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e Knowledge-driven learning (65mins)

e 1 Paper presentations (15 mins)
o Kejin Wu: Variational Inference with Normalizing Flows
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From Wikipedia, the free encyclopedia

For the journal, see Machine Learning (journal).
"Statistical learning" redirects here. For statistical learning in ling

Machine learning (ML) is the study of computer algorithms that ca
is seen as a part of artificial intelligence. Machine learning algorithrr
order to make predictions or decisions without being explicitly progr
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Figure 5.

Family Genus Species

Genus (Subgenus) specific epithet

'Rana (Pantherana) palustris

Rana (Pantherana) pipiens

L Rana (Aquarana) catesbeiana
.
ana-:: Rana (Aquarana) clamitans
Odorann; B Rana sylvatica
Hylarana
Rugosa
Pelophylax

Taxonomy

Rules:

“Every part of speech sequence should have a verb”

“Type-2 diabetes is 90% more common than type-1“



Machine Learning, esp., deep learning

e Heavily rely on massive labeled data
e Uninterpretable

e Hard to encode human intention and domain knowledge



How Humans Learn

e Learn from concrete examples (as deep neural networks do)

e Learn from abstract knowledge (definitions, logic rules, etc) minksy 1980; Lake et al.
2015]



How Humans Learn

e Learn from concrete examples (as deep neural networks do)

e Learn from abstract knowledge (definitions, logic rules, etc) minksy 1980; Lake et .
2015]

Past tense of verb
Examples: Rule:

add ~ — added regular verbs —d/-ed
accept — accepted V.S.

ignore —— ignored

end — > ended
block — > blocked
love — > loved

https://www.technologyreview.com/s/544606/can-this-man-make-aimore-human



Integrating structured knowledge with machine learning

e Two general ways:
o Bake structured knowledge into specifically-designed neural architecture

(“inductive bias”)
E.g., Convolutional networks (ConvNets): translation-invariance of image
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Integrating structured knowledge with machine learning

e Two general ways:
o Bake structured knowledge into specifically-designed neural architecture

(“inductive bias”)
= E.g., Convolutional networks (ConvNets): translation-invariance of image
= E.g., graph neural networks
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Integrating structured knowledge with machine learning

e Two general ways:
o Bake structured knowledge into specifically-designed neural architecture

(“inductive bias”)
= E.g., Convolutional networks (ConvNets): translation-invariance of image
= E.g., graph neural networks

The Bitter Lesson

Rich Sutton

RODNEY BROOKS Robots, AL and other stuff MIT ROBUSTAI

POST: ABETTER LESSON
March 13, 2019

MARCH 19, 2019 — REVIEWS
A Better Lesson K

rodneybrooks.com/a-better-lesson/

The biggest lesson that can be read from 70 years of Al research is that gene:
The ultimate reason for this is Moore's law, or rather its generalization of co:
as if the computation available to the agent were constant (in which case lev

slightly longer time than a typical research project, massively more compute cearch Just last week Rich Sutton published a very short blog post titled The Bitter Lesson.
term, researchers seek to leverage their human knowledge of the domain, bt I’'m going to try to keep this review shorter than his post. Sutton is well known for
run counter to each other, but in practice they tend to. Time spent on one is his long and sustained contributions to reinforcement learning.

or the other. And the human-knowledge approach tends to complicate meth
computation. There were many examples of Al researchers' belated learnin;

https://rodneybrooks.com/a-better-lesson/
http://www.incompleteideas.net/Incldeas/BitterLesson.html
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Integrating structured knowledge with machine learning

e Two general ways:
o Bake structured knowledge into specifically-designed neural architecture
(“inductive bias”)
= E.g., Convolutional networks (ConvNets): translation-invariance of image
= E.g., graph neural networks
o Integrating knowledge through learning:
» Loss and/or constraints defined by the structured knowledge
= Model-agnostic
= E.g., Weak supervision
= E.g., Posterior regularization
= E.g., Integer linear programming (ILP)

11



Recap: Weakly supervised learning

e Converts knowledge into weak-supervision labels
e Learn with supervised learning methods
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6= argming E(y,y~7[L(y, fo (x))]

Example Weak Technical Challenge: Use Weak Supervision
Supervision Sources Integrating & Modeling to Train End Model
Diverse Sources

Source: A. Ratner et. al https://dawn.cs.stanford.edu/2017/07/16/weak-supervision/

12



Recap: Posterior regularization

e Knowledge as constraints

min —H(g(2)) ~ E,(s) [logp(a

st. E,[T(x",2)] <&
£ =0,

+2§Z
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Knowledge as constraints
o Consider a statistical model x ~ pg(x)

o Conditional model, pg (x| inputs)
o Generative model, e.g., x is an image

o Discriminative model, e.g., x is a sentence label



Knowledge as constraints

e Consider a statistical model x ~ pg(x)

e Consider a constraint function f(x) € R
o Higher f value, better x w.r.t. the knowledge



Knowledge as constraints

e Consider a statistical model x ~ pg(x)

e Consider a constraint function f(x) € R
o Higher f value, better x w.r.t. the knowledge

Ex1:

target true
pose target

Generative

——1  model pg >

source generated
image image




Knowledge as constraints

e Consider a statistical model x ~ pg(x)

e Consider a constraint function f(x) € R
o Higher f value, better x w.r.t. the knowledge

Ex1: Constraint
Learnable i
target true module ¢
pose target
- —
Human | |
part Struc_tured |
reer cgnS/stenc i
Generative P Yy |
——1  model pg >
— —>
source generated
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Knowledge as constraints

o Consider a statistical model x ~ pg(x)

e Consider a constraint function f(x) € R
o Higher f value, better x w.r.t. the knowledge

Ex2:

e Sentiment classification
o "This was a terrific movie, but the director could have done better”

e Logical Rules:
o Sentence S with structure A-but-B => sentiment of B dominates



Knowledge as constraints

e Consider a statistical model x ~ pg(x)

e Consider a constraint function f(x) € R
o Higher f value, better x w.r.t. the knowledge

e One way to impose the constraint is to maximize: E, [f (x)]



Knowledge as constraints

o Consider a statistical model x ~ pg(x)

e Consider a constraint function f(x) € R
o Higher f value, better x w.r.t. the knowledge

e One way to impose the constraint is to maximize: E, [f (x)]

e Objective:

ming £(8) — @ Ep,[f (%))

/ N

Regular objective (e.g., Regularization:
cross-entropy loss, etc.) Imposing constraints
(difficult to compute)



Knowledge as constraints

e Consider a statistical model x ~ pg(x)
e Consider a constraint function f(x) € R

ming £(6) — a Ep, [f (%))



Knowledge as constraints

e Consider a statistical model x ~ pg(x)
e Consider a constraint function f(x) € R

_____________

/ \
L(0,q) =KL(q(x)|| pe(x)) — AE4[f (x)]



Knowledge as constraints

o Consider a statistical model x ~ pg(x)
e Consider a constraint function f(x) € R

_____________

( \ Posterior Regularization
L(0,q) =KL(g(x)|| pe(x)) — 4 [Eq[f(x)] [Ganchev et al., 2010]

e Introduce variational distribution g
o Impose constraint on q
o Encourage g to stay close to p



Knowledge as constraints

o Consider a statistical model x ~ pg(x)
e Consider a constraint function f(x) € R

ming L£(0) — ai'IEpg[f(x)]

_______ 1_____’
( \ Posterior Regularization
L(0,q) =KL(g(x)|| pg(x)) — 1 Eq[f(x)] [Ganchev et al., 2010]

e Introduce variational distribution g
o Impose constraint on q
o Encourage g to stay close to p

e Objective
ming , L(0) + a L(6,q)



Knowledge as constraints

ming , L(0) + a L(6,q)

L(0,q) =KL(q(®)|| pg(x)) — A Eqlf (x)]
e EM-style procedure for solving the problem



Knowledge as constraints

ming , L(0) + a L(6,q)

L£(6,q) =KL(q(0)|| pe(x)) — A Eglf (x)]
e EM-style procedure for solving the problem

o E-step

q (x) = pg(x) exp{ Af (x) }/Z



Knowledge as constraints

ming , L(0) + a L(6,q)

L£(6,q) =KL(q(0)|| pe(x)) — A Eglf (x)]
e EM-style procedure for solving the problem

o E-step

q (x) = pg(x) exp{ Af (x) }/Z

\ Higher value -- higher probability

under g — “soft constraint”



Knowledge as constraints

ming , L(0) + a L(6,q)

L£(6,q) =KL(q(0)|| pe(x)) — A Eglf (x)]
e EM-style procedure for solving the problem

o E-step

q (x) = pg(x) exp{ Af (x) }/Z

o M-step
Higher value -- higher probability

under g — “soft constraint”

ming L(0) — E+[log pe(x)]



Logical Rule Constraints

e Consider a supervised learning: pg(y|x)
e Input-Target space (X,Y)

[Hu et al., 2016]



Logical Rule Constraints

e Consider a supervised learning: pg(y|x)
e Input-Target space (X,Y)
e First-order logic rules: (1, 4)

[Hu et al., 2016]



Logical Rule Constraints

e Consider a supervised learning: pg(y|x)
e Input-Target space (X,Y)
e First-order logic rules: (1, 1)

o r(X,Y) €[0,1], could be soft
o Ais the confidence level of the rule

[Hu et al., 2016]



Logical Rule Constraints

e Consider a supervised learning: pg (y|x)
e Input-Target space (X,Y)

e First-order logic rules: (1, 1)
o r(X,Y) €[0,1], could be soft
o Ais the confidence level of the rule

e Given l rules:

o E-step: .
T 01 = P10 exp] Y Am(y,2)( /7
o M-step: l

ming L(0) — E,+[log pe(y|x)]

[Hu et al., 2016]



Logical Rule Constraints

e Consider a supervised learning: pg (y|x)
e Input-Target space (X,Y)

e First-order logic rules: (1, 1)
o r(X,Y) €[0,1], could be soft
o Ais the confidence level of the rule

e Given l rules:

o E-step: .
T 01 = P10 exp] Y Am(y,2)( /7
o M-step: l

ming £(0) — Eg+[log pg(y[x)]
\ Knowledge distillation [Hinton et

[Hu et al., 2016] al., 2015; Bucilu et al., 2006]



Knowledge Distillation

[Hinton et al., 2015; Bucilu et al., 20006]
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Knowledge Distillation

Teacher
(Ensemble)
[Hinton et al., 2015; Bucilu et al., 20006]
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Knowledge Distillation

Match soft predictions of the teacher
network and student network

Teacher
(Ensemble)
[Hinton et al., 2015; Bucilu et al., 20006]

36



Rule Knowledge Distillation

ming L(0) — E4[log pe(y|x)]

e Neural network pg(y|x)
e Train to imitate the outputs of the rule-regularized teacher network

[Hu et al., 2016]



Rule Knowledge Distillation

e Neural network pg(y|x)
e Train to imitate the outputs of the rule-regularized teacher network

e At iteration t:

true hard label soft prediction of pg (y|x)
(t+1) R \ /
0 — arg grél(gl N z_:l g(yna JQ(wn))

[Hu et al., 2016]



Rule Knowledge Distillation

( v ( 1
ming:£(6) — Eq+[log pe (y|%)]

_____ N o o o o o o o o e e e e e o =

e Neural network pg(y|x)
e Train to imitate the outputs of the rule-regularized teacher network
o Atiteration t:

true hard label soft prediction of pg (y|x)
(t41) 1l \ /
7] — arg E%%l N z::l U(Yn,T0(xn))

0(s't)
(Sn 70-9(mn))7
———___ soft prediction of the

teacher network

q (y|x) = pe(y|x) exp { z An(y, x)}/Z
[Hu et al., 2016] 7 *



Rule Knowledge Distillation

( v ( 1
ming:£(6) — Eq+[log pe (y|%)]

_____ N o o o o o o o o e e e e e o =

e Neural network pg(y|x)
e Train to imitate the outputs of the rule-regularized teacher network

o At iteration t:
true hard label soft prediction of pg (y|x)

0™ = arg min 1 g:(l - 7'(')%} 0‘9(~’B§
oceo N "

n=1

+ 7'('6(87(;), To (mTL))?
/ ———_soft prediction of the

teacher network

q (y|x) = pe(y|x) exp { Z An(y, x)}/Z
[Hu et al., 2016] 7 “

balancing parameter



Rule Knowledge Distillation

e Neural network pg (y|x)

e At each iteration

o Construct a teacher network with “soft constraint”
o Train DNN to emulate the teacher network

teacher network construction

rule knowledge distillation

Y pe ) [ 05
|__projection _ - === ===~ _ _ -
VLR ¥ -7 A
back
~ teacher propagation student
il q(v|x) "l po VI%)
logic rules
unlabelled data ‘ labeled data |

______
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Learning Rules / Constraints

q"(y|x) = pe(y|x) exp { z A (y, x)}/Z
l

e Learn the confidence value A; for each logical rule [Hu et al., 20160b]



Learning Rules / Constraints

q"(y|x) = pe(y|x) exp { z A (y, x)}/Z
l

e Learn the confidence value A; for each logical rule [Hu et al., 20160b]

q*(x) = pg(x) exp{ Af(x) }/Z

e More generally, optimize parameters of the constraint f(x) [Hu et al., 2018]
o Treat fy(x) as an extrinsic reward function
o Use MaxEnt Inverse Reinforcement Learning to learn the “reward”



Pose-conditional Human Image Generation

Constraint
Learnable |
target true module ¢
pose target
—
- o,
Human | i
part Strugtured |
arser consistenc .
Generative P -y '
—  model pg - >
—
source generated
image image LE I N

[Hu et al., 2018] “



Pose-conditional Human Image Generation

Learned Fixed Base
source image target pose target image constraint constraint model
ﬁ £ | Method SSIM Human
e 1 Maetal. [38] 0.614 —
| J \ 2 Pumarola et al. [44] 0.747 —
3 Maetal. [37] 0.762 —
Q, ﬂ 4 Base model 0.676  0.03
1 5  With fixed constraint 0.679  0.12
= 6  With learned constraint  0.727  0.77
Samples generated by the models Quantitative and Human Evaluation

[Hu et al., 2018] .



Knowledge as constraints: Integer Linear Programming (ILP)
* An integer linear program (ILP) is an optimization problem of the form

max a-z subj.to linear constraints on z
Z

z € 7 (integers)

* For a fixed vector a

* Well-engineered solvers exist
e e.g, Gurobi
e Useful for prototyping
e But general not as efficient as dynamic programming

46



Ex: Casting sequence labeling as an ILP

e Sequence labeling, e.g., named entity recognition
o names of people, organizations, locations

Ex: “Brendan Iribe, a co-founder of Oculus VR and a prominent University
of Maryland donor, is leaving Facebook four years after it purchased his
company.”

o BIO labeling scheme for NER

X = [Brendan, Iribe, “”, a, co-founder, of, Oculus, VR, and, a,
i)y

prominent, University, of, Maryland, donor, “, is, leaving, Facebook,

o ”]

four, years, after, it, purchased, his, company, “

y = [B-PER, I-PER, O, O, O, O, B-ORG, I-ORG, O, O, O,B-ORG, I-ORG, I-
ORG, O, O, 0,B-ORG, 0,0, 0,0, 0, 0, O, O]
47



Ex: Casting sequence labeling as an ILP

Many NLP tasks can be framed as sequence
labeling

X = [Brendan, Iribe, “)”, a, co-founder, of, Oculus, VR, and, a,
prominent, University, of, Maryland, donor, “”, is, leaving, Facebook,

(( II]

four, years, after, it, purchased, his, company, “.

= [B-PER, I-PER, O, O, O, O, B-ORG, I-ORG, O, O, O,B-ORG, I-ORG, I-
ORG O, 0, 0,B-0RG,0,0,0,0,0,0,0, O]

“BlO” labeling scheme for named entity recognition
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Ex: Casting sequence labeling as an ILP

e Step 1: Define variables z as binary indicator variables which encode
an output sequencey

z1 v x = 1[label I is k and label I — 1 is k']
 Step 2: Construct the linear objective function

app g =w-Pr(x, (..., K, k))

49



Ex: Casting sequence labeling as an ILP

 Step 3: Define constraints to ensure a well-formed solution
e 7Z's should be binary: for all |, k’, k

zik € 10,1}

* For a given position |, there is exactly one active z

Yk Yw zip =1 forall |

* The z’s are internally consistent

Zk’ Zl,k’,k — Zk” Zl—|—1,k,k” for all l, k

50



Key Takeaways

e Two general ways of integrating structured knowledge with ML:
o Model architecture (inductive bias)
o Integrating knowledge through learning (loss, constraints)
= Weak supervision
= Posterior regularization

= Integer linear programming (ILP)\
= Others ..
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