DSC190: Machine Learning with Few Labels

Deep generative modeling
Generative adversarial learning

Zhiting Hu
Lecture 10, October 25, 2021

UCSan Diego

HALICIOGLU DATA SCIENCE INSTITUTE

Outline

e Generative adversarial networks (GANSs)
e Normalizing Flow

Generative modeling

e In generative modeling, we'd like to train a network that models a
distribution, such as a distribution over images.

e One way to judge the quality of the model is to sample from it.
e This field has seen rapid progress:

Courtesy: Grosse CSC321 Lecture 19 4

Generative modeling

e In generative modeling, we'd like to train a network that models a
distribution, such as a distribution over images.

e One way to judge the quality of the model is to sample from it.
e This field has seen rapid progress:

2018

Generative modeling

e Modern approaches to generative modeling:

Variational Auto-encoder (Lecture #5)

Auto-regressive models (e.g., language model) (Lecture #6)
Generative adversarial networks (today)

O
O
O
o Reversible architectures (today)

Courtesy: Grosse CSC321 Lecture 19

Implicit Generative Models

@ Implicit generative models implicitly define a probability distribution

@ Start by sampling the code vector z from a fixed, simple distribution
(e.g. spherical Gaussian)

@ The generator network computes a differentiable function G mapping
z to an x in data space

sample x = G(z)
T * a stochastic process to
simulate data x
T e Intractable to evaluate
likelihood
code vector Z

Courtesy: Grosse CSC321 Lecture 19 7

Implicit Generative Models

A 1-dimensional example:

input
distribution
output
distribution
Y : >
Y ;
Y .
/ ;
function
computed by v .
the network
v,

Yyv y

Courtesy: Grosse CSC321 Lecture 19

Implicit Generative Models

generated distribution true data distribution
A

P(X)

unit gaussian

generative
O model .
2 || (neural net) . floss
image space image space

https://blog.openai.com/generative-models/

Courtesy: Grosse CSC321 Lecture 1’{

Implicit Generative Models

e The advantage of implicit generative models: if you have some criterion
for evaluating the quality of samples, then you can compute its gradient
with respect to the network parameters, and update the network’s
parameters to make the sample a little better

e The idea behind Generative Adversarial Networks (GANS): train two
different networks

o The generator network tries to produce realistic-looking samples

o The discriminator network tries to figure out whether an image came from the
training set or the generator network

e The generator network tries to fool the discriminator network

Courtesy: Grosse CSC321 Lecture 19 10

Generative Adversarial Nets (GANS)

e Generative model x = Gg(2), z ~ p(2)

o Maps noise variable z to data space x

o Defines an implicit distribution over x: p,, (x)

e Discriminator Dy (x)

o Qutput the probability that x came from the data rather than the generator

G

(generator)

1(Rea|)

D

(discriminator

e = O(fake)

1(rea|)

real image

— Discriminator training

— Generator training

fake image

Generative Adversarial Nets (GANS)

e Learning

o A minimax game between the generator and the discriminator

o Train D to maximize the probability of assigning the correct label to both
training examples and generated samples

o Train G to fool the discriminator
o This is called the minimax formulation of GANs

maxp ,CD — EiBdiata(iB) [log D(CU)] + E:cNG(z),zrvp(z) [log(l o D(iB))]
ming EG — Eng(z)7z,\,p(z) [log(l — D(CL‘))] .

1 (Real)
e = O(fake)

1(rea|)

D

(discriminator

real image

g G F — Discriminator training
PR i — Generator training
' ' 7 fake image 12

Generative Adversarial Nets (GANS)

D(x)

i

f

N

X

OR

real-world
image

Courtesy: Grosse CSC321 Lecture 19

discriminator

generator

code vector

13

Generative Adversarial Nets (GANS)

Updating the discriminator: ~ D(x)

f

!

X

OR

real-world
image

Courtesy: Grosse CSC321 Lecture 19

update the discriminator
weights using backprop

on the classification objective

generator

code vector

14

Generative Adversarial Nets (GANS)

Updating the generator:

Courtesy: Grosse CSC321 Lecture 19

backprop the derivatives,
but don’t modify the
discriminator weights

flip the sign

>
!)
N —>» — — O ﬁu B — —>f><\
E N—"

of the derivatives

update the generator
weights using backprop

15

Generative Adversarial Nets (GANSs)

Alternating training of the generator and discriminator:

...............................

. z »
. » .
. .
. .

.
.
.
.
. .
. e 28 .
D Y o
Lo Sy
. e
. -

. 7L T I

REE TN

Courtesy: Grosse CSC321 Lecture 19

Optimality of GANs
e Objectives:

maxp ED = Ewdiata(fB) [10g D(CL‘)] + IEjf:cmG(z),sz(z) [log(l — D(w))]
minG LG — EmNG(z),sz(z) [log(l — D(Cl?))] .

o Global optimality: p; = pPaata
e Proof:

Courtesy: Grosse CSC321 Lecture 19 17

Optimality of GANs

Proposition 1. For G fixed, the optimal discriminator D is

* L Pdata ((B)
6 = @) + 1, (@) &

Proof. The training criterion for the discriminator D, given any generator (G, is to maximize the
quantity V (G, D)

V(G, D) =/pdata(a:) log(D(x))dx + /pz(z) log(1 — D(g(2)))dz

T z

~ [pusa(@) g(D(@)) + py(a) og(1 — D(@))da 3)

For any (a,b) € R?\ {0,0}, the function y — alog(y) + blog(1 — y) achieves its maximum in
[0,1] at %4 - o

[Goodfellow et al., 2014] 18

Optimality of GANs
e The minimax game can now be reformulated as
C(G) =maxV (G, D)
=Egrpi. 108 D& ()] + Eznp, [log(l — DG (G(2)))]
=Eanpi, 108 DG()] + Egnp, [log(1l — D (x))]

pdata(w)] [pg(iB)]
=Egnrpy, |10 + Eznp, |loO
P [= Pdata(m) E) pg(ic) “e e pdata(m) T Py (w)

Theorem 1. The global minimum of the virtual training criterion C(G) is achieved if and only if
Dg = Ddata- At that point, C'(G) achieves the value — log 4.

Ddata + P
dataQ g) + KL (pg

C(G) = — log(4) + KL (pdm

Ddata + Pg
2

= —log(4) +2- JSD (Pdaa ||[Pg) Jensen-Shannon Divergence
[Goodfellow et al., 2014] 19

A better loss function

@ We introduced the minimax cost function for the generator:
T = Eq[log(1 — D(G(2)))]

@ One problem with this is saturation.

@ Here, if the generated sample is really bad, the discriminator’s
prediction is close to 0, and the generator's cost is flat.

Courtesy: Grosse CSC321 Lecture 19

20

A better loss function: non-saturating GAN

@ Original minimax cost:
T = Eq[log(1 — D(G(2)))]
@ Modified generator cost:

J6 = Ez[—log D(G(2))]

@ This fixes the saturation problem.

Courtesy: Grosse CSC321 Lecture 19

modified
cost

minimax
cost

40 02 04 06 08 10

>

D(G(2))

(how well it fooled
the discriminator)

21

Wasserstein GAN (WGAN)

e If our data are on a low-dimensional manifold of a high dimensional
space, the model’s manifold and the true data manifold can have a
negligible intersection in practice

[Arjovsky et al., 2017]

Wasserstein GAN (WGAN)

If our data are on a low-dimensional manifold of a high dimensional
space, the model’'s manifold and the true data manifold can have a

negligible intersection in practice
The loss function and gradients may not be continuous and well behaved

[Arjovsky et al., 2017]

Wasserstein GAN (WGAN)

e If our data are on a low-dimensional manifold of a high dimensional
space, the model’s manifold and the true data manifold can have a

negligible intersection in practice
e The loss function and gradients may not be continuous and well behaved

e The Wasserstein Distance is well defined
o Earth Mover’s Distance
o Minimum transportation cost for making one pile
of dirt in the shape of one probability distribution
to the shape of the other distribution

=

£
el

[Arjovsky et al., 2017]

Wasserstein GAN (WGAN)

e Objective

1

W(pdata; pg) = K |Il§|l|1p<K Ex~p44:4 [D(x)] — Ex~pg |D(x)]
L_

* ||ID|l; < K : K- Lipschitz continuous
« Use gradient-clipping to ensure D has the Lipschitz continuity

WGAN vs Vanilla GAN

1.0 , . : , , , .
\ — Density of real
— Density of fake
—— GAN Discriminator

—— WGAN Critic
0.6 | .

Vanishing gradients
in regular GAN

_04 1 1 1 | 1 1 1

-8 -6 -4 -2 0 2 4 6 8

Standard Equation and GANs
e Recall SE:

min — aH(q) + ﬁlD)(q(x), pe (x)) — Eq [f(x)]

q,0
e In MLE, f is a fixed function

f = faata(x; D) =108 Exrpp [Ly (x)]

e Intuitively, see f as a similarity metric that measures similarity of sample
X against real data D

e Instead of the above manually fixed metric, can we learn a metric fj4?

Hu and Xing, 2021

27

Standard Equation and GANs

e Augment the standard objective to account for ¢:

m@in IT(lan rrglin — aH(q) + ,BID)< q(x), ve (x)) —Eq ’ f¢(x)] + Ep, 2 [fo(x)]

e Seta = 0,8 = 1. Under mild conditions, the objective recovers:

o Vanilla GAN , when D is JS-divergence and fo is a binary
classifier

o f-GAN , when D is f-divergence

o W-GAN ., when D is Wasserstein distance and foisal-

Lipschitz function

Hu and Xing, 2021

28

Progressive GAN

G Latent
4x4

Low resolution images

.3 | Reals

v

Training progresses

[Karras et al., 2018]

Progressive GAN

G Latent Latent

Low resolution images e ﬁ-;zf;-
add in
additional
Iayers . | Reals n i Reals
v >

v

Training progresses

30

[Karras et al., 2018]

Progressive GAN

G Latent Latent Latfnt
Low resolution images e ﬁ-&- =
add in
additional I 1024x1024]
Iayers . | Reals l i Reals s E' iReaIs
v D [1w]
High resolution images
B B l':ﬂ]

v

Training progresses

31

[Karras et al., 2018]

BigGAN

[Brock et al., 2018]

BigGAN

¢ GANSs benefit dramatically from scaling

[Brock et al., 2018]

BigGAN

e GANSs benefit dramatically from scaling

e 2x—4x more parameters

e 8x larger batch size

e Simple architecture changes that improve scalability

[Brock et al., 2018]

BigGAN

e GANSs benefit dramatically from scaling

e 2x—4x more parameters

e 8x larger batch size

e Simple architecture changes that improve scalability

[Brock et al., 2018]

35

BigGAN

e GANSs benefit dramatically from scaling
o 2X

[Brock et al., 2018]

36

Outline

e Normalizing Flow (NF)

o Basic Concepts
o GLOW

Normalizing Flow (NF)

e Transforms a simple distribution into a complex one by applying a
sequence of transformation functions

Normalizing Flow (NF)

e Transforms a simple distribution into a complex one by applying a

sequence of transformation functions

7 ~ ' ~

/7 \ V4 \

/ \ / \
/ \ / \
1 \ 1 \
| 1 | 1
\ I \ I
\ / \ /
\ 4 \ 4
N 7/ N 7/

S o ,/ =~ ,/

Zgy ~ po(Zo) Zij ™~ pi(Zz)

f1(zo) fi(2zi-1) fit1(2:)

/7 N
/ A \
/ \
/] \
| |
\ I
\ >/
\ /
\ /
~ 7/

Normalizing Flow (NF)

e Transforms a simple distribution into a complex one by applying a
sequence of transformation functions

Planar Radial
K=2 K=10

-
‘ :
1

Unit Gaussian

Uniform

[Rezende & Mohamed, 2015]

Normalizing Flow (NF)

e Transforms a simple distribution into a complex one by applying a
sequence of transformation functions

z ~ p(z)
x = f(z)

Normalizing Flow (NF)

e Transforms a simple distribution into a complex one by applying a
sequence of transformation functions

z ~ p(z)
x = f(z)

inference: z=f"1(x) = - > » |nvertible

Transformation function f

Normalizing Flow (NF)

e Transforms a simple distribution into a complex one by applying a
sequence of transformation functions

z ~ p(2)
x = f(2) Transformation function f
inference: z = f~1(x) S T > » |nvertible
Z
density: = d —‘
ensity: p(x) = p(z) |det - 1
_ ~1 af
= p(f () |det L

daf~1
dx

det -- Jacobian determinant

Normalizing Flow (NF)

e Transforms a simple distribution into a complex one by applying a
sequence of transformation functions

z ~ p(2)
x = f(2) Transformation function f
inference: z=f"1(x) = - > » |nvertible

density: p(x) = p(z)
= p(f () |det

q tdz‘
© dx

----- >« Jacobian determinant easy to compute
e.g., choose df ~!/dx to be a triangular matrix

df~1
dx

daf~1
dx

det -- Jacobian determinant

Normalizing Flow (NF)

e Transforms a simple distribution into a complex one by applying a
sequence of transformation functions

Zy ~ P(Zo)

X =2k = fx o fk-1°° f1(Zo) Transformation function f;

nference: z; = fi7 ' (z;-1) = 00o—---- > ¢ |nvertible
dz;_,

dZi

density: p(z;) = p(z;_1) |det

----- >« Jacobian determinant easy to compute
e.g., choose df;~*/dz; to be a triangular matrix

Normalizing Flow (NF)

e Transforms a simple distribution into a complex one by applying a
sequence of transformation functions

Zy ~ P(Zo)

X =2k = fx o fk-1°° f1(Zo) Transformation function f;

nference: z; = fi7 ' (z;-1) = 00o—---- > ¢ |nvertible
dz;_,

dZi

det

density: p(z;) = p(zi—1) |[det—— ____. >« Jacobian determinant easy to compute

e.g., choose df;~*/dz; to be a triangular matrix
training: maximizes data log-likelihood
dz;_4

det iz,

K
log p(x) = logp(zo) + z) log
1=

GLOW
e [Kingma and Dhariwal., 2018]

affine coupling layer

?

invertible 1x1 conv

?

actnorm

T
|

One step of flow in the Glow model

GLOW
e [Kingma and Dhariwal., 2018]

affine coupling layer

?

invertible 1x1 conv

?

actnorm

T
|

One step of flow in the Glow model

Key Takeaways
e GAN:s:

Implicit generative model
Minimax formulation
non-saturating GANSs
WGAN

O O O O

e Normalizing Flow

o Transforms a simple distribution into a complex one by applying a sequence
of transformation functions

49

Backups

Deep generative models

e Detine probabilistic distributions over a set of variables
e "Deep" means multiple layers of hidden variables!

G
:

52

Early forms of deep generative models

e Hierarchical Bayesian models
o Sigmoid brief nets (Neal 1992]

=0 (Bizg))

)
9,z) =0 (HiTz,(lz))

p (2 =1

Early forms of deep generative models

e Hierarchical Bayesian models
o Sigmoid brief nets (Neal 1992]

generative
e Neural network models | biases
. ayer | | |
o Helmholtz machines payan et al., 1995] v \-/e v
w000
o |:0
2 O0O0®OOO
inference | enerative
weights \ 0 gWeigh’cs
« 00000
input

[Dayan et al. 19935] .

Early forms of deep generative models

e Hierarchical Bayesian models
o Sigmoid brief nets (Neal 1992]

e Neural network models
o Helmholtz machines [payan et al., 1995]
o Predictability minimization (schmidhuber 1995]

Figure courtesy: Schmidhuber 1996

95

Early forms of deep generative models

e Training of DGMs via an EM style framework

o Sampling / data augmentation

Z = {ZLZZ}
721" ~p(z,|23, x)
new p(zzlznew’)

oVarlatlonaI inference

log p(x) = Eq, (z1x)[log po(x,2)| — KL(qe(z|x) || p(2)) = L(6, $; x)

maxg,L(6, ; x)
o Wake sleep

Wake: minglEQ¢(Z|x) llog pg (x|2)]
Sleep: mingE,, x|z [log q(p(zlx)]

56

Resurgence of deep generative models

e Restricted Boltzmann machines (RBMS) ismolensky, 198¢]
o Building blocks of deep probabilistic models

XX XX S ST
\N\LAIAN L1277 /
>

hidden %

factor: exp(v; wij hj)

o7

Resurgence of deep generative models

e Restricted Boltzmann machines (RBMS) (smolensky, 198¢]
o Building blocks of deep probabilistic models

o Deep belief networks (DBNS) finton et al., 200¢]
o Hybrid graphical model

o Inference in DBNs is problematic due to explaining away

e Deep Boltzmann Machines (DBMS) (salakhutdinov & Hinton, 2009
o Undirected model

Deep Belief Network Deep Boltzmann Machine

58

Resurgence of deep generative models

e Variational autoencoders (VAES) kingma & welling, 2014]
/ Neural Variational Inference and Learning (NVIL) tnin & Gregor, 2014

" e)
N 0
q¢(z|x) (/ pe (x|2)
inference model ‘®»/ generative model
N

~—

Figure courtesy: Kingma & Welling, 2014

59

Resurgence of deep generative models

e Variational autoencoders (VAES) ikingma & weliing, 20141

/ Neural Variational Inference and Learning (NVIL) nih & Gregor, 2014

e (Generative adversarial networks (GANS) (Goodfellow et al,. 2014]

Zgen

—|Lgen

code

Ldata

data/gen

Gg: generative model
Dy: discriminator

?

60

Resurgence of deep generative models

e Variational autoencoders (VAES) ikingma & weliing, 20141
/ Neural Variational Inference and Learning (NVIL) tnin & Gregor, 2014
e (enerative adversarial networks (GANS) (Goodfellow et al,. 2014]
e Generative moment matching networks (GMMNS) (i et al., 2015; Dziugaite et al., 2015]

61

Resurgence of deep generative models

e Variational autoencoders (VAES) ikingma & weliing, 20141
/ Neural Variational Inference and Learning (NVIL) tnin & Gregor, 2014
e (enerative adversarial networks (GANS) (Goodfellow et al,. 2014]
e Generative moment matching networks (GMMNS) (i et al., 2015; Dziugaite et al., 2015]
e Autoregressive neural networks

A

62

