
DSC190: Machine Learning with Few Labels

Deep generative modeling
Generative adversarial learning

Zhiting Hu
Lecture 10, October 25, 2021

Outline
● Generative adversarial networks (GANs)
● Normalizing Flow

3

Generative modeling
● In generative modeling, we’d like to train a network that models a

distribution, such as a distribution over images.
● One way to judge the quality of the model is to sample from it.
● This field has seen rapid progress:

4Courtesy: Grosse CSC321 Lecture 19

20152009 2018

Generative modeling
● In generative modeling, we’d like to train a network that models a

distribution, such as a distribution over images.
● One way to judge the quality of the model is to sample from it.
● This field has seen rapid progress:

5Figure courtesy: Ian Goodfellow

Generative modeling
● Modern approaches to generative modeling:
! Variational Auto-encoder (Lecture #5)
! Auto-regressive models (e.g., language model) (Lecture #6)
! Generative adversarial networks (today)
! Reversible architectures (today)

6Courtesy: Grosse CSC321 Lecture 19

Implicit Generative ModelsImplicit Generative Models

Implicit generative models implicitly define a probability distribution

Start by sampling the code vector z from a fixed, simple distribution
(e.g. spherical Gaussian)

The generator network computes a di↵erentiable function G mapping
z to an x in data space

Roger Grosse CSC321 Lecture 19: Generative Adversarial Networks 4 / 25

7Courtesy: Grosse CSC321 Lecture 19

• a stochastic process to
simulate data 𝒙

• Intractable to evaluate
likelihood

Implicit Generative Models
Implicit Generative Models

A 1-dimensional example:

Roger Grosse CSC321 Lecture 19: Generative Adversarial Networks 5 / 25

8Courtesy: Grosse CSC321 Lecture 19

Implicit Generative Models

9

Implicit Generative Models

https://blog.openai.com/generative-models/

Roger Grosse CSC321 Lecture 19: Generative Adversarial Networks 6 / 25Courtesy: Grosse CSC321 Lecture 19

Implicit Generative Models

10Courtesy: Grosse CSC321 Lecture 19

● The advantage of implicit generative models: if you have some criterion
for evaluating the quality of samples, then you can compute its gradient
with respect to the network parameters, and update the network’s
parameters to make the sample a little better

● The idea behind Generative Adversarial Networks (GANs): train two
different networks
! The generator network tries to produce realistic-looking samples
! The discriminator network tries to figure out whether an image came from the

training set or the generator network
● The generator network tries to fool the discriminator network

Generative Adversarial Nets (GANs)

● Generative model 𝒙 = 𝐺! 𝒛 , 𝒛 ∼ 𝑝(𝒛)
! Maps noise variable 𝒛 to data space 𝒙
! Defines an implicit distribution over 𝒙: 𝑝!!(𝒙)

● Discriminator 𝐷" 𝒙
! Output the probability that 𝒙 came from the data rather than the generator

© Petuum,Inc. 11

Figure courtesy: Kim

Generative Adversarial Nets (GANs)
● Learning
! A minimax game between the generator and the discriminator
! Train 𝐷 to maximize the probability of assigning the correct label to both

training examples and generated samples
! Train 𝐺 to fool the discriminator
! This is called the minimax formulation of GANs

© Petuum,Inc. 12

GAN plays the role of z1 as above. The space S0 is now implicit and we directly sample real image
x from data distribution pdata(x). The distribution in Eq.(1) is thus rewritten as:

p(x|z, y) =
⇢
pdata(x) y = 0
pg(x|z) y = 1,

(5)

where pg(x|z) = G(z) is the generative distribution. Note that pdata(x) is the empirical data
distribution which is free of parameters. The discriminator is defined in the same way as above, i.e.,
D(x) = p(y = 0|x). Then the objective of GAN is precisely defined in Eq.(2). To make this clearer,
we again transform the objective into its conventional form:

maxD LD = Ex⇠pdata(x) [logD(x)] + Ex⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG LG = Ex⇠pdata(x) [log(1�D(x))] + Ex⇠G(z),z⇠p(z) [logD(x)]

= Ex⇠G(z),z⇠p(z) [logD(x)] .

(6)

maxD LD = Ex⇠pdata(x) [logD(x)] + Ex⇠G(z),z⇠p(z) [log(1�D(x))] ,

minG LG = Ex⇠G(z),z⇠p(z) [log(1�D(x))] .

maxD LD = Ex⇠pdata(x) [logD(x)] + Ex⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG LG = Ex⇠G(z),z⇠p(z) [logD(x)] .

Note that for learning the generator we are using the adapted objective, i.e., maximizing
Ex⇠G(z),z⇠p(z) [logD(x)], as is usually used in practice (Goodfellow et al., 2014), rather than
minimizing Ex⇠G(z),z⇠p(z) [log(1�D(x))].

KL Divergence Interpretation

Now we take a closer look into Eq.(2). Assume uniform prior distribution p(y) where p(y = 0) =
p(y = 1) = 0.5. For optimizing p(x|z, y), we have
Theorem 1. Let p✓(x|z, y) be the conditional distribution in Eq.(1) parameterized with ✓. Denote
p✓0(x|z) = Ep(y)[p✓0(x|z, y)] with fixed parameter ✓0. Denote q0(x|z, y) / q(1� y|x)p✓0(x|z).
Therefore,

Ep(z,y)

⇥
�r✓Ep✓(x|z,y) [log q(1� y|x)] |✓=✓0

⇤
=

r✓Ep(z,y) [KL (p✓(x|z, y)kq0(x|z, y))� JSD (p✓(x|z, y = 0)kp✓(x|z, y = 1)) |✓=✓0]
(7)

Proof.
Ep(z,y)

⇥
�Ep✓(x|z,y) [log q(1� y|x)]

⇤
=

Ep(z,y) [KL (p✓(x|z, y)kq0(x|z, y))� KL(p✓(x|z, y)kp✓0(x|z))] ,
(8)

where
Ep(z,y) [KL(p✓(x|z, y)kp✓0(x|z))] =

Ep(z)


p(y = 0)KL

✓
p✓(x|z, y = 0)kp✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

◆
+

p(y = 1)KL
✓
p✓(x|z, y = 1)kp✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

◆�
.

(9)

Taking derivatives w.r.t ✓ at ✓0 we get
r✓Ep(z,y) [KL(p✓(x|z, y)kp✓0(x|z))] |✓=✓0

= Ep(z)


1

2

Z

x
r✓p✓(x|z, y = 0)

p✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2
+

1

2

Z

x
r✓p✓(x|z, y = 1)

p✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

�
|✓=✓0

= Ep(z) [r✓JSD(p✓(x|z, y = 0)kp✓(x|z, y = 1)) |✓=✓0] .

(10)

Taking derivatives of the both sides of Eq.(8) at w.r.t ✓ at ✓0 and plugging the last equation of Eq.(10),
we obtain our desired result.

2

Figure courtesy: Kim

Generative Adversarial Nets (GANs)

13Courtesy: Grosse CSC321 Lecture 19

Generative Adversarial Nets (GANs)

14Courtesy: Grosse CSC321 Lecture 19

Updating the discriminator:

Generative Adversarial Nets (GANs)

15Courtesy: Grosse CSC321 Lecture 19

Updating the generator:

Generative Adversarial Nets (GANs)

16Courtesy: Grosse CSC321 Lecture 19

Alternating training of the generator and discriminator:

Optimality of GANs
● Objectives:

● Global optimality: 𝑝# = 𝑝$%&%
● Proof:

17Courtesy: Grosse CSC321 Lecture 19

GAN plays the role of z1 as above. The space S0 is now implicit and we directly sample real image
x from data distribution pdata(x). The distribution in Eq.(1) is thus rewritten as:

p(x|z, y) =
⇢
pdata(x) y = 0
pg(x|z) y = 1,

(5)

where pg(x|z) = G(z) is the generative distribution. Note that pdata(x) is the empirical data
distribution which is free of parameters. The discriminator is defined in the same way as above, i.e.,
D(x) = p(y = 0|x). Then the objective of GAN is precisely defined in Eq.(2). To make this clearer,
we again transform the objective into its conventional form:

maxD LD = Ex⇠pdata(x) [logD(x)] + Ex⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG LG = Ex⇠pdata(x) [log(1�D(x))] + Ex⇠G(z),z⇠p(z) [logD(x)]

= Ex⇠G(z),z⇠p(z) [logD(x)] .

(6)

maxD LD = Ex⇠pdata(x) [logD(x)] + Ex⇠G(z),z⇠p(z) [log(1�D(x))] ,

minG LG = Ex⇠G(z),z⇠p(z) [log(1�D(x))] .

maxD LD = Ex⇠pdata(x) [logD(x)] + Ex⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG LG = Ex⇠G(z),z⇠p(z) [logD(x)] .

Note that for learning the generator we are using the adapted objective, i.e., maximizing
Ex⇠G(z),z⇠p(z) [logD(x)], as is usually used in practice (Goodfellow et al., 2014), rather than
minimizing Ex⇠G(z),z⇠p(z) [log(1�D(x))].

KL Divergence Interpretation

Now we take a closer look into Eq.(2). Assume uniform prior distribution p(y) where p(y = 0) =
p(y = 1) = 0.5. For optimizing p(x|z, y), we have
Theorem 1. Let p✓(x|z, y) be the conditional distribution in Eq.(1) parameterized with ✓. Denote
p✓0(x|z) = Ep(y)[p✓0(x|z, y)] with fixed parameter ✓0. Denote q0(x|z, y) / q(1� y|x)p✓0(x|z).
Therefore,

Ep(z,y)

⇥
�r✓Ep✓(x|z,y) [log q(1� y|x)] |✓=✓0

⇤
=

r✓Ep(z,y) [KL (p✓(x|z, y)kq0(x|z, y))� JSD (p✓(x|z, y = 0)kp✓(x|z, y = 1)) |✓=✓0]
(7)

Proof.
Ep(z,y)

⇥
�Ep✓(x|z,y) [log q(1� y|x)]

⇤
=

Ep(z,y) [KL (p✓(x|z, y)kq0(x|z, y))� KL(p✓(x|z, y)kp✓0(x|z))] ,
(8)

where
Ep(z,y) [KL(p✓(x|z, y)kp✓0(x|z))] =

Ep(z)


p(y = 0)KL

✓
p✓(x|z, y = 0)kp✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

◆
+

p(y = 1)KL
✓
p✓(x|z, y = 1)kp✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

◆�
.

(9)

Taking derivatives w.r.t ✓ at ✓0 we get
r✓Ep(z,y) [KL(p✓(x|z, y)kp✓0(x|z))] |✓=✓0

= Ep(z)


1

2

Z

x
r✓p✓(x|z, y = 0)

p✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2
+

1

2

Z

x
r✓p✓(x|z, y = 1)

p✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

�
|✓=✓0

= Ep(z) [r✓JSD(p✓(x|z, y = 0)kp✓(x|z, y = 1)) |✓=✓0] .

(10)

Taking derivatives of the both sides of Eq.(8) at w.r.t ✓ at ✓0 and plugging the last equation of Eq.(10),
we obtain our desired result.

2

Optimality of GANs

18[Goodfellow et al., 2014]

Optimality of GANs
● The minimax game can now be reformulated as

19[Goodfellow et al., 2014]
Jensen-Shannon Divergence

A better loss function

20

A Better Cost Function

We introduced the minimax cost function for the generator:

JG = Ez[log(1� D(G (z)))]

One problem with this is saturation.

Recall from our lecture on classification: when the prediction is really
wrong,

“Logistic + squared error” gets a weak gradient signal
“Logistic + cross-entropy” gets a strong gradient signal

Here, if the generated sample is really bad, the discriminator’s
prediction is close to 0, and the generator’s cost is flat.

Roger Grosse CSC321 Lecture 19: Generative Adversarial Networks 14 / 25

Courtesy: Grosse CSC321 Lecture 19

A Better Cost Function

We introduced the minimax cost function for the generator:

JG = Ez[log(1� D(G (z)))]

One problem with this is saturation.

Recall from our lecture on classification: when the prediction is really
wrong,

“Logistic + squared error” gets a weak gradient signal
“Logistic + cross-entropy” gets a strong gradient signal

Here, if the generated sample is really bad, the discriminator’s
prediction is close to 0, and the generator’s cost is flat.

Roger Grosse CSC321 Lecture 19: Generative Adversarial Networks 14 / 25

A Better Cost Function

Original minimax cost:

JG = Ez[log(1� D(G (z)))]

Modified generator cost:

JG = Ez[� logD(G (z))]

This fixes the saturation problem.

Roger Grosse CSC321 Lecture 19: Generative Adversarial Networks 15 / 25

A better loss function: non-saturating GAN

21Courtesy: Grosse CSC321 Lecture 19

Wasserstein GAN (WGAN)
● If our data are on a low-dimensional manifold of a high dimensional

space, the model’s manifold and the true data manifold can have a
negligible intersection in practice

22[Arjovsky et al., 2017] Slide adapted from bhiksha

Wasserstein GAN (WGAN)
● If our data are on a low-dimensional manifold of a high dimensional

space, the model’s manifold and the true data manifold can have a
negligible intersection in practice

● The loss function and gradients may not be continuous and well behaved

23[Arjovsky et al., 2017] Slide adapted from bhiksha

Wasserstein GAN (WGAN)
● If our data are on a low-dimensional manifold of a high dimensional

space, the model’s manifold and the true data manifold can have a
negligible intersection in practice

● The loss function and gradients may not be continuous and well behaved
● The Wasserstein Distance is well defined
! Earth Mover’s Distance
! Minimum transportation cost for making one pile

of dirt in the shape of one probability distribution
to the shape of the other distribution

24[Arjovsky et al., 2017] Slide adapted from bhiksha

Wasserstein GAN (WGAN)
● Objective

25

𝑊 𝑝$%&%, 𝑝# =
1
𝐾 sup

||(||!)*
E+∼-"#$# 𝐷 𝑥 − E+∼-%[𝐷(𝑥)]

• ||𝐷||! ≤ 𝐾 : K- Lipschitz continuous
• Use gradient-clipping to ensure 𝐷 has the Lipschitz continuity

WGAN vs Vanilla GAN

26

Standard Equation and GANs
● Recall SE:

● In MLE, 𝑓 is a fixed function

● Intuitively, see 𝑓 as a similarity metric that measures similarity of sample
𝒙 against real data 𝒟

● Instead of the above manually fixed metric, can we learn a metric 𝑓"?

27

𝑓 ≔ 𝑓!"#"(𝒙 ; 𝒟) = log 𝔼𝒙∗∼𝒟 𝟙𝒙∗ 𝒙

min
., !

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼. 𝒙
1
𝑓 𝒙𝑞 𝒙 , 𝑝! 𝒙

Hu and Xing, 2021

Standard Equation and GANs

● Augment the standard objective to account for 𝜙:

● Set 𝛼 = 0, 𝛽 = 1. Under mild conditions, the objective recovers:
! Vanilla GAN [Goodfellow et al., 2014], when 𝔻 is JS-divergence and 𝑓" is a binary

classifier
! 𝑓-GAN [Nowozin et al., 2016], when 𝔻 is 𝑓-divergence
! W-GAN [Arjovsky et al., 2017], when 𝔻 is Wasserstein distance and 𝑓" is a 1-

Lipschitz function

28

min
!

max
"

min
.

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼. 𝒙
1

+ 𝔼-"(𝒙)
1

𝑓" 𝒙𝑞 𝒙 , 𝑝! 𝒙 𝑓" 𝒙

Hu and Xing, 2021

Progressive GAN

29

Low resolution images

[Karras et al., 2018]

Progressive GAN

30

Low resolution images

add in
additional

layers

[Karras et al., 2018]

Progressive GAN

31

Low resolution images

add in
additional

layers

High resolution images

[Karras et al., 2018]

BigGAN

32[Brock et al., 2018]

BigGAN
● GANs benefit dramatically from scaling

33[Brock et al., 2018]

BigGAN
● GANs benefit dramatically from scaling
● 2x – 4x more parameters
● 8x larger batch size
● Simple architecture changes that improve scalability

34[Brock et al., 2018]

BigGAN
● GANs benefit dramatically from scaling
● 2x – 4x more parameters
● 8x larger batch size
● Simple architecture changes that improve scalability

35[Brock et al., 2018]

BigGAN
● GANs benefit dramatically from scaling
● 2x – 4x more parameters
● 8x larger batch size
● Simple architecture changes that improve scalability

36[Brock et al., 2018]

Outline

● Generative Adversarial Networks (GANs)
! Vanilla GAN, Wasserstein GAN, Progressive GAN, BigGAN

● Normalizing Flow (NF)
! Basic Concepts
! GLOW

37

Normalizing Flow (NF)
● Transforms a simple distribution into a complex one by applying a

sequence of transformation functions

38

Figure courtesy: Lilian Weng

Normalizing Flow (NF)
● Transforms a simple distribution into a complex one by applying a

sequence of transformation functions

39

Figure courtesy: Lilian Weng

Normalizing Flow (NF)
● Transforms a simple distribution into a complex one by applying a

sequence of transformation functions

40[Rezende & Mohamed, 2015]

Normalizing Flow (NF)
● Transforms a simple distribution into a complex one by applying a

sequence of transformation functions

41

𝒛 ∼ 𝑝 𝒛
𝒙 = 𝑓(𝒛)

Normalizing Flow (NF)
● Transforms a simple distribution into a complex one by applying a

sequence of transformation functions

42

𝒛 ∼ 𝑝 𝒛
𝒙 = 𝑓(𝒛)

𝒛 = 𝑓34 𝒙
Transformation function 𝑓
• Invertibleinference:

Normalizing Flow (NF)
● Transforms a simple distribution into a complex one by applying a

sequence of transformation functions

43

𝒛 ∼ 𝑝 𝒛
𝒙 = 𝑓(𝒛)

𝒛 = 𝑓34 𝒙

𝑝 𝒙 = 𝑝 𝒛 det
𝑑𝒛
𝑑𝒙

= 𝑝(𝑓34(𝒙)) det $5
&'

$𝒙

det $5
&'

$𝒙 -- Jacobian determinant

Transformation function 𝑓
• Invertibleinference:

density:

Normalizing Flow (NF)
● Transforms a simple distribution into a complex one by applying a

sequence of transformation functions

44

𝒛 ∼ 𝑝 𝒛
𝒙 = 𝑓(𝒛)

𝒛 = 𝑓34 𝒙

𝑝 𝒙 = 𝑝 𝒛 det
𝑑𝒛
𝑑𝒙

= 𝑝(𝑓34(𝒙)) det $5
&'

$𝒙

det $5
&'

$𝒙 -- Jacobian determinant

Transformation function 𝑓
• Invertible

• Jacobian determinant easy to compute
e.g., choose 𝑑𝑓"#/𝑑𝒙 to be a triangular matrix

inference:

density:

Normalizing Flow (NF)
● Transforms a simple distribution into a complex one by applying a

sequence of transformation functions

45

𝒛6 ∼ 𝑝 𝒛6
𝒙 = 𝒛* = 𝑓* ∘ 𝑓*34 ∘ ⋯ ∘ 𝑓4(𝒛6)

𝒛7 = 𝑓734 𝒛734
𝑝 𝒛7 = 𝑝 𝒛734 det

𝑑𝒛734
𝑑𝒛𝒊

Transformation function 𝑓7
• Invertible

• Jacobian determinant easy to compute
e.g., choose 𝑑𝑓$"#/𝑑𝒛$ to be a triangular matrix

inference:

density:

Normalizing Flow (NF)
● Transforms a simple distribution into a complex one by applying a

sequence of transformation functions

46

𝒛6 ∼ 𝑝 𝒛6
𝒙 = 𝒛* = 𝑓* ∘ 𝑓*34 ∘ ⋯ ∘ 𝑓4(𝒛6)

𝒛7 = 𝑓734 𝒛734
𝑝 𝒛7 = 𝑝 𝒛734 det

𝑑𝒛734
𝑑𝒛𝒊

Transformation function 𝑓7
• Invertible

• Jacobian determinant easy to compute
e.g., choose 𝑑𝑓$"#/𝑑𝒛$ to be a triangular matrix

inference:

density:

log 𝑝 𝒙 = log 𝑝 𝒛% +0
$&#

'
log det

𝑑𝒛$"#
𝑑𝒛𝒊

training: maximizes data log-likelihood

GLOW
● [Kingma and Dhariwal., 2018]

47

One step of flow in the Glow model

GLOW
● [Kingma and Dhariwal., 2018]

48

One step of flow in the Glow model

Key Takeaways
● GANs:
! Implicit generative model
! Minimax formulation
! non-saturating GANs
! WGAN

● Normalizing Flow
! Transforms a simple distribution into a complex one by applying a sequence

of transformation functions

49

Questions?

Backups

Deep generative models
● Define probabilistic distributions over a set of variables
● "Deep" means multiple layers of hidden variables!

52

#$

#%

&

...

Early forms of deep generative models
● Hierarchical Bayesian models
! Sigmoid brief nets [Neal 1992]

53

𝒛9
(:) = 0,1 ;

𝒛9
(4) = 0,1 <

𝒙9 = 0,1 *

𝑝 𝑥=9 = 1 𝜽=, 𝒛9
(4) = 𝜎 𝜽=>𝒛9

(4)

𝑝 𝑧79
(4) = 1 𝜽7, 𝒛9

(:) = 𝜎 𝜽7>𝒛9
:

𝜃#$

Early forms of deep generative models
● Hierarchical Bayesian models
! Sigmoid brief nets [Neal 1992]

● Neural network models
!Helmholtz machines [Dayan et al.,1995]

54

inference
weights

[Dayan et al. 1995]

𝑍%

𝑍&

𝑋

Early forms of deep generative models
● Hierarchical Bayesian models
! Sigmoid brief nets [Neal 1992]

● Neural network models
!Helmholtz machines [Dayan et al.,1995]

! Predictability minimization [Schmidhuber 1995]

55

Figure courtesy: Schmidhuber 1996
DATA

Early forms of deep generative models
● Training of DGMs via an EM style framework

! Sampling / data augmentation

! Variational inference

!Wake sleep

56

log 𝑝 𝒙 ≥ E%' 𝒛 𝒙 log 𝑝& 𝒙, 𝒛 − KL(𝑞' 𝒛 𝒙 || 𝑝(𝒛)) ≔ ℒ(𝜽,𝝓; 𝒙)
max𝜽,𝝓ℒ(𝜽,𝝓; 𝒙)

𝒛 = 𝒛+, 𝒛,
𝒛+-./~𝑝 𝒛+ 𝒛,, 𝒙
𝒛,-./~𝑝 𝒛, 𝒛+-./ , 𝒙

Wake: min&𝔼%'(1|3) log 𝑝& 𝑥 𝑧
Sleep: min'𝔼5!(3|1) log 𝑞' 𝑧 𝑥

Resurgence of deep generative models
● Restricted Boltzmann machines (RBMs) [Smolensky, 1986]

! Building blocks of deep probabilistic models

57

Resurgence of deep generative models
● Restricted Boltzmann machines (RBMs) [Smolensky, 1986]

! Building blocks of deep probabilistic models
● Deep belief networks (DBNs) [Hinton et al., 2006]

!Hybrid graphical model
! Inference in DBNs is problematic due to explaining away

● Deep Boltzmann Machines (DBMs) [Salakhutdinov & Hinton, 2009]

!Undirected model

© Petuum,Inc.
58

Resurgence of deep generative models
● Variational autoencoders (VAEs) [Kingma & Welling, 2014]

/ Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 2014]

59

generative modelinference model

Figure courtesy: Kingma & Welling, 2014

𝑝((𝒙|𝒛)𝑞)(𝒛|𝒙)

Resurgence of deep generative models

● Variational autoencoders (VAEs) [Kingma & Welling, 2014]

/ Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 2014]

● Generative adversarial networks (GANs) [Goodfellow et al,. 2014]

60

𝐺!: generative model
𝐷": discriminator

?

Resurgence of deep generative models
● Variational autoencoders (VAEs) [Kingma & Welling, 2014]

/ Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 2014]

● Generative adversarial networks (GANs) [Goodfellow et al,. 2014]

● Generative moment matching networks (GMMNs) [Li et al., 2015; Dziugaite et al., 2015]

61

Resurgence of deep generative models
● Variational autoencoders (VAEs) [Kingma & Welling, 2014]

/ Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 2014]

● Generative adversarial networks (GANs) [Goodfellow et al,. 2014]

● Generative moment matching networks (GMMNs) [Li et al., 2015; Dziugaite et al., 2015]

● Autoregressive neural networks

62

"$ "' "(")

