DSC 1408 Representation Learning

Lecture 07 | Part 1

Why are eigenvectors useful?

OK, but why are eigenvectors⁴ useful?

- 1. Eigenvectors are nice "building blocks" (basis vectors).
- 2. Eigenvectors are **maximizers** (or minimizers).
- 3. Eigenvectors are equilibria.

⁴of symmetric matrices

Vector Decomposition

We can always "decompose" a vector \vec{x} in terms of the basis vectors.

With respect to the standard basis:

$$\vec{x} = a_1 \hat{e}^{(1)} + a_2 \hat{e}^{(2)} + ... + a_d \hat{e}^{(d)}$$

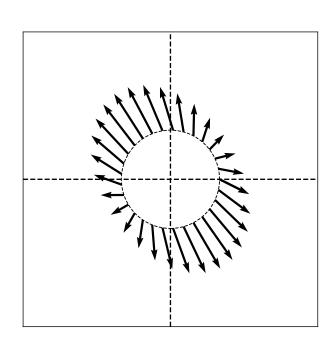
Eigendecomposition

If A is a symmetric matrix, we can pick d of its eigenvectors $\hat{u}^{(1)}, ..., \hat{u}^{(d)}$ to form an orthonormal basis.

- Any vector \vec{x} can be written in terms of this basis.
- ► This is called its **eigendecomposition**:

$$\vec{x} = b_1 \hat{u}^{(1)} + b_2 \hat{u}^{(2)} + \dots + b_d \hat{u}^{(d)}$$

Eigendecomposition



Why?

Compare working in the standard basis decomposition:

$$A\vec{x} = A(a_1\hat{e}^{(1)} + a_2\hat{e}^{(2)} + \dots + a_d\hat{e}^{(d)})$$
$$= a_1A\hat{e}^{(1)} + a_2A\hat{e}^{(2)} + \dots + a_dA\hat{e}^{(d)}$$

► To working with the eigendecomposition:

$$\begin{split} A\vec{x} &= A(b_1\hat{u}^{(1)} + b_2\hat{u}^{(2)} + \dots + b_d\hat{u}^{(d)}) \\ &= b_1A\hat{u}^{(1)} + b_2A\hat{u}^{(2)} + \dots + b_dA\hat{u}^{(d)}) \\ &= \lambda_1b_1\hat{u}^{(1)} + \lambda_2b_2\hat{u}^{(2)} + \dots + \lambda_db_d\hat{u}^{(d)} \end{split}$$

Main Idea

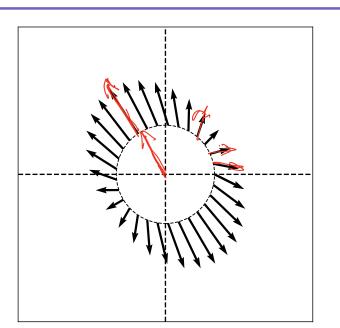
If A is a symmetrix matrix, an eigenbasis formed from its eigenvectors is an especially natural basis.

Eigenvectors as Optimizers

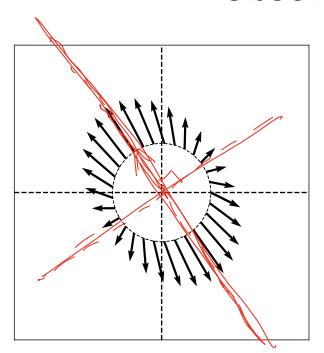
► Eigenvectors are the solutions to certain common optimization problems involving matrices / linear transformations.

Exercise

Draw a unit vector \vec{x} such that $||A\vec{x}||$ is largest.



Observation #1



 $\vec{f}(\vec{x})$ is longest along the "main" axis of symmetry.

In the direction of the eigenvector with largest eigenvalue.

Main Idea

To maximize $||A\vec{x}|| = ||\vec{f}(\vec{x})||$ over unit vectors, pick \vec{x} to be an eigenvector of \vec{f} with the largest eigenvalue (in abs. value).

Main Idea

To **minimize** $\|\vec{f}(\vec{x})\|$ over unit vectors, pick \vec{x} to be an eigenvector of \vec{f} with the smallest eigenvalue (in abs. value).

Show that the maximizer of
$$||A\vec{x}||$$
 s.t., $||\vec{x}|| = 1$ is the top eigenvector of A .

$$A\vec{x} = A(b_1\vec{u}^{(1)} + b_2\vec{u}^{(2)})$$

$$= b_1A\vec{u}^{(1)} + b_2A\vec{u}^{(2)}$$

$$= b_1A\vec{u}^{(2)} + b_2A\vec{u}^{(2)}$$

61 Cou fecompanishin

Corollary

To maximize $\vec{x} \cdot A\vec{x}$ over unit vectors, pick \vec{x} to be top eigenvector of A.

$$||b,a^{(4)}+b_2a^{(2)}||^2=1$$

$$||b,a^{(4)}+b_2a^{(4)}|| (b,a^{(4)}+b_2a^{(4)})$$

$$=|b,a^{(4)}+b_2a^{(4)}|| (b,a^{(4)}+b_2a^{(4)})$$

Example

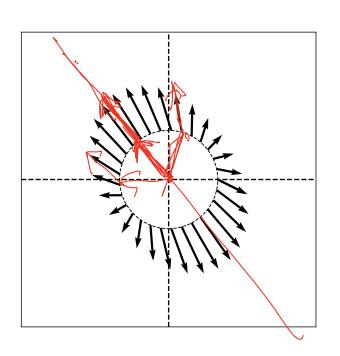
$$(1 \times 1) = 1$$

Maximize $4x_1^2 + 2x_2^2 + 3x_1x_2$ subject to $x_1^2 + x_2^2 = 1$

$$(x, , k)$$

$$(x, k)$$

Observation #2



 $\vec{f}(\vec{x})$ rotates \vec{x} towards the "top" eigenvector \vec{v} .

 $ightharpoonup \vec{v}$ is an equilibrium.

The Power Method

- Method for computing the top eigenvector/value of A.
- ► Initialize $\vec{x}^{(0)}$ randomly
- Repeat until convergence:

Set
$$\vec{x}^{(i+1)} = A\vec{x}^{(i)} / ||A\vec{x}^{(i)}||$$

Repeat until convergence:

Set $\vec{x}^{(i+1)} = A\vec{x}^{(i)} / ||A\vec{x}^{(i)}||$

DSC 1408 Representation Learning

Lecture 07 | Part 2

Change of Basis Matrics

Changing Basis

Suppose
$$\vec{x} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = a_1 \hat{e}^{(1)} + a_2 \hat{e}^{(2)}$$
.

- \triangleright $\hat{u}^{(1)}$ and $\hat{u}^{(2)}$ form a new, **orthonormal** basis \mathcal{U} .
- ► What is $[\vec{x}]_{\mathcal{U}}$?
- ► That is, what are b_1 and b_2 in $\vec{x} = b_1 \hat{u}^{(1)} + b_2 \hat{u}^{(2)}$.

$$[X]_{N} = [X \cdot N]_{N} = [X \cdot N]_{N} = [X \cdot N]_{N}$$
Evercise

Exercise

Find the coordinates of \vec{x} in the new basis:

$$\hat{u}^{(1)} = (\sqrt{3}/2, 1/2)^{T}$$

$$\hat{u}^{(2)} = (-1/2, \sqrt{3}/2)^{T}$$

$$\vec{x} = (1/2, 1)^{T}$$

Change of Basis

- Suppose $\hat{u}^{(1)}$ and $\hat{u}^{(2)}$ are our new, **orthonormal** basis vectors.
- We know $\vec{x} = x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)}$
- We want to write $\vec{x} = b_1 \hat{u}^{(1)} + b_2 \hat{u}^{(2)}$
- Solution

$$b_1 = \vec{x} \cdot \hat{u}^{(1)}$$
 $b_2 = \vec{x} \cdot \hat{u}^{(2)}$

Change of Basis Matrix

Changing basis is a linear transformation

$$\vec{f}(\vec{x}) = (\vec{x} \cdot \hat{u}^{(1)})\hat{u}^{(1)} + (\vec{x} \cdot \hat{u}^{(2)})\hat{u}^{(2)} = \begin{pmatrix} \vec{x} \cdot \hat{u}^{(1)} \\ \vec{x} \cdot \hat{u}^{(2)} \end{pmatrix}_{\mathcal{U}}$$

We can represent it with a matrix

$$\begin{pmatrix} \uparrow & \uparrow \\ f(\hat{e}^{(1)}) & f(\hat{e}^{(2)}) \\ \downarrow & \downarrow \end{pmatrix}$$

$$\hat{u}^{(1)} = (\sqrt{3}/2, 1/2)^{T}$$

$$\hat{u}^{(2)} = (-1/2, \sqrt{3}/2)^{T}$$

$$f(\hat{e}^{(1)}) = f(\hat{e}^{(2)}) = A = A = A = A$$

Observation

► The new basis vectors become the **rows** of the matrix.

Exampl

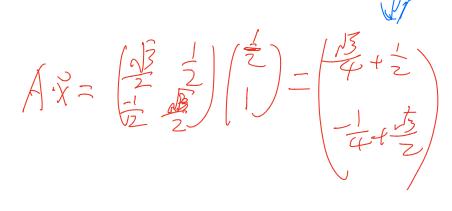
Multiplying by this matrix gives the coordinate vector w.r.t. the new basis.

$$\hat{u}^{(1)} = (\sqrt{3}/2, 1/2)^{T}$$

$$\hat{u}^{(2)} = (-1/2, \sqrt{3}/2)^{T}$$

$$A = \begin{pmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{pmatrix}$$

$$\vec{x} = (1/2, 1)^{T}$$



Change of Basis Matrix

- Let $\hat{u}^{(1)}, ..., \hat{u}^{(d)}$ form an orthonormal basis \mathcal{U} .
- The matrix U whose **rows** are the new basis vectors is the **change of basis** matrix from the standard basis to U:

$$U = \begin{pmatrix} \leftarrow \hat{u}^{(1)} \to \\ \leftarrow \hat{u}^{(2)} \to \\ \vdots \\ \leftarrow \hat{u}^{(d)} \to \end{pmatrix}$$

Change of Basis Matrix

- ► If *U* is the change of basis matrix, $[\vec{x}]_{ij} = U\vec{x}$
- ightharpoonup To go back to the standard basis, use U^T :

$$\vec{X} = U^{T}[\vec{X}]_{\mathcal{U}}$$

$$(\mathcal{L}^{T})_{\mathcal{U}} = (\mathcal{L}^{T})_{\mathcal{U}} \cdot \vec{X} = \vec{X}$$

$$\vec{I} : identity matrix$$

Exercise

Let U be the change of basis matrix for U. What is U^TU ?

Hint: What is $U^{T}(U\vec{x})$?

DSC 1408 Representation Learning

Lecture 07 | Part 3

Diagonalization

Matrices of a Transformation

- Let $\vec{f}: \mathbb{R}^d \to \mathbb{R}^d$ be a linear transformation
- The matrix representing \vec{f} wrt the **standard basis** is:

$$A = \begin{pmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \cdots & \vec{f}(\hat{e}^{(d)}) \\ \downarrow & \downarrow & \downarrow & \downarrow \end{pmatrix}$$

Matrices of a Transformation

If we use a different basis $\mathcal{U} = \{\hat{u}^{(1)}, ..., \hat{u}^{(d)}\}\$, the matrix representing \vec{f} is:

$$A_{\mathcal{U}} = \begin{pmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ [\vec{f}(\hat{u}^{(1)})]_{\mathcal{U}} & [\vec{f}(\hat{u}^{(2)})]_{\mathcal{U}} & \cdots & [\vec{f}(\hat{u}^{(d)})]_{\mathcal{U}} \end{pmatrix}$$

► If $\vec{y} = A\vec{x}$, then $[\vec{y}]_{\mathcal{U}} = A_{\mathcal{U}}[\vec{x}]_{\mathcal{U}}$

Diagonal Matrices

- Diagonal matrices are very nice / easy to work with.
- Suppose A is a matrix. Is there a basis \mathcal{U} where $A_{\mathcal{U}}$ is diagonal?
- Yes! If A is symmetric.

The Spectral Theorem¹

► **Theorem**: Let A be an n × n symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

¹for symmetric matrices

Eigendecomposition

If A is a symmetric matrix, we can pick d of its eigenvectors $\hat{u}^{(1)}, \dots, \hat{u}^{(d)}$ to form an orthonormal basis.

- Any vector \vec{x} can be written in terms of this eigenbasis.
- ► This is called its **eigendecomposition**:

$$\vec{x} = b_1 \hat{u}^{(1)} + b_2 \hat{u}^{(2)} + ... + b_d \hat{u}^{(d)}$$

Matrix in the Eigenbasis

► Claim: the matrix of a linear transformation \vec{f} , written in a basis of its eigenvectors, is a diagonal matrix.

► The entries along the diagonal will be the eigenvalues.

Why?

$$A_{\mathcal{U}} = \begin{pmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ [\vec{f}(\hat{u}^{(1)})]_{\mathcal{U}} & [\vec{f}(\hat{u}^{(2)})]_{\mathcal{U}} & \cdots & [\vec{f}(\hat{u}^{(d)})]_{\mathcal{U}} \end{pmatrix}$$

$$\vec{f}(\hat{u}^{(1)}) = \lambda_1 \hat{u}^{(1)}, \text{ so } [\vec{f}(\hat{u}^{(1)})]_{\mathcal{U}} = (\lambda_1, 0, ..., 0)^T.$$

$$\vec{f}(\hat{u}^{(2)}) = \lambda_2 \hat{u}^{(2)}, \text{ so } [\vec{f}(\hat{u}^{(2)})]_{\mathcal{U}} = (0, \lambda_2, ..., 0)^T.$$

$$\vec{f}(\hat{u}^{(2)}) = \lambda_2 \hat{u}^{(2)}$$
, so $[\vec{f}(\hat{u}^{(2)})]_{\mathcal{U}} = (0, \lambda_2, ..., 0)^T$

Matrix Multiplication

- We have seen that matrix multiplication evaluates a linear transformation.
- ► In the standard basis:

$$\vec{f}(\vec{x}) = A\vec{x}$$

In another basis:

$$[\vec{f}(\vec{x})]_{\mathcal{U}} = A_{\mathcal{U}}[\vec{x}]_{\mathcal{U}}$$

Diagonalization

- Another way to compute $\vec{f}(x)$, starting with \vec{x} in the standard basis:
 - 1. Change basis to the eigenbasis with *U*.
 - 2. Apply \vec{f} in the eigenbasis with the diagonal $A_{1/2}$.
 - 3. Go back to the standard basis with U^{T} .
- ► That is, $A\vec{x} = U^T A_{\mathcal{U}} U \vec{x}$. It follows that $A = U^T A_{\mathcal{U}} U$.

Spectral Theorem (Again)

- Theorem: Let A be an $n \times n$ symmetric matrix. Then there exists an orthogonal matrix U and a diagonal matrix Λ such that $A = U^T \Lambda U$.
- The rows of U are the eigenvectors of A, and the entries of Λ are its eigenvalues.
- U is said to diagonalize A.