DSC 1408 Representation Learning

Lecture 08 | Part 1

Diagonalization

Matrices of a Transformation

- ▶ Let $\vec{f}: \mathbb{R}^d \to \mathbb{R}^d$ be a linear transformation
- The matrix representing \vec{f} wrt the **standard basis** is:

$$A = \begin{pmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \cdots & \vec{f}(\hat{e}^{(d)}) \\ \downarrow & \downarrow & \downarrow & \downarrow \end{pmatrix}$$

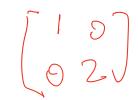
Matrices of a Transformation

If we use a different basis $\mathcal{U} = \{\hat{u}^{(1)}, ..., \hat{u}^{(d)}\}\$, the matrix representing \vec{f} is:

$$A_{\mathcal{U}} = \begin{pmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ [\vec{f}(\hat{u}^{(1)})]_{\mathcal{U}} & [\vec{f}(\hat{u}^{(2)})]_{\mathcal{U}} & \cdots & [\vec{f}(\hat{u}^{(d)})]_{\mathcal{U}} \end{pmatrix}$$

If $\vec{y} = A\vec{x}$, then $[\vec{y}]_{\mathcal{U}} = A_{\mathcal{U}}[\vec{x}]_{\mathcal{U}}$

Diagonal Matrices 6 2



- Diagonal matrices are very nice / easy to work with.
- ightharpoonup Suppose A is a matrix. Is there a basis \mathcal{U} where $A_{\mathcal{U}}$ is diagonal?
- Yes! If A is symmetric.

The Spectral Theorem¹

► **Theorem**: Let A be an n × n symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

¹for symmetric matrices

Eigendecomposition

If A is a symmetric matrix, we can pick d of its eigenvectors $\hat{u}^{(1)}, ..., \hat{u}^{(d)}$ to form an orthonormal basis.

- Any vector \vec{x} can be written in terms of this eigenbasis.
- ► This is called its **eigendecomposition**:

$$\vec{x} = b_1 \hat{u}^{(1)} + b_2 \hat{u}^{(2)} + ... + b_d \hat{u}^{(d)}$$

Matrix in the Eigenbasis

Symmetra

Claim: the matrix of a linear transformation \vec{f} , written in a basis of its eigenvectors, is a diagonal matrix.

The entries along the diagonal will be the eigenvalues.

$$\begin{array}{c}
\lambda_{1} \mathcal{U}^{(1)} \\
\lambda_{1} \mathcal{U}^{(1)} \\
\lambda_{2} \mathcal{U}^{(1)} \\
\lambda_{3} \mathcal{U}^{(1)} \\
\lambda_{4} \mathcal{U}^{(1)}
\end{array}$$

$$\begin{array}{c}
\uparrow \\
[\vec{f}(\hat{u}^{(1)})]_{\mathcal{U}} \\
\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
\end{array}$$

$$\begin{array}{c}
\uparrow \\
[\vec{f}(\hat{u}^{(2)})]_{\mathcal{U}} \\
\downarrow \downarrow \downarrow \downarrow \downarrow
\end{array}$$

$$\begin{array}{c}
\uparrow \\
\vec{f}(\hat{u}^{(1)}) = \lambda_{1} \hat{u}^{(1)}, \text{ so } [\vec{f}(\hat{u}^{(1)})]_{\mathcal{U}} = (\lambda_{1}, 0, ..., 0)^{T}. \\
\vec{f}(\hat{u}^{(2)}) = \lambda_{2} \hat{u}^{(2)}, \text{ so } [\vec{f}(\hat{u}^{(2)})]_{\mathcal{U}} = (0, \lambda_{2}, ..., 0)^{T}. \\
\vdots \\
\downarrow \begin{matrix} \downarrow \end{matrix}$$

-6. (grad)

Matrix Multiplication

- We have seen that matrix multiplication evaluates a linear transformation.
- In the standard basis:

$$\vec{f}(\vec{x}) = A\vec{x}$$

In another basis:

is:
$$[\vec{f}(\vec{x})]_{\mathcal{U}} = A_{\mathcal{U}}[\vec{x}]_{\mathcal{U}}$$



Another way to compute $\vec{f}(x)$, starting with \vec{x} in the standard basis:

- 1. Change basis to the eigenbasis with *U*.
- 2. Apply \vec{f} in the eigenbasis with the diagonal $A_{\mathcal{U}}$. TAMEAU IX) = AUX
 - . Go back to the standard basis with U_{μ}^{T} .
- That is, $A\vec{x} = U^T A_{1/2} U \vec{x}$. It follows that $\vec{A} = U^T A_{1/2} U \vec{x}$.

Spectral Theorem (Again)

Theorem: Let A be an $n \times n$ symmetric matrix. Then there exists an orthogonal matrix U and a diagonal matrix Λ such that $A = U^T \Lambda U$.

► The rows of U are the eigenvectors of A, and the

- The rows of U are the eigenvectors of A, and the entries of Λ are its eigenvalues.
- U is said to diagonalize A.

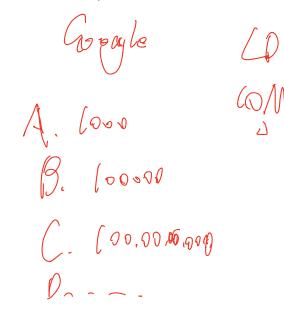
DSC 1408 Representation Learning

Lecture 08 | Part 2

Dimensionality Reduction

High Dimensional Data

- Data is often high dimensional (many features)
- Example: Netflix user
 - Number of movies watched
 - Number of movies saved
 - Total time watched
 - Number of logins
 - Days since signup
 - Average rating for comedy
 - Average rating for drama



High Dimensional Data

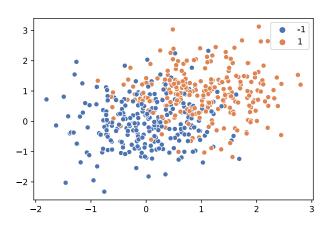
- More features can give us more information
- But it can also cause problems
- ► **Today**: how do we reduce dimensionality without losing too much information?

More Features, More Problems

- Difficulties with high dimensional data:
 - 1. Requires more compute time / space
 - 2. Hard to visualize / explore
 - 3. The "curse of dimensionality": it's harder to learn

Wo two 'Xit WLX2 = 4

Experiment



On this data, low 80% train/test accuracy

402

- Add 400 features of pure noise, re-train
- Now: 100% train accuracy, 58% test accuracy
- Overfitting!

Task: Dimensionality Reduction

- We'd often like to reduce the dimensionality to improve performance, or to visualize.
- We will typically lose information
- Want to minimize the loss of useful information

Nedundancy

Two (or more) features may share the same information.

Intuition: we may not need all of them.

Today

- Today we'll think about reducing dimensionality from \mathbb{R}^d to \mathbb{R}^1
- ▶ Next time we'll go from \mathbb{R}^d to $\mathbb{R}^{d'}$, with $d' \leq d$

Today's Example

- Let's say we represent a phone with two features:
 - \triangleright x_1 : screen width
 - \triangleright x_2 : phone weight

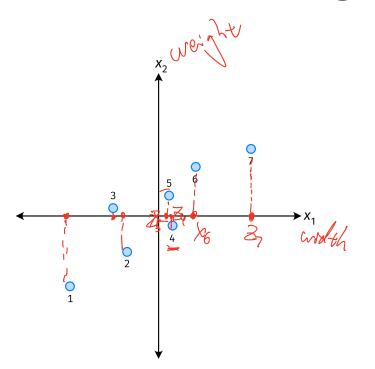
- ▶ Both measure a phone's "size".

 ✓
- Instead of representing a phone with both x_1 and x_2 , can we just use a single number, z?
 - ► Reduce dimensionality from 2 to 1.

First Approach: Remove Features

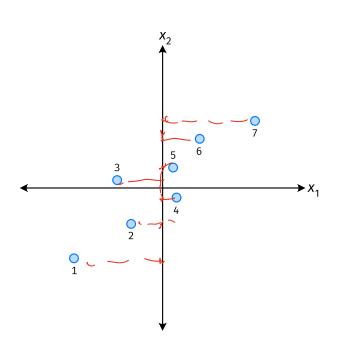
- Screen width and weight share information.
- ▶ **Idea:** keep one feature, remove the other.
- ► That is, set new feature $z = x_1$ (or $z = x_2$).

Removing Features



- Say we set $z^{(i)} = \vec{x}_1^{(i)}$ for each phone, i.
- Observe: $z^{(4)} > z^{(5)}$.
- Is phone 4 really "larger" than phone 5?

Removing Features



- Say we set $z^{(i)} = \vec{x}_2^{(i)}$ for each phone, *i*.
- Observe: $z^{(3)} > z^{(4)}$.
- Is phone 3 really "larger" than phone 4?

Better Approach: Mixtures of Features

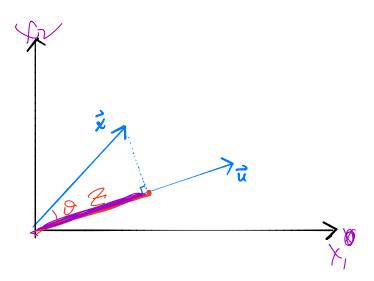
- ▶ **Idea**: z should be a combination of x_1 and x_2 .
- One approach: linear combination.

$$z = u_1 x_1 + u_2 x_2$$
$$= \vec{u} \cdot \vec{x}$$

 $u_1, ..., u_2$ are the mixture coefficients; we can choose them.

- Mixture coefficients generalize proportions.
- ► We could assume, e.g., $|u_1| + |u_2| = 1$.
- But it makes the math easier if we assume $u_1^2 + u_2^2 = 1.$
- Equivalently, if $\vec{u} = (u_1, u_2)^T$, assume $||\vec{u}|| = 1$

Geometric Interpretation



- ightharpoonup z measures how much of \vec{x} is in the direction of \vec{u}
- ► If $\vec{u} = (1,0)^T$, then $z = x_1$
- ► If $\vec{u} = (0, 1)^T$, then $z = x_2$

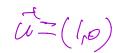
Choosing \vec{u}

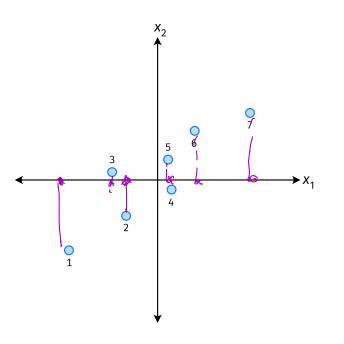
- Suppose we have only two features:
 - \triangleright x_1 : screen size
 - \triangleright x_2 : phone thickness
- \triangleright We'll create single new feature, z, from x_1 and x_2 .
 - ► Assume $z = u_1 x_1 + u_2 x_2 = \vec{x} \cdot \vec{u}$
 - ► Interpretation: z is a measure of a phone's size
- ► How should we choose $\vec{u} = (u_1, u_2)^T$?

Visualization

http://dsc140b.com/static/vis/pca-max_variance/

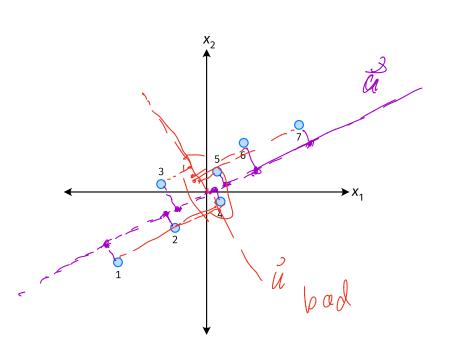
Example





- $ightharpoonup \vec{u}$ defines a direction
- $\vec{z}^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$ measures position of \vec{x} along this direction

Example



7

- Phone "size" varies most along a diagonal direction.
- Along direction of "max variance", phones are well-separated.
- ► Idea: u should point in direction of "max variance".

Our Algorithm (Informally)

- ▶ **Given**: data points $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$
- ightharpoonup Pick \vec{u} to be the direction of "max variance"

Create a new feature, z, for each point:

$$z^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$$

PCA

- ► This algorithm is called **Principal Component Analysis**, or **PCA**.
- ► The direction of maximum variance is called the **principal component**.

Exercise

Suppose the direction of maximum variance in a data set is

$$\vec{u} = (1/\sqrt{2}, -1/\sqrt{2})^T$$

Let

$$\vec{x}^{(1)} = (3, -2)^T$$

 $\vec{x}^{(2)} = (1, 4)^T$
What are $z^{(1)}$ and $z^{(2)}$?

Problem

► How do we compute the "direction of maximum variance"?

DSC 1408 Representation Learning

Lecture 08 | Part 3

Covariance Matrices

Variance

We know how to compute the variance of a set of numbers $X = \{x^{(1)}, ..., x^{(n)}\}$:

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu)^2$$

The variance measures the "spread" of the data

Generalizing Variance

If we have two features, x_1 and x_2 , we can compute the variance of each as usual:

$$Var(x_1) = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}_1^{(i)} - \mu_1)^2$$

$$Var(x_2) = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}_2^{(i)} - \mu_2)^2$$

 \triangleright Can also measure how x_1 and x_2 vary together.

Measuring Similar Information

- Features which share information if they vary together.
 - A.k.a., they "co-vary"
- Positive association: when one is above average, so is the other

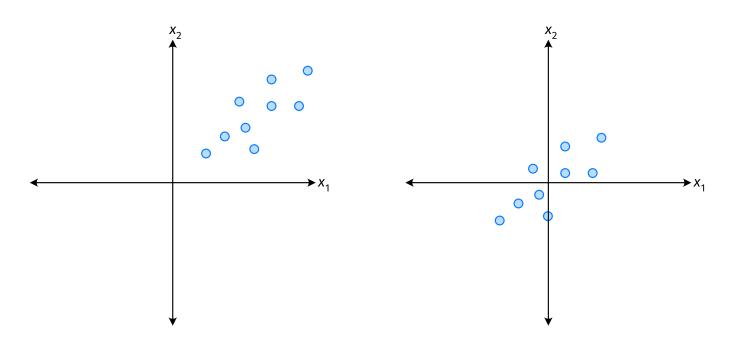
Negative association: when one is above average, the other is below average

Examples

- Positive: temperature and ice cream cones sold.
- Positive: temperature and shark attacks.
- Negative: temperature and coats sold.

Centering

First, it will be useful to **center** the data.



Centering

Compute the mean of each feature:

$$\mu_j = \frac{1}{n} \sum_{1}^{n} \vec{x}_j^{(i)}$$

Define new centered data:

$$\vec{z}^{(i)} = \begin{pmatrix} \vec{x}_1^{(i)} - \mu_1 \\ \vec{x}_2^{(i)} - \mu_2 \\ \vdots \\ \vec{x}_d^{(i)} - \mu_d \end{pmatrix}$$

Centering (Equivalently)

Compute the mean of all data points:

$$\mu = \frac{1}{n} \sum_{1}^{n} \vec{x}^{(i)}$$

Define new centered data:

$$\vec{z}^{(i)} = \vec{x}^{(i)} - \mu$$

Exercise

Center the data set:

$$\vec{x}^{(1)} = (1, 2, 3)^T$$

$$\vec{x}^{(2)} = (-1, -1, 0)^T$$

$$\vec{x}^{(3)} = (0, 2, 3)^T$$

► One approach is as follows².

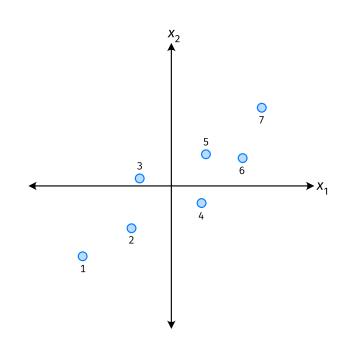
Cov
$$(x_i, x_j) = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_i^{(k)} \vec{x}_j^{(k)}$$

- For each data point, multiply the value of feature *i* and feature *j*, then average these products.
- ► This is the **covariance** of features *i* and *j*.

²Assuming centered data

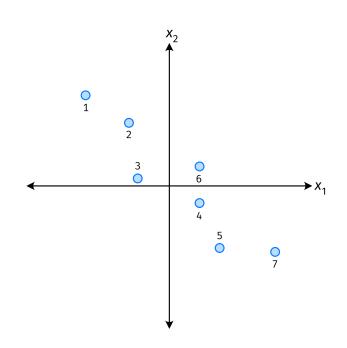
Assume the data are centered.

Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$



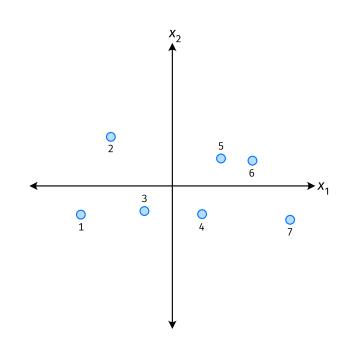
Assume the data are centered.

Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$



Assume the data are centered.

Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$



- ► The **covariance** quantifies extent to which two variables vary together.
- Assume we have centered the data.
- ightharpoonup The sample covariance of feature *i* and *j* is:

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}$$

Exercise

True or False: $\sigma_{ij} = \sigma_{ji}$?

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_i^{(k)} \vec{x}_j^{(k)}$$

Covariance Matrices

- ► Given data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$.
- ► The sample covariance matrix C is the $d \times d$ matrix whose ij entry is defined to be σ_{ii} .

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}$$

Observations

- Diagonal entries of C are the variances.
- ► The matrix is **symmetric**!

Note

Sometimes you'll see the sample covariance defined as:

$$\sigma_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} \vec{X}_{i}^{(k)} \vec{X}_{j}^{(k)}$$

Note the 1/(n-1)

- This is an unbiased estimator of the population covariance.
- Our definition is the maximum likelihood estimator.
- ► In practice, it doesn't matter: $1/(n-1) \approx 1/n$.
- For consistency, in this class use 1/n.

Computing Covariance

There is a "trick" for computing sample covariance matrices.

- ► Step 1: make $n \times d$ data matrix, X
- Step 2: make Z by centering columns of X
- $\triangleright \text{ Step 3: } C = \frac{1}{n}Z^TZ$

Computing Covariance (in code)³

```
>>> mu = X.mean(axis=0)
>>> Z = X - mu
>>> C = 1 / len(X) * Z.T @ Z
```