
Lecture 06 | Part 1

The Spectral Theorem



Eigenvectors▶ Let 𝐴 be an 𝑛 × 𝑛 matrix. An eigenvector of 𝐴 with
eigenvalue 𝜆 is a nonzero vector ⃗𝑣 such that𝐴 ⃗𝑣 = 𝜆 ⃗𝑣.



Eigenvectors (of Linear
Transformations)▶ Let ⃗𝑓 be a linear transformation. An eigenvector

of ⃗𝑓 with eigenvalue 𝜆 is a nonzero vector ⃗𝑣 such
that 𝑓( ⃗𝑣) = 𝜆 ⃗𝑣.



Importance▶ We will see why eigenvectors are important in
the next part.▶ For now: what are they?



Geometric Interpretation▶ When ⃗𝑓 is applied to one of its eigenvectors, ⃗𝑓
simply scales it.▶ Possibly by a negative amount.



Exercise
Draw as many (linearly independent) eigenvectors
as you can:

𝐴 = (5 00 2)



Finding Eigenvectors▶ We typically compute the eigenvectors of a
matrix with a computer.▶ But it can help our understanding to find them
“graphically”.



Procedure
Given a matrix 𝐴 (or transformation ⃗𝑓), to find an
eigenvector “graphically”.
1. Think about (or draw) the output of ⃗𝑓 for a
handful of unit vector inputs.▶ Linear transformations are continuous so you can

“interpolate”.

2. Find place(s) where the input vector and the
output vector are parallel.



Exercise
Draw as many (linearly independent) eigenvectors
as you can:

𝐴 = ( 2 −1−1 3 )



Exercise
Consider the linear transformation which mirrors
its input over the line of 45∘. Give two orthogonal
eigenvectors of the transformation.



Alternate Procedure: Guess and
Check

1. Guess a vector ⃗𝑥.
2. Check that ⃗𝑓( ⃗𝑥) = 𝜆 ⃗𝑥.



Exercise
Draw as many (linearly independent) eigenvectors
as you can:

𝐴 = ( 5 5−10 12)



Caution!▶ Not all matrices have even one eigenvector!1▶ When does a matrix have multiple (linearly
independent) eigenvectors?

1That is, with a real-valued eigenvalue.



Symmetric Matrices▶ Recall: a matrix 𝐴 is symmetric if 𝐴𝑇 = 𝐴.



The Spectral Theorem2▶ Theorem: Let 𝐴 be an 𝑛 × 𝑛 symmetric matrix.
Then there exist 𝑛 eigenvectors of 𝐴 which are all
mutually orthogonal.

2for symmetric matrices



What?▶ What does the spectral theorem mean?▶ What is an eigenvector, really?▶ Why are they useful?



Example Linear Transformation

𝐴 = ( 5 5−10 12)



Example Linear Transformation

𝐴 = (−2 −1−5 3 )



Example Symmetric Linear
Transformation

𝐴 = ( 2 −1−1 3 )



Observation #1

▶ Symmetric linear
transformations have
axes of symmetry.



Observation #2

▶ The axes of symmetry
are orthogonal to one
another.



Observation #3

▶ The action of ⃗𝑓 along
an axis of symmetry is
simply to scale its
input.



Observation #4

▶ The size of this
scaling can be
different for each axis.



Main Idea
The eigenvectors of a symmetric linear transfor-
mation (matrix) are its axes of symmetry. The
eigenvalues describe how much each axis of sym-
metry is scaled.



Diagonal Matrices▶ If 𝐴 is diagonal, its eigenvectors are simply the
standard basis vectors.

𝐴 = (2 00 5)



Off-diagonal elements

𝐴 = ( 2 −0.1−0.1 5 )



Off-diagonal elements

𝐴 = ( 2 −0.2−0.2 5 )



Off-diagonal elements

𝐴 = ( 2 −0.3−0.3 5 )



Off-diagonal elements

𝐴 = ( 2 −0.4−0.4 5 )



Off-diagonal elements

𝐴 = ( 2 −0.5−0.5 5 )



Off-diagonal elements

𝐴 = ( 2 −0.6−0.6 5 )



Off-diagonal elements

𝐴 = ( 2 −0.7−0.7 5 )



Off-diagonal elements

𝐴 = ( 2 −0.8−0.8 5 )



Off-diagonal elements

𝐴 = ( 2 −0.9−0.9 5 )



Non-Diagonal Symmetric Matrices▶ When a symmetric matrix is not diagonal, its
eigenvectors are not the standard basis vectors.▶ But they can be used to form an orthonormal
basis!



The Spectral Theorem3

▶ Theorem: Let 𝐴 be an 𝑛 × 𝑛
symmetric matrix. Then
there exist 𝑛 eigenvectors
of 𝐴 which are all mutually
orthogonal.

3for symmetric matrices



What about total symmetry?

▶ Every vector is an
eigenvector.𝐴 = (3 00 3)



Computing Eigenvectors

»> A = np.array([[2, -1], [-1, 3]])
»> np.linalg.eigh(A)
(array([1.38196601, 3.61803399]),
array([[-0.85065081, -0.52573111],

[-0.52573111, 0.85065081]]))
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Why are eigenvectors useful?



OK, but why are eigenvectors4
useful?

1. Eigenvectors are nice “building blocks” (basis
vectors).

2. Eigenvectors are maximizers (or minimizers).

3. Eigenvectors are equilibria.

4of symmetric matrices



Vector Decomposition▶ We can always “decompose” a vector ⃗𝑥 in terms
of the basis vectors.▶ With respect to the standard basis:⃗𝑥 = 𝑎1 ̂𝑒(1) + 𝑎2 ̂𝑒(2) + … + 𝑎𝑑 ̂𝑒(𝑑)



Eigendecomposition▶ If 𝐴 is a symmetric matrix, we can pick 𝑑 of its
eigenvectors �̂�(1), … , �̂�(𝑑) to form an orthonormal
basis.▶ Any vector ⃗𝑥 can be written in terms of this basis.▶ This is called its eigendecomposition:⃗𝑥 = 𝑏1�̂�(1) + 𝑏2�̂�(2) + … + 𝑏𝑑�̂�(𝑑)



Eigendecomposition



Why?▶ Compare working in the standard basis
decomposition:𝐴 ⃗𝑥 = 𝐴(𝑎1 ̂𝑒(1) + 𝑎2 ̂𝑒(2) + … + 𝑎𝑑 ̂𝑒(𝑑))= 𝑎1𝐴 ̂𝑒(1) + 𝑎2𝐴 ̂𝑒(2) + … + 𝑎𝑑𝐴 ̂𝑒(𝑑)▶ To working with the eigendecomposition:𝐴 ⃗𝑥 = 𝐴(𝑏1�̂�(1) + 𝑏2�̂�(2) + … + 𝑏𝑑�̂�(𝑑))= 𝑏1𝐴�̂�(1) + 𝑏2𝐴�̂�(2) + … + 𝑏𝑑𝐴�̂�(𝑑))= 𝜆1𝑏1�̂�(1) + 𝜆2𝑏2�̂�(2) + … + 𝜆𝑑𝑏𝑑�̂�(𝑑)



Main Idea
If 𝐴 is a symmetrix matrix, an eigenbasis formed
from its eigenvectors is an especially natural basis.



Eigenvectors as Optimizers▶ Eigenvectors are the solutions to certain
common optimization problems involving
matrices / linear transformations.



Exercise
Draw a unit vector ⃗𝑥 such that ‖𝐴 ⃗𝑥‖ is largest.



Observation #1

▶ ⃗𝑓( ⃗𝑥) is longest along
the “main” axis of
symmetry.▶ In the direction of

the eigenvector with
largest eigenvalue.



Main Idea

To maximize ‖𝐴 ⃗𝑥‖ = ‖ ⃗𝑓( ⃗𝑥)‖ over unit vectors, pick⃗𝑥 to be an eigenvector of ⃗𝑓 with the largest eigen-
value (in abs. value).



Main Idea

To minimize ‖ ⃗𝑓( ⃗𝑥)‖ over unit vectors, pick ⃗𝑥 to be
an eigenvector of ⃗𝑓 with the smallest eigenvalue
(in abs. value).



Proof
Show that the maximizer of ‖𝐴 ⃗𝑥‖ s.t., ‖ ⃗𝑥‖ = 1 is the
top eigenvector of 𝐴.



Corollary
To maximize ⃗𝑥 ⋅ 𝐴 ⃗𝑥 over unit vectors, pick ⃗𝑥 to be top
eigenvector of 𝐴.



Example▶ Maximize 4𝑥21 + 2𝑥22 + 3𝑥1𝑥2 subject to 𝑥21 + 𝑥22 = 1



Observation #2

▶ ⃗𝑓( ⃗𝑥) rotates ⃗𝑥 towards
the “top” eigenvector⃗𝑣.▶ ⃗𝑣 is an equilibrium.



The Power Method▶ Method for computing the top eigenvector/value
of 𝐴.▶ Initialize ⃗𝑥(0) randomly▶ Repeat until convergence:▶ Set ⃗𝑥(𝑖+1) = 𝐴 ⃗𝑥(𝑖)/‖𝐴 ⃗𝑥(𝑖)‖


