DEC $140 B$ Representation Learning Why are eigenvectors useful?

OK, but why are eigenvectors ${ }^{4}$ useful?

1. Eigenvectors are nice "building blocks" (basis vectors).
2. Eigenvectors are maximizers (or minimizers).
3. Eigenvectors are equilibria.

Vector Decomposition

- We can always "decompose" a vector \vec{x} in terms of the basis vectors.
- With respect to the standard basis:

$$
\vec{x}=a_{1} \hat{e}^{(1)}+a_{2} \hat{e}^{(2)}+\ldots+a_{d} \hat{e}^{(d)}
$$

Eigendecomposition

- If A is a symmetric matrix, we can pick d of its eigenvectors $\hat{u}^{(1)}, \ldots, \hat{u}^{(d)}$ to form an orthonormal basis.
- Any vector \vec{x} can be written in terms of this basis.
- This is called its eigendecomposition:

$$
\vec{x}=b_{1} \hat{u}^{(1)}+b_{2} \hat{u}^{(2)}+\ldots+b_{d} \hat{u}^{(d)}
$$

Eigendecomposition

Why?

- Compare working in the standard basis decomposition:

$$
\begin{aligned}
A \vec{x} & =A\left(a_{1} \hat{e}^{(1)}+a_{2} \hat{e}^{(2)}+\ldots+a_{d} \hat{e}^{(d)}\right) \\
& =a_{1} A \hat{e}^{(1)}+a_{2} A \hat{e}^{(2)}+\ldots+a_{d} A \hat{e}^{(d)}
\end{aligned}
$$

- To working with the eigendecomposition:

$$
\begin{aligned}
A \vec{x} & =A\left(b_{1} \hat{u}^{(1)}+b_{2} \hat{u}^{(2)}+\ldots+b_{d} \hat{u}^{(d)}\right) \\
& \left.=b_{1} A \hat{u}^{(1)}+b_{2} A \hat{u}^{(2)}+\ldots+b_{d} A \hat{u}^{(d)}\right) \\
& =\lambda_{1} b_{1} \hat{u}^{(1)}+\lambda_{2} b_{2} \hat{u}^{(2)}+\ldots+\lambda_{d} b_{d} \hat{u}^{(d)}
\end{aligned}
$$

Main Idea

If A is a symmetrix matrix, an eigenbasis formed from its eigenvectors is an especially natural basis.

Eigenvectors as Optimizers

- Eigenvectors are the solutions to certain common optimization problems involving matrices / linear transformations.

Exercise

Draw a unit vector \vec{x} such that $\|A \vec{x}\|$ is largest.

Observation \#1

$\vec{f}(\vec{x})$ is longest along the "main" axis of symmetry.

- In the direction of the eigenvector with largest eigenvalue.

Main Idea

To maximize $\|A \vec{x}\|=\|\vec{f}(\vec{x})\|$ over unit vectors, pick \vec{x} to be an eigenvector of \vec{f} with the largest eigenvalue (in abs. value).

Main Idea

To minimize $\|\vec{f}(\vec{x})\|$ over unit vectors, pick \vec{x} to be an eigenvector of \vec{f} with the smallest eigenvalue (in abs. value).

Proof

Show that the maximizer of $\|A \vec{x}\|$ s.t., $\|\vec{x}\|=1$ is the top eigenvector of A.

Corollary

To maximize $\vec{x} \cdot A \vec{x}$ over unit vectors, pick \vec{x} to be top eigenvector of A.

Example

Maximize $4 x_{1}^{2}+2 x_{2}^{2}+3 x_{1} x_{2}$ subject to $x_{1}^{2}+x_{2}^{2}=1$

Observation \#2

- $\vec{f}(\vec{x})$ rotates \vec{x} towards the "top" eigenvector \vec{v}.
- \vec{v} is an equilibrium.

The Power Method

- Method for computing the top eigenvector/value of A.
- Initialize $\vec{x}^{(0)}$ randomly
- Repeat until convergence:
- Set $\vec{x}^{(i+1)}=A \vec{x}^{(i)} /\left\|A \vec{x}^{(i)}\right\|$

DEC $140 B$ Representation Learning Lecture 07 Part 2
Change of Basis Matric

Changing Basis

- Suppose $\vec{x}=\binom{a_{1}}{a_{2}}=a_{1} \hat{e}^{(1)}+a_{2} \hat{e}^{(2)}$.
- $\hat{u}^{(1)}$ and $\hat{u}^{(2)}$ form a new, orthonormal basis \mathcal{U}.
\Rightarrow What is $[\vec{x}]_{\mathcal{U}}$?
- That is, what are b_{1} and b_{2} in $\vec{x}=b_{1} \hat{u}^{(1)}+b_{2} \hat{u}^{(2)}$.

Exercise

Find the coordinates of \vec{x} in the new basis:

$$
\begin{aligned}
\hat{u}^{(1)} & =(\sqrt{3} / 2,1 / 2)^{T} \\
\hat{u}^{(2)} & =(-1 / 2, \sqrt{3} / 2)^{T} \\
\vec{x} & =(1 / 2,1)^{T}
\end{aligned}
$$

Change of Basis

- Suppose $\hat{u}^{(1)}$ and $\hat{u}^{(2)}$ are our new, orthonormal basis vectors.
- We know $\vec{x}=x_{1} \hat{e}^{(1)}+x_{2} \hat{e}^{(2)}$
- We want to write $\vec{x}=b_{1} \hat{u}^{(1)}+b_{2} \hat{u}^{(2)}$
- Solution

$$
b_{1}=\vec{x} \cdot \hat{u}^{(1)} \quad b_{2}=\vec{x} \cdot \hat{u}^{(2)}
$$

Change of Basis Matrix

- Changing basis is a linear transformation

$$
\vec{f}(\vec{x})=\left(\vec{x} \cdot \hat{u}^{(1)}\right) \hat{u}^{(1)}+\left(\vec{x} \cdot \hat{u}^{(2)}\right) \hat{u}^{(2)}=\binom{\vec{x} \cdot \hat{u}^{(1)}}{\vec{x} \cdot \hat{u}^{(2)}}
$$

- We can represent it with a matrix

$$
\left(\begin{array}{cc}
\uparrow & \uparrow \\
f\left(\hat{e}^{(1)}\right) & f\left(\hat{e}^{(2)}\right) \\
\downarrow & \downarrow
\end{array}\right)
$$

Example

$$
\begin{aligned}
\hat{u}^{(1)} & =(\sqrt{3} / 2,1 / 2)^{T} \\
\hat{u}^{(2)} & =(-1 / 2, \sqrt{3} / 2)^{T} \\
f\left(\hat{e}^{(1)}\right) & = \\
f\left(\hat{e}^{(2)}\right) & = \\
A & =
\end{aligned}
$$

Observation

The new basis vectors become the rows of the matrix.

Example

- Multiplying by this matrix gives the coordinate vector w.r.t. the new basis.

$$
\begin{aligned}
\hat{u}^{(1)} & =(\sqrt{3} / 2,1 / 2)^{T} \\
\hat{u}^{(2)} & =(-1 / 2, \sqrt{3} / 2)^{T} \\
A & =\left(\begin{array}{cc}
\sqrt{3} / 2 & 1 / 2 \\
-1 / 2 & \sqrt{3} / 2
\end{array}\right) \\
\vec{x} & =(1 / 2,1)^{T}
\end{aligned}
$$

Change of Basis Matrix

- Let $\hat{u}^{(1)}, \ldots, \hat{u}^{(d)}$ form an orthonormal basis \mathcal{U}.
- The matrix U whose rows are the new basis vectors is the change of basis matrix from the standard basis to \mathcal{U} :

$$
U=\left(\begin{array}{cc}
\leftarrow \hat{u}^{(1)} & \rightarrow \\
\leftarrow \hat{u}^{(2)} & \rightarrow \\
\vdots \\
\leftarrow \hat{u}^{(d)} & \rightarrow
\end{array}\right)
$$

Change of Basis Matrix

- If U is the change of basis matrix, $[\vec{x}]_{\mathcal{U}}=U \vec{x}$
- To go back to the standard basis, use U^{\top} :

$$
\vec{x}=U^{\top}[\vec{x}]_{U}
$$

Exercise

Let U be the change of basis matrix for \mathcal{U}. What is $U^{\top} U$?

Hint: What is $U^{\top}(U \vec{x})$?

DEC $140 B$ Representation Learning Lecture $07 \mid$ Part 3
Diagonalization

Matrices of a Transformation

Let $\vec{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a linear transformation

- The matrix representing \vec{f} wrt the standard basis is:

$$
A=\left(\begin{array}{cccc}
\uparrow & \uparrow & \uparrow & \uparrow \\
\vec{f}\left(\hat{e}^{(1)}\right) & \vec{f}\left(\hat{e}^{(2)}\right) & \ldots & \vec{f}\left(\hat{e}^{(d)}\right) \\
\downarrow & \downarrow & \downarrow & \downarrow
\end{array}\right)
$$

Matrices of a Transformation

- If we use a different basis $\mathcal{U}=\left\{\hat{u}^{(1)}, \ldots, \hat{u}^{(d)}\right\}$, the matrix representing \vec{f} is:

$$
A_{\mathcal{U}}=\left(\begin{array}{cccc}
\uparrow & \uparrow & \uparrow & \uparrow \\
{\left[\vec{f}\left(\hat{u}^{(1)}\right)\right]_{\mathcal{U}}} & {\left[\vec{f}\left(\hat{u}^{(2)}\right)\right]_{\mathcal{U}}} & \cdots & {\left[\vec{f}\left(\hat{u}^{(d)}\right)\right]_{\mathcal{U}}} \\
\downarrow & \downarrow & \downarrow & \downarrow
\end{array}\right)
$$

- If $\vec{y}=A \vec{x}$, then $[\vec{y}]_{\mathcal{U}}=A_{\mathcal{U}}[\vec{x}]_{\mathcal{U}}$

Diagonal Matrices

- Diagonal matrices are very nice / easy to work with.
- Suppose A is a matrix. Is there a basis \mathcal{U} where $A_{\mathcal{U}}$ is diagonal?
- Yes! If A is symmetric.

The Spectral Theorem ${ }^{1}$

\Rightarrow Theorem: Let A be an $n \times n$ symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

Eigendecomposition

- If A is a symmetric matrix, we can pick d of its eigenvectors $\hat{u}^{(1)}, \ldots, \hat{u}^{(d)}$ to form an orthonormal basis.
- Any vector \vec{x} can be written in terms of this eigenbasis.
- This is called its eigendecomposition:

$$
\vec{x}=b_{1} \hat{u}^{(1)}+b_{2} \hat{u}^{(2)}+\ldots+b_{d} \hat{u}^{(d)}
$$

Matrix in the Eigenbasis

- Claim: the matrix of a linear transformation \vec{f}, written in a basis of its eigenvectors, is a diagonal matrix.
- The entries along the diagonal will be the eigenvalues.

Why?

$$
A_{u}=\left(\begin{array}{ccc}
\left.\overrightarrow{\vec{f}}\left(\hat{u}^{(1)}\right)\right]_{u} & \stackrel{\left.\left.\vec{f}\left(\hat{u}^{(2)}\right)\right]\right]_{u}}{\downarrow} & \cdots \\
\downarrow & \left.\left.\cdots \vec{f}\left(\hat{u}^{(d)}\right)\right]\right]_{u} \\
\downarrow
\end{array}\right)
$$

$$
\begin{aligned}
& -\vec{f}\left(\hat{u}^{(1)}\right)=\lambda_{1} \hat{u}^{(1)} \text {, so }\left[\vec{f}\left(\hat{u}^{(1)}\right)\right]_{u}=\left(\lambda_{1}, 0, \ldots, 0\right)^{\top} . \\
& \left.\vec{f}\left(\hat{u}^{2}\right)\right)=\lambda_{2} \hat{u}^{(2)} \text {, so }\left[\vec{f}\left(\hat{u}^{(2)}\right)\right]_{u}=\left(0, \lambda_{2}, \ldots, 0\right)^{\top} .
\end{aligned}
$$

Matrix Multiplication

- We have seen that matrix multiplication evaluates a linear transformation.
- In the standard basis:

$$
\vec{f}(\vec{x})=A \vec{x}
$$

- In another basis:

$$
[\vec{f}(\vec{x})]_{\mathcal{U}}=A_{\mathcal{U}}[\vec{x}]_{\mathcal{U}}
$$

Diagonalization

- Another way to compute $\vec{f}(x)$, starting with \vec{x} in the standard basis:

1. Change basis to the eigenbasis with U.
2. Apply \vec{f} in the eigenbasis with the diagonal $A_{\mathcal{U}}$.
3. Go back to the standard basis with U^{\top}.
\Rightarrow That is, $A \vec{x}=U^{\top} A_{\mathcal{U}} U \vec{x}$. It follows that $A=U^{\top} A_{\mathcal{U}} U$.

Spectral Theorem (Again)

- Theorem: Let A be an $n \times n$ symmetric matrix. Then there exists an orthogonal matrix U and a diagonal matrix \wedge such that $A=U^{\top} \wedge U$.
- The rows of U are the eigenvectors of A, and the entries of \wedge are its eigenvalues.
- U is said to diagonalize A.

