, a;, 74, 1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
S) T for terminal ¢, 1
Ct y] g— /&5 .
r; + Yy max,- Q(¢j+1,a ,9) for non-terminal ¢j+1
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

With small probability,
select a random
action (explore),
otherwise select
greedy action from
current policy

58

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do
With probability € select a random action a,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x; ;

Set St+1 = 84,04, T4 and Preprocess ¢H—1 = ¢(3H—1) < Take the action (at)7
Store transition (¢y, a;, 74, 1+1) in D and observe the
Sample random minibatch of transitions (¢;,a;, 7, ¢;+1) from D reward r,and next
B { r; for terminal ¢, ; state s,
ety; = A ; _ . : :
r; +vmaxy Q(¢j+1,a';0) for non-terminal ¢4
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

59

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N

Initialize action-value function () with random weights

for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do

With probability € select a random action a,

otherwise select a; = max, Q*(¢(s;),a;0)

Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess ¢y11 = O(S¢+1)

Store transition (¢y, a;, 74, 1+1) in D <
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

e) 15 for terminal ¢, ;
y] = 'rj + ¥ max,’ Q(¢j+1’a’/; 0) fOI‘ non-tcrmj.nal ¢J+1

Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for

Store transition in
replay memory

60

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do
With probability € select a random action a,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess @yr1 = O(S¢41)
Store transition (¢y, a;, 74, 1+1) in D

Sample random minibatch of transitions (¢;,a;,7;,0;+1) fromD
S) T for terminal ¢, 1
Ct y] y— > /&5 .
r; + Yy max,- Q(¢j+1,a ,9) for non-terminal ¢j+1
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for

Experience Replay:
Sample a random
minibatch of transitions
from replay memory
and perform a gradient
descent step

61

Policy Gradients

What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard
to learn exact value of every (state, action) pair

62

Policy Gradients

What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard
to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand
Can we learn a policy directly, e.g. finding the best policy from a collection of
policies?

63

Policy Gradients

Formally, let's define a class of parametrized policies: II = {mg,0 € R™}

For each policy, define its value:

J(O) =E Zytrthrg

64

Policy Gradients

Formally, let's define a class of parametrized policies: II = {mg,0 € R™}

For each policy, define its value:

J(O) =E Zytrthrg

>0

We want to find the optimal policy 6* = arg max J(0)

How can we do this?

65

Policy Gradients

Formally, let's define a class of parametrized policies: II = {mg,0 € R™}

For each policy, define its value:

J(O) =E Zytrthrg

>0

We want to find the optimal policy 6* = arg max J(0)

How can we do this?
Gradient ascent on policy parameters!

66

REINFORCE algorithm

Mathematically, we can write:

J(0) = Ernp(r;0) (7)]

T

Where r(r) is the reward of a trajectory + — (

- / r(T)p(r; 0)dr

S0, Q0,y70,S1y - -

)

67

REINFORCE algorithm

Expected reward: J(0) = Erp(ri0) 7(T)]

= /T(T)p(’r; 6)dr

T

68

REINFORCE algorithm

Expected reward: J(0) = Erp(ri0) 7(T)]

_ / r(7)p(r 0)dr

T

Now let’s differentiate this: VQJ(H) :/T(T)VOP(T;H)dT

T

69

REINFORCE algorithm

Expected reward: J(0) = Erp(ri0) 7(T)]

= /Tr('r)p('r; 6)dr

Now let’'s diff tiate this: _ i Intractable! Gradient of an
ow let's differentiate this: V4.7 (8) /T(T)V@Z)(T,H)d’r expectation is problematic when p

T depends on 6

70

REINFORCE algorithm

Expected reward: J(0) = Erp(ri0) 7(T)]

= /Tr('r)p('r; 6)dr

expectation is problematic when p

Now let’s differentiate this: VgJ(G) _ / T(T)Vgp(T; H)d’r Intractable! Gradient of an
depends on 6

T

Vop(T;6)

However, we can use a nice trick: . 0) — .0
oP\T; P\T;
(7:0) = p(r:9) p(T;6)

= p(7;0)Vglogp(T;0)

71

REINFORCE algorithm

Expected reward: J(0) = Erp(ri0) 7(T)]

= /Tr('r)p('r; 6)dr

expectation is problematic when p

Now let’s differentiate this: VgJ(G) _ / T(T)Vgp(T; H)d’r Intractable! Gradient of an
depends on 6

T

However, we can use a nice trick: Vop(7;0) = p(T;0) Vop(7;6)

= p(7;0)Vylogp(T; 0
If we inject this back: p(7;0) p(7;0)Vglogp(T;0)

VoI (0) = / (r(r) Vo log p(70)) p(r; 0)dr
4 Can estimate with

—]ETNP(T;B) ['r('r)Vg log p(’r; 9)] Monte Carlo sampling

72

REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

We have: p(’l‘; 9) =]:[p(SH_llSt, Cl,t)ﬂ'g(a,t|8t)
t>0

73

REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

We have: p(’l‘; 9) _ Hp(3t+1|st, Cl,t)ﬂ'e(at|3t)

t>0

Thus: logp(T; 9) — Z logp(st+1|8t, at) -+ log 7T9(at|8t)
t>0

74

REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

We have: p(’l‘; 9) _ Hp(3t+1|st, Cl,t)ﬂ'e(at|3t)

t>0
ThUS. logp(T; 9) — Z logp(st+1|8t, at) -+ log 7T9(at|8t)

t>0 Doesn’'t depend on

And when differentiating: Vg logp(1;0) = Z Vologme(at|st) transition probabilities!
t>0

75

VoJ(6) = [(r(r)Valoga(r;6)) (r; O)d
REINFORCE algorithm = Erp(ri) [1(7) Vg log p(7; 0))

Can we compute those quantities without knowing the transition probabilities?

We have: p(r;8) = [] p(sex1lse, ae)mo(ac|se)

t>0
Thus: log p(7;0) = Zlogp(3t+1|3t,at) + log mo(ast)

t>0 Doesn’'t depend on
And when differentiating: Vg logp(7;0) = Z Ve logmg(ats:) transition probabilities!

t>0
Therefore when sampling a trajectory r, we can estimate J(8) with

VeJ(0) = Z r(7)Velogmg(at|st)

t>0

76

Intuition
Gradient estimator: VJ(6) ~ Z r(7)Ve log mg(at|st)

t>0
Interpretation:
- If r(r) is high, push up the probabilities of the actions seen

- If r(r) is low, push down the probabilities of the actions seen

77

Intuition
Gradient estimator: ~ VJ(6) ~ Z r(7)Ve log mg(at|st)

t>0
Interpretation:

- If r(r) is high, push up the probabilities of the actions seen
- If r(r) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

/8

Intuition
Gradient estimator: ~ VoJ(6) ~ Z r(7)Vglog mg(a|st)
t>0

Interpretation:
- If r(r) is high, push up the probabilities of the actions seen

- If r(r) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is
really hard. Can we help the estimator?

79

Variance reduction

Gradient estimator:

Vo () = Y r(T)Velogmg(as|st)

t>0

80

Variance reduction
Gradient estimator: Vg J(0) & Z r(7)Velog mg(as|st)
t>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

VoJ(0) =~ Z (Z rt/) Vo log mg(az|st)

t>0 \t/'>t

81

Variance reduction
Gradient estimator: Vg J(0) & Z r(7)Velog mg(as|st)

t>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

VoJ(0) =~ Z (Z rt/) Vo log mg(az|st)

t>0 \ ¢/ >t
Second idea: Use discount factor y to ignore delayed effects

VodJ (60 Z (Z v,) Vo log mg(az|st)

t>0 \t'>t

82

Variance reduction: Baseline

Problem: The raw value of a trajectory isn’t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.

What is important then? \Whether a reward is better or worse than what you
expect to get

Idea: Introduce a baseline function dependent on the state.
Concretely, estimator is now:

VeJ (0 Z (Z 'yt ey — b(sy) Vo logmg(at|st)

t>0 \t'>t

83

How to choose the baseline?

VoJ (6 E (Z ')/t ey — b(sy)) Vo log mg(a|st)

t>0 \t'>t

A simple baseline: constant moving average of rewards experienced so far
from all trajectories

84

How to choose the baseline?
Vo (0 Z (Z v ey — b(sy)) Vo logmg(at|st)

t>0 \t'>t
A simple baseline: constant moving average of rewards experienced so far
from all trajectories

Variance reduction techniques seen so far are typically used in “Vanilla
REINFORCE”

85

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if

this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

86

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if

this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

A: Q-function and value function!

87

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from

that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a, in a state s, if Q" (s, a¢) — V" (s¢)
Is large. On the contrary, we are unhappy with an action if it's small.

88

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from

that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a, in a state s, if Q" (s, a¢) — V" (s¢)
Is large. On the contrary, we are unhappy with an action if it's small.

Using this, we get the estimator: VyJ(0) ~ Z(Q""(st, ar) — V7™ (s:))Velogme(at|st)

t>0

89

Actor-Critic Algorithm

Problem: we don’t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning
by training both an actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor
how good its action was and how it should adjust
- Also alleviates the task of the critic as it only has to learn the values
of (state, action) pairs generated by the policy
- Can also incorporate Q-learning tricks e.g. experience replay
- Remark: we can define by the advantage function how much an
action was better than expected A™(s,0) = Q™ (s,a) — V™ (s)

90

Actor-Critic Algorithm

Initialize policy parameters 8, critic parameters @

For iteration=1, 2 ... do
Sample m trajectories under the current policy

AG — 0
Fori=1, ..., mdo
Fort=1, ..., Tdo

Z’Yt it — Vo (s})
t'>t
Af — A+ A, Vglog(al|si)

A6+ 30D VIl AP
0 all
¢ < BAY

End for

91

A B CDEFGH J] KLMNUOUPOQRST

More policy gradients: AlphaGo: ST

_ e [@TOTO ‘e 1
Overview: s © i
- Mix of supervised learning and reinforcement learning B -

- Mix of old methods (Monte Carlo Tree Search) and Dl .59} i
recent ones (deep RL) : :

. Y)

i B
How to beat the Go world champion: % O

- Featurize the board (stone color, move legality, bias, ...) SIS e e S i
- Initialize policy network with supervised training from professional go games,
then continue training using policy gradient (play against itself from random
previous iterations, +1 /-1 reward for winning / losing)
- Also learn value network (critic)
- Finally, combine combine policy and value networks in a Monte Carlo Tree [Silver et al,
Search algorithm to select actions by lookahead search Nature 2016]

N W& U N @
N W& U N ®

100

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Key Takeaways

- Markov Decision Process (MDP)

- Q-learning

- Bellman equation

- Deep Q-learning, experience replay
Policy gradients

- Guarantees:
- Policy Gradients: Converges to a local minima of J(8), often good enough!

- Q-learning: Zero guarantees since you are approximating Bellman
equation with a complicated function approximator

101

