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Why are eigenvectors useful?



OK, but why are eigenvectors4
useful?

1. Eigenvectors are nice “building blocks” (basis
vectors).

2. Eigenvectors are maximizers (or minimizers).

3. Eigenvectors are equilibria.

4of symmetric matrices



Vector Decomposition▶ We can always “decompose” a vector ⃗𝑥 in terms
of the basis vectors.▶ With respect to the standard basis:⃗𝑥 = 𝑎1 ̂𝑒(1) + 𝑎2 ̂𝑒(2) + … + 𝑎𝑑 ̂𝑒(𝑑)



Eigendecomposition▶ If 𝐴 is a symmetric matrix, we can pick 𝑑 of its
eigenvectors 𝑢̂(1), … , 𝑢̂(𝑑) to form an orthonormal
basis.▶ Any vector ⃗𝑥 can be written in terms of this basis.▶ This is called its eigendecomposition:⃗𝑥 = 𝑏1𝑢̂(1) + 𝑏2𝑢̂(2) + … + 𝑏𝑑𝑢̂(𝑑)



Eigendecomposition



Why?▶ Compare working in the standard basis
decomposition:𝐴 ⃗𝑥 = 𝐴(𝑎1 ̂𝑒(1) + 𝑎2 ̂𝑒(2) + … + 𝑎𝑑 ̂𝑒(𝑑))= 𝑎1𝐴 ̂𝑒(1) + 𝑎2𝐴 ̂𝑒(2) + … + 𝑎𝑑𝐴 ̂𝑒(𝑑)▶ To working with the eigendecomposition:𝐴 ⃗𝑥 = 𝐴(𝑏1𝑢̂(1) + 𝑏2𝑢̂(2) + … + 𝑏𝑑𝑢̂(𝑑))= 𝑏1𝐴𝑢̂(1) + 𝑏2𝐴𝑢̂(2) + … + 𝑏𝑑𝐴𝑢̂(𝑑))= 𝜆1𝑏1𝑢̂(1) + 𝜆2𝑏2𝑢̂(2) + … + 𝜆𝑑𝑏𝑑𝑢̂(𝑑)



Main Idea
If 𝐴 is a symmetrix matrix, an eigenbasis formed
from its eigenvectors is an especially natural basis.



Eigenvectors as Optimizers▶ Eigenvectors are the solutions to certain
common optimization problems involving
matrices / linear transformations.



Exercise
Draw a unit vector ⃗𝑥 such that ‖𝐴 ⃗𝑥‖ is largest.



Observation #1

▶ ⃗𝑓( ⃗𝑥) is longest along
the “main” axis of
symmetry.▶ In the direction of

the eigenvector with
largest eigenvalue.



Main Idea

To maximize ‖𝐴 ⃗𝑥‖ = ‖ ⃗𝑓( ⃗𝑥)‖ over unit vectors, pick⃗𝑥 to be an eigenvector of ⃗𝑓 with the largest eigen-
value (in abs. value).



Main Idea

To minimize ‖ ⃗𝑓( ⃗𝑥)‖ over unit vectors, pick ⃗𝑥 to be
an eigenvector of ⃗𝑓 with the smallest eigenvalue
(in abs. value).



Proof
Show that the maximizer of ‖𝐴 ⃗𝑥‖ s.t., ‖ ⃗𝑥‖ = 1 is the
top eigenvector of 𝐴.



Corollary
To maximize ⃗𝑥 ⋅ 𝐴 ⃗𝑥 over unit vectors, pick ⃗𝑥 to be top
eigenvector of 𝐴.



Example▶ Maximize 4𝑥21 + 2𝑥22 + 3𝑥1𝑥2 subject to 𝑥21 + 𝑥22 = 1



Observation #2

▶ ⃗𝑓( ⃗𝑥) rotates ⃗𝑥 towards
the “top” eigenvector⃗𝑣.▶ ⃗𝑣 is an equilibrium.



The Power Method▶ Method for computing the top eigenvector/value
of 𝐴.▶ Initialize ⃗𝑥(0) randomly▶ Repeat until convergence:▶ Set ⃗𝑥(𝑖+1) = 𝐴 ⃗𝑥(𝑖)/‖𝐴 ⃗𝑥(𝑖)‖
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Change of Basis Matrics



Changing Basis▶ Suppose ⃗𝑥 = (𝑎1𝑎2) = 𝑎1 ̂𝑒(1) + 𝑎2 ̂𝑒(2).▶ 𝑢̂(1) and 𝑢̂(2) form a new, orthonormal basis U .▶ What is [ ⃗𝑥]U?▶ That is, what are 𝑏1 and 𝑏2 in ⃗𝑥 = 𝑏1𝑢̂(1) + 𝑏2𝑢̂(2).



Exercise
Find the coordinates of ⃗𝑥 in the new basis:𝑢̂(1) = (√3/2, 1/2)𝑇𝑢̂(2) = (−1/2, √3/2)𝑇⃗𝑥 = (1/2, 1)𝑇



Change of Basis▶ Suppose 𝑢̂(1) and 𝑢̂(2) are our new, orthonormal
basis vectors.▶ We know ⃗𝑥 = 𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2)▶ We want to write ⃗𝑥 = 𝑏1𝑢̂(1) + 𝑏2𝑢̂(2)▶ Solution 𝑏1 = ⃗𝑥 ⋅ 𝑢̂(1) 𝑏2 = ⃗𝑥 ⋅ 𝑢̂(2)



Change of Basis Matrix▶ Changing basis is a linear transformation⃗𝑓( ⃗𝑥) = ( ⃗𝑥 ⋅ 𝑢̂(1))𝑢̂(1) + ( ⃗𝑥 ⋅ 𝑢̂(2))𝑢̂(2) = ( ⃗𝑥 ⋅ 𝑢̂(1)⃗𝑥 ⋅ 𝑢̂(2))
U▶ We can represent it with a matrix( ↑ ↑𝑓( ̂𝑒(1)) 𝑓( ̂𝑒(2))↓ ↓ )



Example

𝑢̂(1) = (√3/2, 1/2)𝑇𝑢̂(2) = (−1/2, √3/2)𝑇𝑓( ̂𝑒(1)) =𝑓( ̂𝑒(2)) =𝐴 =



Observation▶ The new basis vectors become the rows of the
matrix.



Example▶ Multiplying by this matrix gives the coordinate
vector w.r.t. the new basis.

𝑢̂(1) = (√3/2, 1/2)𝑇𝑢̂(2) = (−1/2, √3/2)𝑇𝐴 = (√3/2 1/2−1/2 √3/2)⃗𝑥 = (1/2, 1)𝑇



Change of Basis Matrix▶ Let 𝑢̂(1), … , 𝑢̂(𝑑) form an orthonormal basis U .▶ The matrix 𝑈 whose rows are the new basis
vectors is the change of basis matrix from the
standard basis to U :

𝑈 = (← 𝑢̂(1) →← 𝑢̂(2) →⋮← 𝑢̂(𝑑) →)



Change of Basis Matrix▶ If 𝑈 is the change of basis matrix, [ ⃗𝑥]U = 𝑈 ⃗𝑥▶ To go back to the standard basis, use 𝑈𝑇:⃗𝑥 = 𝑈𝑇[ ⃗𝑥]U



Exercise
Let 𝑈 be the change of basis matrix for U .
What is 𝑈𝑇𝑈?
Hint: What is 𝑈𝑇(𝑈 ⃗𝑥)?
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Diagonalization



Matrices of a Transformation▶ Let ⃗𝑓 ∶ ℝ𝑑 → ℝ𝑑 be a linear transformation▶ The matrix representing ⃗𝑓 wrt the standard basis
is: 𝐴 = ( ↑ ↑ ↑ ↑⃗𝑓( ̂𝑒(1)) ⃗𝑓( ̂𝑒(2)) ⋯ ⃗𝑓( ̂𝑒(𝑑))↓ ↓ ↓ ↓ )



Matrices of a Transformation▶ If we use a different basis U = {𝑢̂(1), … , 𝑢̂(𝑑)}, the
matrix representing ⃗𝑓 is:𝐴U = ( ↑ ↑ ↑ ↑[ ⃗𝑓(𝑢̂(1))]U [ ⃗𝑓(𝑢̂(2))]U ⋯ [ ⃗𝑓(𝑢̂(𝑑))]U↓ ↓ ↓ ↓ )

▶ If ⃗𝑦 = 𝐴 ⃗𝑥, then [ ⃗𝑦]U = 𝐴U [ ⃗𝑥]U



Diagonal Matrices▶ Diagonal matrices are very nice / easy to work
with.▶ Suppose 𝐴 is a matrix. Is there a basis U where𝐴U is diagonal?▶ Yes! If 𝐴 is symmetric.



The Spectral Theorem1▶ Theorem: Let 𝐴 be an 𝑛 × 𝑛 symmetric matrix.
Then there exist 𝑛 eigenvectors of 𝐴 which are all
mutually orthogonal.

1for symmetric matrices



Eigendecomposition▶ If 𝐴 is a symmetric matrix, we can pick 𝑑 of its
eigenvectors 𝑢̂(1), … , 𝑢̂(𝑑) to form an orthonormal
basis.▶ Any vector ⃗𝑥 can be written in terms of this
eigenbasis.▶ This is called its eigendecomposition:⃗𝑥 = 𝑏1𝑢̂(1) + 𝑏2𝑢̂(2) + … + 𝑏𝑑𝑢̂(𝑑)



Matrix in the Eigenbasis▶ Claim: the matrix of a linear transformation ⃗𝑓,
written in a basis of its eigenvectors, is a
diagonal matrix.▶ The entries along the diagonal will be the
eigenvalues.



Why?

𝐴U = ( ↑ ↑ ↑ ↑[ ⃗𝑓(𝑢̂(1))]U [ ⃗𝑓(𝑢̂(2))]U ⋯ [ ⃗𝑓(𝑢̂(𝑑))]U↓ ↓ ↓ ↓ )
▶ ⃗𝑓(𝑢̂(1)) = 𝜆1𝑢̂(1), so [ ⃗𝑓(𝑢̂(1))]U = (𝜆1, 0, … , 0)𝑇.▶ ⃗𝑓(𝑢̂(2)) = 𝜆2𝑢̂(2), so [ ⃗𝑓(𝑢̂(2))]U = (0, 𝜆2, … , 0)𝑇.▶ …



Matrix Multiplication▶ We have seen that matrix multiplication
evaluates a linear transformation.▶ In the standard basis:⃗𝑓( ⃗𝑥) = 𝐴 ⃗𝑥▶ In another basis:[ ⃗𝑓( ⃗𝑥)]U = 𝐴U [ ⃗𝑥]U



Diagonalization▶ Another way to compute ⃗𝑓(𝑥), starting with ⃗𝑥 in
the standard basis:
1. Change basis to the eigenbasis with 𝑈.
2. Apply ⃗𝑓 in the eigenbasis with the diagonal𝐴U .
3. Go back to the standard basis with 𝑈𝑇.▶ That is, 𝐴 ⃗𝑥 = 𝑈𝑇𝐴U𝑈 ⃗𝑥. It follows that 𝐴 = 𝑈𝑇𝐴U𝑈.



Spectral Theorem (Again)▶ Theorem: Let 𝐴 be an 𝑛 × 𝑛 symmetric matrix.
Then there exists an orthogonal matrix 𝑈 and a
diagonal matrix Λ such that 𝐴 = 𝑈𝑇Λ𝑈.▶ The rows of 𝑈 are the eigenvectors of 𝐴, and the
entries of Λ are its eigenvalues.▶ 𝑈 is said to diagonalize 𝐴.


