DSC 1408 Representation Learning

Lecture 09 | Part 1

Dimensionality Reduction

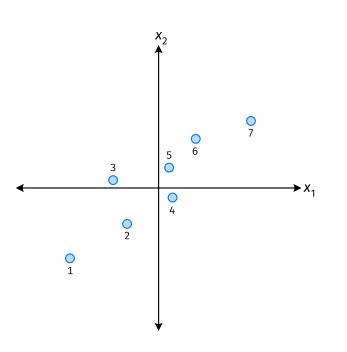
Choosing \vec{u}

- Suppose we have only two features:
 - \triangleright x_1 : screen size
 - \triangleright x_2 : phone thickness
- \triangleright We'll create single new feature, z, from x_1 and x_2 .
 - ► Assume $z = u_1 x_1 + u_2 x_2 = \vec{x} \cdot \vec{u}$
 - ► Interpretation: z is a measure of a phone's size
- ► How should we choose $\vec{u} = (u_1, u_2)^T$?

Visualization

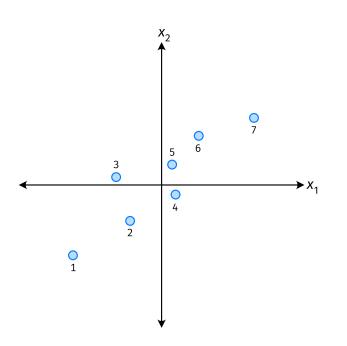
http://dsc140b.com/static/vis/pca-max_variance/

Example



- \vec{u} defines a direction
- $\vec{z}^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$ measures position of \vec{x} along this direction

Example



- Phone "size" varies most along a diagonal direction.
- Along direction of "max variance", phones are well-separated.
- ldea: \vec{u} should point in direction of "max variance".

Our Algorithm (Informally)

- ► **Given**: data points $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$
- ightharpoonup Pick \vec{u} to be the direction of "max variance"
- Create a new feature, z, for each point:

$$z^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$$

PCA

- ► This algorithm is called **Principal Component Analysis**, or **PCA**.
- ► The direction of maximum variance is called the **principal component**.

Exercise

Suppose the direction of maximum variance in a data set is

$$\vec{u} = (1/\sqrt{2}, -1/\sqrt{2})^{T}$$

Let

$$\vec{x}^{(1)} = (3, -2)^T$$

 $\vec{x}^{(2)} = (1, 4)^T$

What are $z^{(1)}$ and $z^{(2)}$?

What are
$$z^{(1)}$$
 and $z^{(2)}$?

$$Z^{(j)} = X^{(j)} \cdot \tilde{\mathcal{U}} = \begin{pmatrix} 3 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 5 \\ -\frac{1}{2} \end{pmatrix}$$

Problem

► How do we compute the "direction of maximum variance"?

DSC 1408 Representation Learning

Lecture 09 | Part 2

Covariance Matrices

Variance

We know how to compute the variance of a set of numbers $X = \{x^{(1)}, ..., x^{(n)}\}$:

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu)^2$$

The variance measures the "spread" of the data

Generalizing Variance

If we have two features, x_1 and x_2 , we can compute the variance of each as usual:

$$Var(x_1) = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}_1^{(i)} - \mu_1)^2$$

$$Var(x_2) = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}_2^{(i)} - \mu_2)^2$$

correlation

ightharpoonup Can also measure how x_1 and x_2 vary together.

Measuring Similar Information

- Features which share information if they vary together.
 - A.k.a., they "co-vary"
- Positive association: when one is above average, so is the other

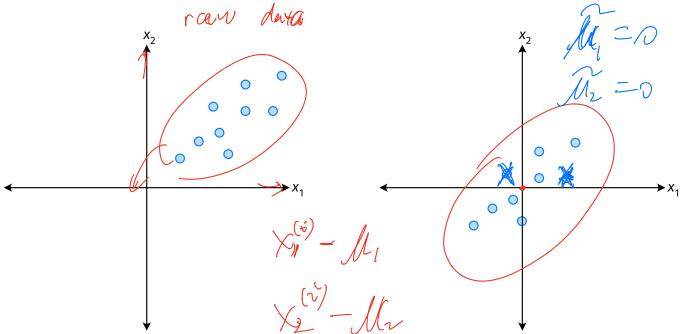
Negative association: when one is above average, the other is below average

Examples

- Positive: temperature and ice cream cones sold.
- Positive: temperature and shark attacks.
- Negative: temperature and coats sold.

Centering

First, it will be useful to **center** the data.



Centering

Compute the mean of each feature:

$$\mu_j = \frac{1}{n} \sum_{1}^{n} \vec{x}_j^{(i)}$$

Define new centered data:

$$\vec{z}^{(i)} = \begin{pmatrix} \vec{x}_1^{(i)} - \mu_1 \\ \vec{x}_2^{(i)} - \mu_2 \\ \vdots \\ \vec{x}_d^{(i)} - \mu_d \end{pmatrix}$$

Centering (Equivalently)

Compute the mean of all data points:

$$\mu = \frac{1}{n} \sum_{1}^{n} \vec{x}^{(i)}$$

Define new centered data:

$$\vec{z}^{(i)} = \vec{x}^{(i)} - \mu$$

Exercise

Center the data set:

$$\vec{x}^{(1)} = (1, 2, 3)^T$$
 $\vec{x}^{(2)} = (-1, -1, 0)^T$
 $\vec{x}^{(3)} = (0, 2, 3)^T$

discotion

Cov
$$(x_i, x_j) = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_i^{(k)} \vec{x}_j^{(k)}$$

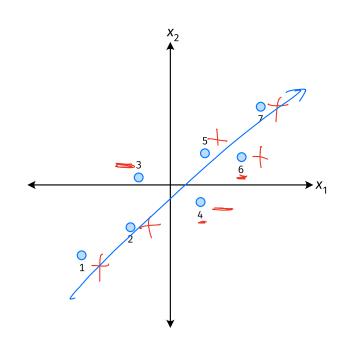
- For each data point, multiply the value of feature i and feature j, then average these products. JZ Xi
- This is the **covariance** of features *i* and *j*.

 $COV(X_i, X_i) = Var(X_i)$

Assuming centered data

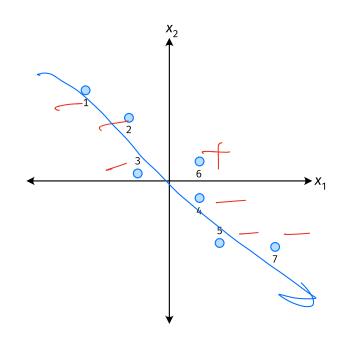
Assume the data are centered.

Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$



Assume the data are centered.

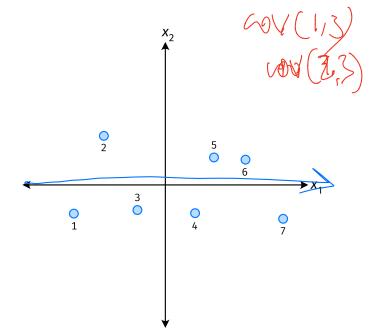
Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$



90 V(1,2)

Assume the data are centered.

Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$



X0

- ► The **covariance** quantifies extent to which two variables vary together.
- Assume we have centered the data.
- ightharpoonup The **sample covariance** of feature *i* and *j* is:

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}$$

Exercise

True or False: $\sigma_{ij} = \sigma_{ji}$?

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{X}_{j}^{(k)} \vec{X}_{j}^{(k)}$$

Covariance Matrices

- ► Given data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$
- The sample covariance matrix C is the $d \times d$ matrix whose ij entry is defined to be σ_{ij} .

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}$$

Observations

- Diagonal entries of C are the variances.
- ► The matrix is **symmetric**!

Note

Sometimes you'll see the sample covariance defined as:

$$\sigma_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}$$

Note the 1/(n-1)

- This is an unbiased estimator of the population covariance.
- Our definition is the maximum likelihood estimator.
- ► In practice, it doesn't matter: $1/(n 1) \approx 1/n$.
- For consistency, in this class use 1/n.

Computing Covariance

- ► There is a "trick" for computing sample covariance matrices.
- Step 1: make $n \times d$ data matrix, X
- Step 2: make Z by centering columns of X

 Step 3: $C = \frac{1}{n}Z^TZ^T$

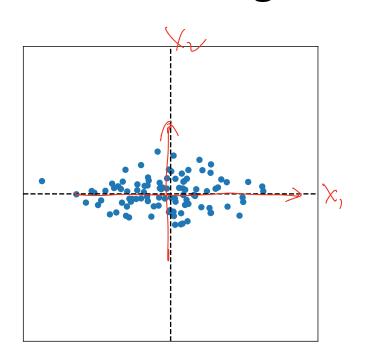
Computing Covariance (in code)²

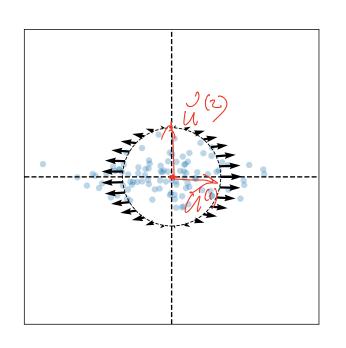
```
>>> mu = X.mean(axis=0)
>>> Z = X - mu
>>> C = 1 / len(X) * Z.T @ Z
```

DSC 1408 Representation Learning

Lecture 09 | Part 3

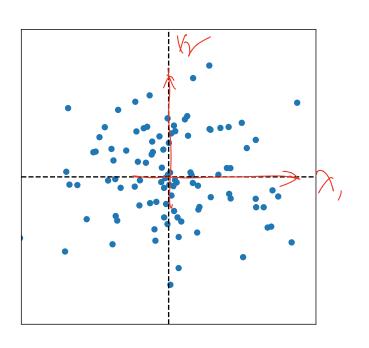
- Covariance matrices are symmetric.
- They have axes of symmetry (eigenvectors and eigenvalues).
- What are they?



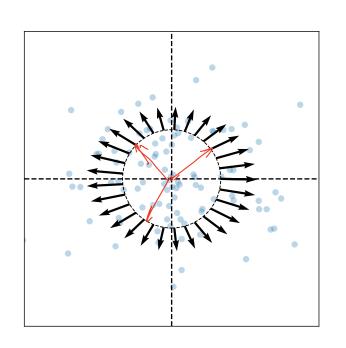


Eigenvectors:

$$\vec{u}^{(1)} \approx \begin{pmatrix} \langle \cdot, \circ \rangle \\ \vec{u}^{(2)} \approx \begin{pmatrix} \langle \cdot, \circ \rangle \\ \rangle \end{pmatrix}$$



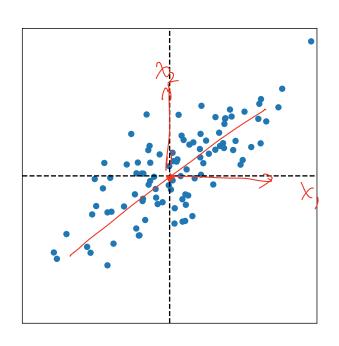
$$C \approx \begin{pmatrix} 0 & \infty & \\ 0 & 0 & \\ 0 & 0 & \end{pmatrix}$$



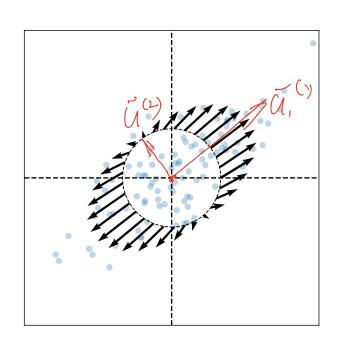
Eigenvectors:

$$\vec{u}^{(1)} \approx (0)$$

$$\vec{u}^{(2)} \approx (0)$$



Visualizing Covariance Matrices



$$C = \begin{pmatrix} 0 & 5 \\ 5 & 7 \end{pmatrix}$$

Eigenvectors:

$$\vec{u}^{(1)} \approx$$

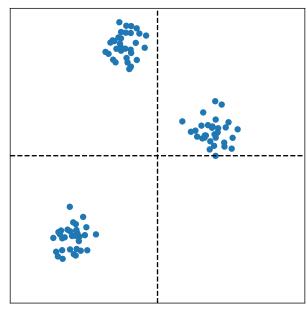
$$\vec{u}^{(2)}$$

Intuitions

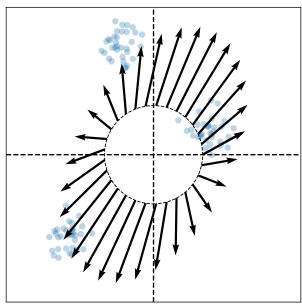
- ► The **eigenvectors** of the covariance matrix describe the data's "principal directions"
 - C tells us something about data's shape.
- ► The **top eigenvector** points in the direction of "maximum variance".

► The **top eigenvalue** is proportional to the variance in this direction.

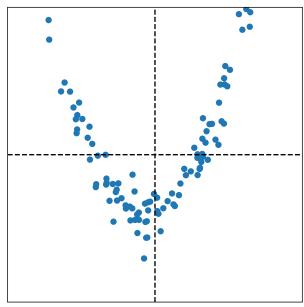
- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.



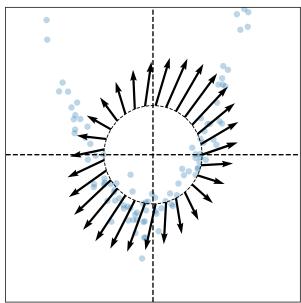
- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.



- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.



- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.



DSC 1408 Representation Learning

Lecture 09 | Part 4

PCA, More Formally

The Story (So Far)

- ▶ We want to create a single new feature, z.
- Our idea: $z = \vec{x} \cdot \vec{u}$; choose \vec{u} to point in the "direction of maximum variance".
- Intuition: the top eigenvector of the covariance matrix points in direction of maximum variance.

More Formally...

We haven't actually defined "direction of maximum variance"

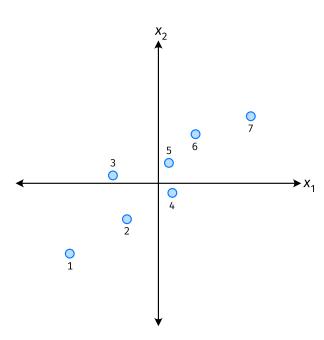
Let's derive PCA more formally.

Variance in a Direction

- ▶ Let \vec{u} be a unit vector.
- $z^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$ is the new feature for $\vec{x}^{(i)}$.
- ► The variance of the new features is:

$$Var(z) = \frac{1}{n} \sum_{i=1}^{n} (z^{(i)} - \mu_z)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\vec{x}^{(i)} \cdot \vec{u} - \mu_z)^2$$

Example



Note

If the data are centered, then $\mu_z = 0$ and the variance of the new features is:

$$Var(z) = \frac{1}{n} \sum_{i=1}^{n} (z^{(i)})^{2}$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\vec{x}^{(i)} \cdot \vec{u})^{2}$$

Goal

ightharpoonup The variance of a data set in the direction of \vec{u} is:

$$g(\vec{u}) = \frac{1}{n} \sum_{i=1}^{n} \left(\vec{x}^{(i)} \cdot \vec{u} \right)^2$$

ightharpoonup Our goal: Find a unit vector \vec{u} which maximizes g.

Claim

$$\frac{1}{n}\sum_{i=1}^{n}\left(\vec{x}^{(i)}\cdot\vec{u}\right)^{2}=\vec{u}^{T}C\vec{u}$$

Our Goal (Again)

Find a unit vector \vec{u} which maximizes $\vec{u}^T C \vec{u}$.

Claim

To maximize $\vec{u}^T C \vec{u}$ over unit vectors, choose \vec{u} to be the top eigenvector of C.

Proof:

PCA (for a single new feature)

- ► **Given**: data points $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$
- 1. Compute the covariance matrix, C.
- 2. Compute the top eigenvector \vec{u} , of C.
- 3. For $i \in \{1, ..., n\}$, create new feature:

$$z^{(i)} = \vec{u} \cdot \vec{x}^{(i)}$$

A Parting Example

- MNIST: 60,000 images in 784 dimensions
- Principal component: $\vec{u} \in \mathbb{R}^{784}$
- We can project an image in \mathbb{R}^{784} onto \vec{u} to get a single number representing the image

Example

