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Lecture O8 Part 1

Diagonalization



Matrices of a Transformation

Let f : R? > R be a linear transformation

The matrix representing fwrt the standard basis
is:

O I N
A=(feM) fe?) - fe)
\) N



Matrices of a Transformation

If we use a different basis ¢/ = {i(", ..., 4@}, the
matrix representing f is:

R
Ay =|[FED), [F@P, - [F@ED)],
L Loy

If y = AX, then [y],, = A,[X],



Diagonal Matrices

Diagonal matrices are very nice / easy to work
with.

Suppose A is a matrix. Is there a basis &/ where
A, is diagonal?

Yes! If A is symmetric.



The Spectral Theorem'

Theorem: Let A be an n x n symmetric matrix.
Then there exist n eigenvectors of A which are all
mutually orthogonal.

'for symmetric matrices



Eigendecomposition

If Ais a symmetric matrix, we can pick d of its
eigenvectors 0, ..., 0@ to form an orthonormal

basis.

Any vector X can be written in terms of this
eigenbasis.

This is called its eigendecomposition:

5 = by + byd® .+ byl



Matrix in the Eigenbasis

Claim: the matrix of a linear transformation f,
written in a basis of its eigenvectors, is a
diagonal matrix.

The entries along the diagonal will be the
eigenvalues.



Why?

T R S
Ay = [LF@D, (@), -~ [F@9),
! Lol

f(@0) = 2,60, so [f(@)]y, = (41,0,...,0)"

-

(u<2>) Au<2 so [f(@®)], = (0,A,, ..., O).



Matrix Multiplication

We have seen that matrix multiplication
evaluates a linear transformation.

In the standard basis:

In another basis:

[F(R)], = AylX]y,



Diagonalization

Another way to compute f(x), starting with X in
the standard basis:

Change basis to the eigenbasis with U.

Apply f’in the eigenbasis with the diagonal
A,

Go back to the standard basis with U.

That is, AX = UTA,,UX. It follows that A = UTA,,U.



Spectral Theorem (Again)

Theorem: Let A be an n x n symmetric matrix.
Then there exists an orthogonal matrix U and a
diagonal matrix A such that A = UTAU.

The rows of U are the eigenvectors of A, and the
entries of A are its eigenvalues.

U is said to diagonalize A.
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Dimensionality Reduction



High Dimensional Data
Data is often high dimensional (many features)

Example: Netflix user
Number of movies watched
Number of movies saved
Total time watched
Number of logins
Days since signup
Average rating for comedy
Average rating for drama



High Dimensional Data
More features can give us more information
But it can also cause problems

Today: how do we reduce dimensionality without
losing too much information?



More Features, More Problems

Difficulties with high dimensional data:
Requires more compute time / space
Hard to visualize / explore
The “curse of dimensionality”: it's harder to learn



Experiment

On this data, low 80%
train/test accuracy

Add 400 features of pure
noise, re-train

Now: 100% train accuracy,
58% test accuracy

Overfitting!



Task: Dimensionality Reduction

We'd often like to reduce the dimensionality to
improve performance, or to visualize.

We will typically lose information

Want to minimize the loss of useful information



Redundancy

Two (or more) features may share the same
information.

Intuition: we may not need all of them.



Today

Today we’ll think about reducing dimensionality
from R? to R’

Next time we'll go from RY to R, with d’ < d



Today’s Example

Let's say we represent a phone with two features:
X,: screen width
X,: phone weight

Both measure a phone’s “size”.

Instead of representing a phone with both x; and

X5, can we just use a single number, z?
Reduce dimensionality from 2 to 1.



First Approach: Remove Features
Screen width and weight share information.
Idea: keep one feature, remove the other.

That is, set new feature z = x, (or z = x,).



A

Ow

Removing Features

A

>0
~0

=0

~O

Say we set z() = %) for
each phone, i.

Observe: z*) > 70,

Is phone & really “larger”
than phone 5?



A
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Removing Features

A

>0
~0

=0

~O

Say we set z() = X for
each phone, i.

Observe: z0& > z(4),

Is phone 3 really “larger”
than phone 4?



Better Approach: Mixtures of
Features

Idea: z should be a combination of x; and x,.

One approach: linear combination.

U, ..., U, are the mixture coefficients; we can
choose them.



Normalization
Mixture coefficients generalize proportions.
We could assume, e.g., |u,| + [uy]| = 1.

But it makes the math easier if we assume
u+ud=1
7 +u; = 1.

Equivalently, if i = (uq, u,), assume || ] = 1



Geometric Interpretation

\\N

sV

z measures how much of X
is in the direction of U

If & =(1,0)", then z = x,

If 1 =(0,1)", thenz=x,

N/



Choosing i

Suppose we have only two features:
X,: screen size
X,: phone thickness

We'll create single new feature, z, from x; and x,.
ASSUME Z = U X, + UyXy = X - U
Interpretation: z is a measure of a phone’s size

How should we choose i = (uq,u,)™?



Visualization

http://dscl40b.com/static/vis/pca-max_variance/


http://dsc140b.com/static/vis/pca-max_variance/
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Example

A

=0

~O

=0 Ow

U defines a direction

20 = X0 . {j measures
position of X along this
direction



Ow

A

@0

~0O

Example

A

=0

~O

=0 Ow

Phone “size” varies most
along a diagonal direction.

Along direction of “max
variance”, phones are
well-separated.

Idea: i should point in
direction of “max
variance”.



Our Algorithm (Informally)
Given: data points (..., X" e R4
Pick U to be the direction of “max variance”

Create a new feature, z, for each point:

A0 = 30) .



PCA

This algorithm is called Principal Component
Analysis, or PCA.

The direction of maximum variance is called the
principal component.



Suppose the direction of maximum variance in a

data set is
i=01/V2,-1/y2)
Let
XM = (3,-2)7
X2 =(1,4)"

What are zW and z®?




Problem

How do we compute the “direction of maximum
variance”?
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Covariance Matrices



Variance

We know how to compute the variance of a set of
numbers X = {x(), ..., x(M}.

IR,
Var(X) = = > (x - py?
i=1

The variance measures the “spread” of the data



Generalizing Variance

If we have two features, x, and x,, we can
compute the variance of each as usual:

1 <C 5
Var(x;) = = > (% - u;)?

-
1
RN

n

1 NG
Var(x,) = - Z(xg’) - U,)?
i=1

Can also measure how x,; and x, vary together.



Measuring Similar Information

Features which share information if they vary

together.
A.k.a., they “co-vary”

Positive association: when one is above average,
so is the other

Negative association: when one is above
average, the other is below average



Examples
Positive: temperature and ice cream cones sold.
Positive: temperature and shark attacks.

Negative: temperature and coats sold.



Centering

First, it will be useful to center the data.

A

\4
x
A




Centering

Compute the mean of each feature:



Centering (Equivalently)

Compute the mean of all data points:
1 n
w2 X

Define new centered data:

30) = 30 -y



Center the data set:
P
@)
33)

(1,2,3)
(-1,-1,0)7
(0,2,3)"




Quantifying Co-Variance
One approach is as follows?.
Cov(x;, X;) -1 i x®) 7(
N

For each data point, multiply the value of feature i
and feature j, then average these products.

This is the covariance of features i and j.

2Assuming centered data



Quantifying Covariance

NTS)

Assume the data are
centered.

Ow
Ow
20

A
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Covariance =

]
'M\l
x4
-

X
x4
N
NYe)

=0




Quantifying Covariance

=0
MO

Assume the data are

Ow

A

centered.

7 . .
Covariance = Z # %0

=0 [0

1

Ow
~0



Quantifying Covariance

~O

Assume the data are 3 o
6
centered. < - > X,
7 o
. 1 5 . 5 . (@] (e} @)
Covariance = 5 Z 0 x 30 1 ‘ 7




Quantifying Covariance

The covariance quantifies extent to which two
variables vary together.

Assume we have centered the data.
The sample covariance of feature i and j is:

= (k) o)

S|=

oij =
k=1



Tru
e
or False: o
ij = 057




Covariance Matrices
Given data x(V, ..., X" e RY.

The sample covariance matrix Cis the d x d
matrix whose ij entry is defined to be oy;.

1 < $(R)3
0ij ﬁz

k=1



Observations
Diagonal entries of C are the variances.

The matrix is symmetric!



Note

Sometimes you'll see the sample covariance defined as:

Note the 1/(n - 1)

This is an unbiased estimator of the population covariance.
Our definition is the maximum likelihood estimator.

In practice, it doesn’t matter: 1/(n-1) = 1/n.

For consistency, in this class use 1/n.



Computing Covariance

There is a “trick” for computing sample
covariance matrices.

Step 1: make n x d data matrix, X
Step 2: make Z by centering columns of X

Step3: C= 1277



Computing Covariance (in code)’

»> mu = X.mean(axis=0)
»> Z X - mu
»> C =1/ len(X) » Z.T @ Z

30r use np.cov



