Representation Learning

Lecture 06 | Part 1

The Spectral Theorem

Eigenvectors

Let A be an n × n matrix. An eigenvector of A with eigenvalue λ is a nonzero vector v such that Av = λv.

Eigenvectors (of Linear Transformations)

Let \vec{f} be a linear transformation. An **eigenvector** of \vec{f} with **eigenvalue** λ is a nonzero vector \vec{v} such that $f(\vec{v}) = \lambda \vec{v}$.

Importance

- We will see why eigenvectors are important in the next part.
- ▶ For now: what are they?

Geometric Interpretation

When \vec{f} is applied to one of its eigenvectors, \vec{f} simply scales it.

Possibly by a negative amount.

Exercise

Draw as many (linearly independent) eigenvectors as you can:

$$A = \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix}$$

Finding Eigenvectors

- We typically compute the eigenvectors of a matrix with a computer.
- But it can help our understanding to find them "graphically".

Procedure

Given a matrix A (or transformation \vec{f}), to find an eigenvector "graphically".

- 1. Think about (or draw) the output of \vec{f} for a handful of unit vector inputs.
 - Linear transformations are continuous so you can "interpolate".
- 2. Find place(s) where the input vector and the output vector are parallel.

Exercise

Draw as many (linearly independent) eigenvectors as you can:

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$$

Exercise

Consider the linear transformation which mirrors its input over the line of 45[°]. Give two orthogonal eigenvectors of the transformation.

Alternate Procedure: Guess and Check

1. Guess a vector \vec{x} .

2. Check that $\vec{f}(\vec{x}) = \lambda \vec{x}$.

Exercise

Draw as many (linearly independent) eigenvectors as you can:

$$A = \begin{pmatrix} 5 & 5 \\ -10 & 12 \end{pmatrix}$$

Caution!

Not all matrices have even one eigenvector!¹

When does a matrix have multiple (linearly independent) eigenvectors?

¹That is, with a *real-valued* eigenvalue.

Symmetric Matrices

• Recall: a matrix A is symmetric if $A^T = A$.

The Spectral Theorem²

Theorem: Let A be an n × n symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

²for symmetric matrices

What?

- What does the spectral theorem mean?
- What is an eigenvector, really?
- Why are they useful?

Example Linear Transformation

$$A = \begin{pmatrix} 5 & 5 \\ -10 & 12 \end{pmatrix}$$

Example Linear Transformation

$$A = \begin{pmatrix} -2 & -1 \\ -5 & 3 \end{pmatrix}$$

Example Symmetric Linear Transformation

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$$

 Symmetric linear transformations have axes of symmetry.

The axes of symmetry are **orthogonal** to one another.

The action of f along an axis of symmetry is simply to scale its input.

 The size of this scaling can be different for each axis.

Main Idea

The **eigenvectors** of a symmetric linear transformation (matrix) are its axes of symmetry. The **eigenvalues** describe how much each axis of symmetry is scaled.

Diagonal Matrices

If A is diagonal, its eigenvectors are simply the standard basis vectors.

$$A = \begin{pmatrix} 2 & -0.1 \\ -0.1 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.2 \\ -0.2 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.3 \\ -0.3 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.4 \\ -0.4 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.5 \\ -0.5 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.6 \\ -0.6 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.7 \\ -0.7 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.8 \\ -0.8 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.9 \\ -0.9 & 5 \end{pmatrix}$$

Non-Diagonal Symmetric Matrices

- When a symmetric matrix is not diagonal, its eigenvectors are not the standard basis vectors.
- But they can be used to form an orthonormal basis!

The Spectral Theorem³

Theorem: Let A be an n × n symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

³for symmetric matrices

What about total symmetry?

 Every vector is an eigenvector.

$$A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$

Computing Eigenvectors

Representation Learning

Lecture 06 | Part 2

Why are eigenvectors useful?

OK, but why are eigenvectors⁴ useful?

- 1. Eigenvectors are nice "building blocks" (basis vectors).
- 2. Eigenvectors are **maximizers** (or minimizers).
- 3. Eigenvectors are **equilibria**.

⁴of symmetric matrices

Vector Decomposition

- We can always "decompose" a vector x in terms of the basis vectors.
- With respect to the standard basis:

$$\vec{x} = a_1 \hat{e}^{(1)} + a_2 \hat{e}^{(2)} + \dots + a_d \hat{e}^{(d)}$$

Eigendecomposition

- ▶ If A is a symmetric matrix, we can pick d of its eigenvectors $\hat{u}^{(1)}, ..., \hat{u}^{(d)}$ to form an orthonormal basis.
- Any vector \vec{x} can be written in terms of this basis.
- This is called its eigendecomposition:

$$\vec{x} = b_1 \hat{u}^{(1)} + b_2 \hat{u}^{(2)} + \dots + b_d \hat{u}^{(d)}$$

Eigendecomposition

Why?

Compare working in the standard basis decomposition:

$$\begin{aligned} A\vec{x} &= A(a_1\hat{e}^{(1)} + a_2\hat{e}^{(2)} + \dots + a_d\hat{e}^{(d)}) \\ &= a_1A\hat{e}^{(1)} + a_2A\hat{e}^{(2)} + \dots + a_dA\hat{e}^{(d)} \end{aligned}$$

To working with the eigendecomposition:

$$\begin{aligned} A\vec{x} &= A(b_1\hat{u}^{(1)} + b_2\hat{u}^{(2)} + \dots + b_d\hat{u}^{(d)}) \\ &= b_1A\hat{u}^{(1)} + b_2A\hat{u}^{(2)} + \dots + b_dA\hat{u}^{(d)}) \\ &= \lambda_1b_1\hat{u}^{(1)} + \lambda_2b_2\hat{u}^{(2)} + \dots + \lambda_db_d\hat{u}^{(d)} \end{aligned}$$

Main Idea

If A is a symmetrix matrix, an eigenbasis formed from its eigenvectors is an especially natural basis.

Eigenvectors as Optimizers

Eigenvectors are the solutions to certain common optimization problems involving matrices / linear transformations.

Exercise

Draw a unit vector \vec{x} such that $||A\vec{x}||$ is largest.

▶ f(x) is longest along the "main" axis of symmetry.

 In the direction of the eigenvector with largest eigenvalue.

Main Idea

To maximize $||A\vec{x}|| = ||\vec{f}(\vec{x})||$ over unit vectors, pick \vec{x} to be an eigenvector of \vec{f} with the largest eigenvalue (in abs. value).

Main Idea

To **minimize** $\|\vec{f}(\vec{x})\|$ over unit vectors, pick \vec{x} to be an eigenvector of \vec{f} with the smallest eigenvalue (in abs. value).

Proof

Show that the maximizer of $||A\vec{x}||$ s.t., $||\vec{x}|| = 1$ is the top eigenvector of A.

Corollary

To maximize $\vec{x} \cdot A\vec{x}$ over unit vectors, pick \vec{x} to be top eigenvector of A.

Example

• Maximize $4x_1^2 + 2x_2^2 + 3x_1x_2$ subject to $x_1^2 + x_2^2 = 1$

f(*x*) rotates *x* towards the "top" eigenvector *v*.

▶ v is an equilibrium.

The Power Method

- Method for computing the top eigenvector/value of A.
- ► Initialize $\vec{x}^{(0)}$ randomly
- Repeat until convergence:
 Set x⁽ⁱ⁺¹⁾ = Ax⁽ⁱ⁾/ ||Ax⁽ⁱ⁾||