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Outline
● Knowledge-driven learning (65mins)

● 1 Paper presentations (15 mins)
! Kejin Wu: Variational Inference with Normalizing Flows
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Structured knowledge
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Knowledge graphs

Rules:

• “Every part of speech sequence should have a verb”

• “Type-2 diabetes is 90% more common than type-1“

Taxonomy

Encyclopaedia



Machine Learning, esp., deep learning
● Heavily rely on massive labeled data

● Uninterpretable

● Hard to encode human intention and domain knowledge
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How Humans Learn
● Learn from concrete examples (as deep neural networks do)

● Learn from abstract knowledge (definitions, logic rules, etc) [Minksy 1980; Lake et al., 
2015]
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Rule:

regular verbs –d/-ed

Examples:
add
accept
ignore
end
block         
love       
…

V.S.
added
accepted
ignored
ended
blocked
loved



How Humans Learn
● Learn from concrete examples (as deep neural networks do)

● Learn from abstract knowledge (definitions, logic rules, etc) [Minksy 1980; Lake et al., 
2015]
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https://www.technologyreview.com/s/544606/can-this-man-make-aimore-human

Rule:

regular verbs –d/-ed

Examples:
add
accept
ignore
end
block         
love       
…

V.S.
added
accepted
ignored
ended
blocked
loved

Past tense of verb



Integrating structured knowledge with machine learning

● Two general ways:
! Bake structured knowledge into specifically-designed neural architecture 

(“inductive bias”)
§ E.g., Convolutional networks (ConvNets): translation-invariance of image
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https://rodneybrooks.com/a-better-lesson/



Integrating structured knowledge with machine learning

● Two general ways:
! Bake structured knowledge into specifically-designed neural architecture

(“inductive bias”)
§ E.g., Convolutional networks (ConvNets): translation-invariance of image
§ E.g., graph neural networks

! Integrating knowledge through learning:
§ Loss and/or constraints defined by the structured knowledge
§ Model-agnostic
§ E.g., Weak supervision
§ E.g., Posterior regularization
§ E.g., Integer linear programming (ILP)
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Recap: Weakly supervised learning
● Converts knowledge into weak-supervision labels
● Learn with supervised learning methods
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Recap: Posterior regularization
● Knowledge as constraints
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Knowledge as constraints
● Consider a statistical model 𝒙 ∼ 𝑝! 𝒙

! Conditional model, 𝑝! 𝒙| 𝑖𝑛𝑝𝑢𝑡𝑠

! Generative model, e.g., 𝒙 is an image

! Discriminative model, e.g., 𝑥 is a sentence label
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Knowledge as constraints
● Consider a statistical model 𝒙 ∼ 𝑝!(𝒙)
● Consider a constraint function 𝑓 𝒙 ∈ ℝ
! Higher 𝑓 value, better 𝒙 w.r.t. the knowledge
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Knowledge as constraints
● Consider a statistical model 𝒙 ∼ 𝑝!(𝒙)
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Ex1:
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Knowledge as constraints
● Consider a statistical model 𝒙 ∼ 𝑝!(𝒙)
● Consider a constraint function 𝑓 𝒙 ∈ ℝ
! Higher 𝑓 value, better 𝒙 w.r.t. the knowledge

Ex2:
● Sentiment classification
! “This was a terrific movie, but the director could have done better”

● Logical Rules:
! Sentence S with structure A-but-B  => sentiment of B dominates 
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Knowledge as constraints
● Consider a statistical model 𝒙 ∼ 𝑝!(𝒙)
● Consider a constraint function 𝑓 𝒙 ∈ ℝ
! Higher 𝑓 value, better 𝒙 w.r.t. the knowledge

● One way to impose the constraint is to maximize: 𝔼#![𝑓(𝒙)]

19



Knowledge as constraints
● Consider a statistical model 𝒙 ∼ 𝑝!(𝒙)
● Consider a constraint function 𝑓 𝒙 ∈ ℝ
! Higher 𝑓 value, better 𝒙 w.r.t. the knowledge

● One way to impose the constraint is to maximize: 𝔼#![𝑓(𝒙)]
● Objective:
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min" ℒ 𝜽 − 𝛼 𝔼#! 𝑓 𝒙

Regular objective (e.g., 
cross-entropy loss, etc.)

Regularization: 
imposing constraints
(difficult to compute)



Knowledge as constraints

● Consider a statistical model 𝒙 ∼ 𝑝!(𝒙)
● Consider a constraint function 𝑓 𝒙 ∈ ℝ
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Knowledge as constraints

● Consider a statistical model 𝒙 ∼ 𝑝!(𝒙)
● Consider a constraint function 𝑓 𝒙 ∈ ℝ
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min" ℒ 𝜽 − 𝛼 𝔼#! 𝑓 𝒙

Slide courtesy: Ruslan Salakhutdinov

ℒ 𝜽, 𝑞 =KL 𝑞(𝒙)|| 𝑝!(𝒙) − 𝜆 𝔼$ 𝑓(𝒙)



Knowledge as constraints

● Consider a statistical model 𝒙 ∼ 𝑝!(𝒙)
● Consider a constraint function 𝑓 𝒙 ∈ ℝ

● Introduce variational distribution 𝑞
! Impose constraint on 𝑞
! Encourage 𝑞 to stay close to 𝑝
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min" ℒ 𝜽 − 𝛼 𝔼#! 𝑓 𝒙

ℒ 𝜽, 𝑞 =KL 𝑞(𝒙)|| 𝑝!(𝒙) − 𝜆 𝔼$ 𝑓(𝒙)
Posterior Regularization 
[Ganchev et al., 2010]
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Knowledge as constraints

● EM-style procedure for solving the problem

! E-step

! M-step
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Higher value -- higher probability 
under 𝑞 – “soft constraint”
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Logical Rule Constraints 
● Consider a supervised learning: 𝑝!(𝑦|𝒙)
● Input-Target space (𝑋, 𝑌)
● First-order logic rules: (𝑟, 𝜆)
! 𝑟 𝑋, 𝑌 ∈ [0, 1], could be soft
! 𝜆 is the confidence level of the rule 

● Given 𝑙 rules:

! E-step:

! M-step:

29

𝑞∗ 𝑦|𝒙 = 𝑝! 𝑦|𝒙 exp F
'

𝜆'𝑟' 𝑦, 𝒙 /𝑍

min! ℒ 𝜽 − 𝔼$∗ log 𝑝!(𝑦|𝒙)

Knowledge distillation [Hinton et 
al., 2015; Bucilu et al., 2006][Hu et al., 2016]
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Knowledge Distillation
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Knowledge Distillation
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Knowledge Distillation
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Rule Knowledge Distillation
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min! ℒ 𝜽 − 𝔼$∗ log 𝑝!(𝑦|𝒙)

37[Hu et al., 2016]

● Neural network 𝑝!(𝑦|𝒙)
● Train to imitate the outputs of the rule-regularized teacher network



Rule Knowledge Distillation

● Neural network 𝑝!(𝑦|𝒙)
● Train to imitate the outputs of the rule-regularized teacher network
● At iteration 𝑡:
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Rule Knowledge Distillation
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● Train to imitate the outputs of the rule-regularized teacher network
● At iteration 𝑡:
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Rule Knowledge Distillation
● Neural network 𝑝!(𝑦|𝒙)
● At each iteration
! Construct a teacher network with “soft constraint”
! Train DNN to emulate the teacher network
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Learning Rules / Constraints

● Learn the confidence value 𝜆' for each logical rule [Hu et al., 2016b] 
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Learning Rules / Constraints

● Learn the confidence value 𝜆' for each logical rule [Hu et al., 2016b] 

● More generally, optimize parameters of the constraint 𝑓&(𝒙) [Hu et al., 2018]
! Treat 𝑓$ 𝒙 as an extrinsic reward function
! Use MaxEnt Inverse Reinforcement Learning to learn the “reward”
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Pose-conditional Human Image Generation
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Pose-conditional Human Image Generation
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5 Experiments

We demonstrate the applications and effectiveness of the algorithm in two tasks related to image and
text generation [24], respectively.

Method SSIM Human
1 Ma et al. [38] 0.614 —
2 Pumarola et al. [44] 0.747 —
3 Ma et al. [37] 0.762 —

4 Base model 0.676 0.03
5 With fixed constraint 0.679 0.12

6 With learned constraint 0.727 0.77

Table 2: Results of image generation on Structural
Similarity (SSIM) [52] between generated and true
images, and human survey where the full model
yields better generations than the base models (Rows
5-6) on 77% test cases. See the text for more results
and discussion.

Figure 2: Training losses of the three mod-
els. The model with learned constraint con-
verges smoothly as base models.

�

���

���

���

��

source	image target	pose target	image
Learned	
constraint
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Fixed	
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Figure 3: Samples generated by the models in Table 2. The model with learned human part constraint
generates correct poses and preserves human body structure much better.

5.1 Pose Conditional Person Image Generation

Given a person image and a new body pose, the goal is to generate an image of the same person under
the new pose (Figure 1, left). The task is challenging due to body self-occlusions and many cloth
and shape ambiguities. Complete end-to-end generative networks have previously failed [37] and
existing work designed specialized generative processes or network architectures [37, 44, 38]. We
show that with an added body part consistency constraint, a plain end-to-end generative model can
also be trained to produce highly competitive results, significantly improving over base models that
do not incorporate the problem structure.

Setup. We follow the previous work [37] and obtain from DeepFashion [35] a set of triples (source
image, pose keypoints, target image) as supervision data. The base generative model p� is an implicit
model that transforms the input source and pose directly to the pixels of generated image (and
hence defines a Dirac-delta distribution). We use the residual block architecture [51] widely-used in
image generation for the generative model. The base model is trained to minimize the L1 distance
loss between the real and generated pixel values, as well as to confuse a binary discriminator that
distinguishes between the generation and the true target image.

Knowledge constraint. Neither the pixel-wise distance nor the binary discriminator loss encode
any task structures. We introduce a structured consistency constraint f� that encourages each of the
body parts (e.g., head, legs) of the generated image to match the respective part of the true image.
Specifically, the constraint f� includes a human parsing module that classifies each pixel of a person
image into possible body parts. The constraint then evaluates cross entropies of the per-pixel part

7
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Knowledge as constraints: Integer Linear Programming (ILP)Argmax problem as an Integer Linear Program

• An integer linear program (ILP) is an optimization problem of the form

• For a fixed vector a
• Example of integer constraint: 

• Well-engineered solvers exist
• e.g, Gurobi
• Useful for prototyping
• But general not as efficient as dynamic programming
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𝒛 ∈ ℤ6 (integers)



Ex: Casting sequence labeling as an ILP 
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● Sequence labeling, e.g., named entity recognition
! names of people, organizations, locations

Ex: “Brendan Iribe, a co-founder of Oculus VR and a prominent University 
of Maryland donor, is leaving Facebook four years after it purchased his 
company.”
! BIO labeling scheme for NER 

Many NLP tasks can be framed as sequence 
labeling

x = [Brendan, Iribe͕ ͕͞ ͕͟   a͕ cŽ-founder, of, Oculus, VR, and, a, 
ƉƌŽmiŶeŶƚ͕ UŶiǀeƌƐiƚǇ͕  Žf͕  MaƌǇlaŶd͕ dŽŶŽƌ͕  ͕͞ ͕͟  iƐ͕ leaǀiŶg͕ FacebŽŽk͕ 
fŽƵƌ͕  ǇeaƌƐ͕ afƚeƌ͕  iƚ͕ ƉƵƌchaƐed͕ hiƐ͕ cŽmƉaŶǇ͕  ͘͟͞

y = [B-PER, I-PER, O, O, O, O, B-ORG, I-ORG, O, O, O,B-ORG, I-ORG, I-
ORG, O, O, O,B-ORG, O, O, O, O, O, O, O, O]

͞BIO͟ labeling Ɛcheme fŽƌ named enƚiƚǇ ƌecŽgniƚiŽn
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labeling

x = [Brendan, Iribe͕ ͕͞ ͕͟   a͕ cŽ-founder, of, Oculus, VR, and, a, 
ƉƌŽmiŶeŶƚ͕ UŶiǀeƌƐiƚǇ͕  Žf͕  MaƌǇlaŶd͕ dŽŶŽƌ͕  ͕͞ ͕͟  iƐ͕ leaǀiŶg͕ FacebŽŽk͕ 
fŽƵƌ͕  ǇeaƌƐ͕ afƚeƌ͕  iƚ͕ ƉƵƌchaƐed͕ hiƐ͕ cŽmƉaŶǇ͕  ͘͟͞

y = [B-PER, I-PER, O, O, O, O, B-ORG, I-ORG, O, O, O,B-ORG, I-ORG, I-
ORG, O, O, O,B-ORG, O, O, O, O, O, O, O, O]

͞BIO͟ labeling Ɛcheme fŽƌ named enƚiƚǇ ƌecŽgniƚiŽn
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Ex: Casting sequence labeling as an ILP 

Casting sequence labeling with Markov 
features as an ILP

• Step 1: Define variables z as binary indicator variables which encode 
an output sequence y

• Step 2: Construct the linear objective function
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Ex: Casting sequence labeling as an ILP 

Casting sequence labeling with Markov 
features as an ILP

• Step 3: Define constraints to ensure a well-formed solution
• Z Ɛ͛ ƐhoƵld be binarǇ͗ for all l͕ k͕͛  k

• For a given position l, there is exactly one active z

• The ǌ Ɛ͛ are inƚernallǇ conƐiƐƚenƚ
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Key Takeaways
● Two general ways of integrating structured knowledge with ML:
! Model architecture (inductive bias)
! Integrating knowledge through learning (loss, constraints)
§ Weak supervision
§ Posterior regularization
§ Integer linear programming (ILP)\
§ Others ..
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Questions?


