
Lecture 09 | Part 1

Dimensionality Reduction

 



Choosing 𝑢⃗▶ Suppose we have only two features:▶ 𝑥1: screen size▶ 𝑥2: phone thickness▶ We’ll create single new feature, 𝑧, from 𝑥1 and 𝑥2.▶ Assume 𝑧 = 𝑢1𝑥1 + 𝑢2𝑥2 = ⃗𝑥 ⋅ 𝑢⃗▶ Interpretation: 𝑧 is a measure of a phone’s size▶ How should we choose 𝑢⃗ = (𝑢1, 𝑢2)𝑇?



Visualization
http://dsc140b.com/static/vis/pca-max_variance/



Example

▶ 𝑢⃗ defines a direction▶ ⃗𝑧(𝑖) = ⃗𝑥(𝑖) ⋅ 𝑢⃗ measures
position of ⃗𝑥 along this
direction



Example

▶ Phone “size” varies most
along a diagonal direction.▶ Along direction of “max
variance”, phones are
well-separated.▶ Idea: 𝑢⃗ should point in
direction of “max
variance”.



Our Algorithm (Informally)▶ Given: data points ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑▶ Pick 𝑢⃗ to be the direction of “max variance”▶ Create a new feature, 𝑧, for each point:𝑧(𝑖) = ⃗𝑥(𝑖) ⋅ 𝑢⃗



PCA▶ This algorithm is called Principal Component
Analysis, or PCA.▶ The direction of maximum variance is called the
principal component.



Exercise
Suppose the direction of maximum variance in a
data set is 𝑢⃗ = (1/√2, −1/√2)𝑇
Let▶ ⃗𝑥(1) = (3, −2)𝑇▶ ⃗𝑥(2) = (1, 4)𝑇
What are 𝑧(1) and 𝑧(2)?



Problem▶ How do we compute the “direction of maximum
variance”?
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Covariance Matrices



Variance▶ We know how to compute the variance of a set of
numbers 𝑋 = {𝑥(1), … , 𝑥(𝑛)}:Var(𝑋) = 1𝑛 𝑛∑𝑖=1 (𝑥(𝑖) − 𝜇)2▶ The variance measures the “spread” of the data



Generalizing Variance▶ If we have two features, 𝑥1 and 𝑥2, we can
compute the variance of each as usual:Var(𝑥1) = 1𝑛 𝑛∑𝑖=1 ( ⃗𝑥(𝑖)1 − 𝜇1)2Var(𝑥2) = 1𝑛 𝑛∑𝑖=1 ( ⃗𝑥(𝑖)2 − 𝜇2)2▶ Can also measure how 𝑥1 and 𝑥2 vary together.



Measuring Similar Information▶ Features which share information if they vary
together.▶ A.k.a., they “co-vary”▶ Positive association: when one is above average,
so is the other▶ Negative association: when one is above
average, the other is below average



Examples▶ Positive: temperature and ice cream cones sold.▶ Positive: temperature and shark attacks.▶ Negative: temperature and coats sold.



Centering▶ First, it will be useful to center the data.



Centering▶ Compute the mean of each feature:𝜇𝑗 = 1𝑛 𝑛∑1 ⃗𝑥(𝑖)𝑗▶ Define new centered data:

⃗𝑧(𝑖) = ( ⃗𝑥(𝑖)1 − 𝜇1⃗𝑥(𝑖)2 − 𝜇2⋮⃗𝑥(𝑖)𝑑 − 𝜇𝑑)



Centering (Equivalently)▶ Compute the mean of all data points:𝜇 = 1𝑛 𝑛∑1 ⃗𝑥(𝑖)▶ Define new centered data:⃗𝑧(𝑖) = ⃗𝑥(𝑖) − 𝜇



Exercise
Center the data set:⃗𝑥(1) = (1, 2, 3)𝑇⃗𝑥(2) = (−1, −1, 0)𝑇⃗𝑥(3) = (0, 2, 3)𝑇



Quantifying Co-Variance▶ One approach is as follows1.Cov(𝑥𝑖, 𝑥𝑗) = 1𝑛 𝑛∑𝑘=1 ⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗▶ For each data point, multiply the value of feature 𝑖
and feature 𝑗, then average these products.▶ This is the covariance of features 𝑖 and 𝑗.

1Assuming centered data



Quantifying Covariance

▶ Assume the data are
centered.

Covariance = 17 7∑𝑖=1 ⃗𝑥(𝑖)1 × ⃗𝑥(𝑖)2
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▶ Assume the data are
centered.

Covariance = 17 7∑𝑖=1 ⃗𝑥(𝑖)1 × ⃗𝑥(𝑖)2



Quantifying Covariance▶ The covariance quantifies extent to which two
variables vary together.▶ Assume we have centered the data.▶ The sample covariance of feature 𝑖 and 𝑗 is:𝜎𝑖𝑗 = 1𝑛 𝑛∑𝑘=1 ⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗



Exercise
True or False: 𝜎𝑖𝑗 = 𝜎𝑗𝑖?𝜎𝑖𝑗 = 1𝑛 𝑛∑𝑘=1 ⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗



Covariance Matrices▶ Given data ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑.▶ The sample covariance matrix 𝐶 is the 𝑑 × 𝑑
matrix whose 𝑖𝑗 entry is defined to be 𝜎𝑖𝑗.𝜎𝑖𝑗 = 1𝑛 𝑛∑𝑘=1 ⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗



Observations▶ Diagonal entries of 𝐶 are the variances.▶ The matrix is symmetric!



Note▶ Sometimes you’ll see the sample covariance defined as:𝜎𝑖𝑗 = 1𝑛 − 1 𝑛∑𝑘=1 ⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗
Note the 1/(𝑛 − 1)▶ This is an unbiased estimator of the population covariance.▶ Our definition is the maximum likelihood estimator.▶ In practice, it doesn’t matter: 1/(𝑛 − 1) ≈ 1/𝑛.▶ For consistency, in this class use 1/𝑛.



Computing Covariance▶ There is a “trick” for computing sample
covariance matrices.▶ Step 1: make 𝑛 × 𝑑 data matrix, 𝑋▶ Step 2: make 𝑍 by centering columns of 𝑋▶ Step 3: 𝐶 = 1𝑛𝑍𝑇𝑍



Computing Covariance (in code)2

»> mu = X.mean(axis=0)
»> Z = X - mu
»> C = 1 / len(X) * Z.T @ Z

2Or use np.cov
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Visualizing Covariance Matrices



Visualizing Covariance Matrices▶ Covariance matrices are symmetric.▶ They have axes of symmetry (eigenvectors and
eigenvalues).▶ What are they?



Visualizing Covariance Matrices

𝐶 ≈ ( )



Visualizing Covariance Matrices

Eigenvectors:𝑢⃗(1) ≈𝑢⃗(2) ≈
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Visualizing Covariance Matrices

𝐶 ≈ ( )



Visualizing Covariance Matrices

Eigenvectors:𝑢⃗(1) ≈𝑢⃗(2) ≈



Intuitions▶ The eigenvectors of the covariance matrix
describe the data’s “principal directions”▶ 𝐶 tells us something about data’s shape.▶ The top eigenvector points in the direction of
“maximum variance”.▶ The top eigenvalue is proportional to the
variance in this direction.



Caution▶ The data doesn’t always look like this.▶ We can always compute covariance matrices.▶ They just may not describe the data’s shape very well.
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Caution▶ The data doesn’t always look like this.▶ We can always compute covariance matrices.▶ They just may not describe the data’s shape very well.
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PCA, More Formally



The Story (So Far)▶ We want to create a single new feature, 𝑧.▶ Our idea: 𝑧 = ⃗𝑥 ⋅ 𝑢⃗; choose 𝑢⃗ to point in the
“direction of maximum variance”.▶ Intuition: the top eigenvector of the covariance
matrix points in direction of maximum variance.



More Formally...▶ We haven’t actually defined “direction of
maximum variance”▶ Let’s derive PCA more formally.



Variance in a Direction▶ Let 𝑢⃗ be a unit vector.▶ 𝑧(𝑖) = ⃗𝑥(𝑖) ⋅ 𝑢⃗ is the new feature for ⃗𝑥(𝑖).▶ The variance of the new features is:Var(𝑧) = 1𝑛 𝑛∑𝑖=1 (𝑧(𝑖) − 𝜇𝑧)2= 1𝑛 𝑛∑𝑖=1 ( ⃗𝑥(𝑖) ⋅ 𝑢⃗ − 𝜇𝑧)2



Example



Note▶ If the data are centered, then 𝜇𝑧 = 0 and the
variance of the new features is:Var(𝑧) = 1𝑛 𝑛∑𝑖=1 (𝑧(𝑖))2= 1𝑛 𝑛∑𝑖=1 ( ⃗𝑥(𝑖) ⋅ 𝑢⃗)2



Goal▶ The variance of a data set in the direction of 𝑢⃗ is:𝑔(𝑢⃗) = 1𝑛 𝑛∑𝑖=1 ( ⃗𝑥(𝑖) ⋅ 𝑢⃗)2▶ Our goal: Find a unit vector 𝑢⃗ which maximizes 𝑔.



Claim

1𝑛 𝑛∑𝑖=1 ( ⃗𝑥(𝑖) ⋅ 𝑢⃗)2 = 𝑢⃗𝑇𝐶𝑢⃗



Our Goal (Again)▶ Find a unit vector 𝑢⃗ which maximizes 𝑢⃗𝑇𝐶𝑢⃗.



Claim▶ To maximize 𝑢⃗𝑇𝐶𝑢⃗ over unit vectors, choose 𝑢⃗ to
be the top eigenvector of 𝐶.▶ Proof:



PCA (for a single new feature)▶ Given: data points ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑
1. Compute the covariance matrix, 𝐶.
2. Compute the top eigenvector 𝑢⃗, of 𝐶.
3. For 𝑖 ∈ {1, … , 𝑛}, create new feature:𝑧(𝑖) = 𝑢⃗ ⋅ ⃗𝑥(𝑖)



A Parting Example▶ MNIST: 60,000 images in 784 dimensions▶ Principal component: 𝑢⃗ ∈ ℝ784▶ We can project an image in ℝ784 onto 𝑢⃗ to get a
single number representing the image



Example


