DST $140 B$
Representation Learning Lecture 05 Part
Matrix

Matrices?

- I thought this week was supposed to be about linear algebra... Where are the matrices?

Matrices?

- I thought this week was supposed to be about linear algebra... Where are the matrices?
- What is a matrix, anyways?

What is a matrix?

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

Recall: Linear Transformations

- A transformation $\vec{f}(\vec{x})$ is a function which takes a vector as input and returns a vector of the same dimensionality.
- A transformation \vec{f} is linear if

$$
\vec{f}(\alpha \vec{u}+\beta \vec{v})=\alpha \vec{f}(\vec{u})+\beta \vec{f}(\vec{v})
$$

Recall: Linear Transformations

- Key consequence of linearity: to compute $\vec{f}(\vec{x})$, only need to know what \vec{f} does to basis vectors.
- Example:

$$
\begin{aligned}
\vec{x} & =3 \hat{e}^{(1)}-4 \hat{e}^{(2)}=\binom{3}{-4} \\
\vec{f}\left(\hat{e}^{(1)}\right) & =-\hat{e}^{(1)}+3 \hat{e}^{(2)} \\
\vec{f}\left(\hat{e}^{(2)}\right) & =2 \hat{e}^{(1)} \\
\vec{f}(\vec{x}) & =
\end{aligned}
$$

Matrices

- Idea: Since \vec{f} is defined by what it does to basis, place $\vec{f}\left(\hat{e}^{(1)}\right), \vec{f}\left(\hat{e}^{(2)}\right)$, ... into a table as columns
- This is the matrix representing ${ }^{2} \vec{f}$

$$
\begin{aligned}
& \vec{f}\left(\hat{e}^{(1)}\right)=-\hat{e}^{(1)}+3 \hat{e}^{(2)}=\binom{-1}{3} \\
& \vec{f}\left(\hat{e}^{(2)}\right)=2 \hat{e}^{(1)}=\binom{2}{0}
\end{aligned}
$$

$$
\left(\begin{array}{cc}
-1 & 2 \\
3 & 0
\end{array}\right)
$$

[^0]
Exercise

Write the matrix representing \vec{f} with respect to the standard basis, given:

$$
\begin{aligned}
& \vec{f}\left(\hat{e}^{(1)}\right)=(1,4,7)^{\top} \\
& \vec{f}\left(\hat{e}^{(2)}\right)=(2,5,7)^{\top} \\
& \vec{f}\left(\hat{e}^{(3)}\right)=(3,6,9)^{\top}
\end{aligned}
$$

Exercise

Suppose \vec{f} has the matrix below:

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

Let $\vec{x}=(-2,1,3)^{\top}$. What is $\vec{f}(\vec{x})$?

Main Idea

A square $(n \times n)$ matrix can be interpreted as a compact representation of a linear transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

What is matrix multiplication?

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{c}
-2 \\
1 \\
3
\end{array}\right)=(\quad)
$$

A low-level definition

$$
(A \vec{x})_{i}=\sum_{j=1}^{n} A_{i j} x_{j}
$$

A low-level interpretation

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{c}
-2 \\
1 \\
3
\end{array}\right)=-2\left(\begin{array}{l}
1 \\
4 \\
7
\end{array}\right)+1\left(\begin{array}{l}
2 \\
5 \\
8
\end{array}\right)+3\left(\begin{array}{l}
3 \\
6 \\
9
\end{array}\right)
$$

In general...

$$
\left(\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
\vec{a}^{(1)} & \vec{a}^{(2)} & \vec{a}^{(3)} \\
\downarrow & \downarrow & \downarrow
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{1} \vec{a}^{(1)}+x_{2} \vec{a}^{(2)}+x_{3} \vec{a}^{(3)}
$$

Matrix Multiplication

$$
\begin{aligned}
& \vec{x}=x_{1} \hat{e}^{(1)}+x_{2} \hat{e}^{(2)}+x_{3} \hat{e}^{(3)}=\left(x_{1}, x_{2}, x_{3}\right)^{T} \\
& \vec{f}(\vec{x})=x_{1} \vec{f}\left(\hat{e}^{(1)}\right)+x_{2} \vec{f}\left(\hat{e}^{(2)}\right)+x_{3} \vec{f}\left(\hat{e}^{(3)}\right) \\
& \begin{aligned}
A & =\left(\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
\vec{f}\left(\hat{e}^{(1)}\right) & \vec{f}\left(\hat{e}^{(2)}\right) & \vec{f}\left(\hat{e}^{(3)}\right) \\
\downarrow & \downarrow & \downarrow
\end{array}\right) \\
A \vec{x} & =\left(\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
\vec{f}\left(\hat{e}^{(1)}\right) & \vec{f}\left(\hat{e}^{(2)}\right) & \vec{f}\left(\hat{e}^{(3)}\right) \\
\downarrow & \downarrow & \downarrow
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \\
& =x_{1} \vec{f}\left(\hat{e}^{(1)}\right)+x_{2} \vec{f}\left(\hat{e}^{(2)}\right)+x_{3} \vec{f}\left(\hat{e}^{(3)}\right)
\end{aligned}
\end{aligned}
$$

Matrix Multiplication

- Matrix A represents a linear transformation \vec{f}
\checkmark With respect to the standard basis
- If we use a different basis, the matrix changes!
- Matrix multiplication $A \vec{x}$ evaluates $\vec{f}(\vec{x})$

What are they, really?

- Matrices are sometimes just tables of numbers.
- But they often have a deeper meaning.

Main Idea

A square ($n \times n$) matrix can be interpreted as a compact representation of a linear transformation $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

What's more, if A represents \vec{f}, then $A \vec{x}=\vec{f}(\vec{x})$; that is, multiplying by A is the same as evaluating \vec{f}.

Example

$$
\begin{array}{rlrl}
\vec{x} & =3 \hat{e}^{(1)}-4 \hat{e}^{(2)}=\binom{3}{-4} & A= \\
\vec{f}\left(\hat{e}^{(1)}\right) & =-\hat{e}^{(1)}+3 \hat{e}^{(2)} & & \\
\vec{f}\left(\hat{e}^{(2)}\right) & =2 \hat{e}^{(1)} & A \vec{x}= \\
\vec{f}(\vec{x}) & = &
\end{array}
$$

Note

All of this works because we assumed \vec{f} is linear.

- If it isn't, evaluating \vec{f} isn't so simple.

Note

- All of this works because we assumed \vec{f} is linear.
- If it isn't, evaluating \vec{f} isn't so simple.
- Linear algebra = simple!

Matrices in Other Bases

- The matrix of a linear transformation wrt the standard basis:

$$
\left(\begin{array}{cccc}
\uparrow & \uparrow & \uparrow \\
\vec{f}\left(\hat{e}^{(1)}\right) & \vec{f}\left(\hat{e}^{(2)}\right) & \cdots & \vec{f}\left(\hat{e}^{(d)}\right) \\
\downarrow & \downarrow & \downarrow &
\end{array}\right)
$$

- With respect to basis \mathcal{U} :

$$
\left(\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
{\left[\vec{f}\left(\hat{u}^{(1)}\right)\right]_{\mathcal{U}}} & {\left[\vec{f}\left(\hat{u}^{(2)}\right)\right]_{\mathcal{U}}} & \cdots \\
\downarrow & \downarrow & \left.\downarrow \vec{f}\left(\hat{u}^{(d)}\right)\right]_{\mathcal{U}}
\end{array}\right)
$$

Matrices in Other Bases

- Consider the transformation \vec{f} which "mirrors" a vector over the line of 45°.

- What is its matrix in the standard basis?

Matrices in Other Bases

Let $\hat{u}^{(1)}=\frac{1}{\sqrt{2}}(1,1)^{T}$
\Rightarrow Let $\hat{u}^{(2)}=\frac{1}{\sqrt{2}}(-1,1)^{T}$

- What is $\left[\vec{f}\left(\hat{u}^{(1)}\right)\right]_{\mathcal{U}}$?
- $\left[\vec{f}\left(\hat{u}^{(2)}\right)\right]_{\mathcal{U}}$?
- What is the matrix?

DEC $140 B$ Representation Learning Lecture 05
The Part 2
Spectral Theorem The Spectral Theorem

Eigenvectors

Let A be an $n \times n$ matrix. An eigenvector of A with eigenvalue λ is a nonzero vector \vec{v} such that $A \vec{v}=\lambda \vec{v}$.

Eigenvectors (of Linear Transformations)

- Let \vec{f} be a linear transformation. An eigenvector of \vec{f} with eigenvalue λ is a nonzero vector \vec{v} such that $f(\vec{v})=\lambda \vec{v}$.

Importance

We will see why eigenvectors are important in the next part.

- For now: what are they?

Geometric Interpretation

- When \vec{f} is applied to one of its eigenvectors, \vec{f} simply scales it.
- Possibly by a negative amount.

Exercise

Draw as many (linearly independent) eigenvectors as you can:

$$
A=\left(\begin{array}{ll}
5 & 0 \\
0 & 2
\end{array}\right)
$$

Finding Eigenvectors

- We typically compute the eigenvectors of a matrix with a computer.
- But it can help our understanding to find them "graphically".

Procedure

Given a matrix A (or transformation \vec{f}), to find an eigenvector "graphically".

1. Think about (or draw) the output of \vec{f} for a handful of unit vector inputs.

- Linear transformations are continuous so you can "interpolate".

2. Find place(s) where the input vector and the output vector are parallel.

Exercise

Draw as many (linearly independent) eigenvectors as you can:

$$
A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right)
$$

Exercise

Consider the linear transformation which mirrors its input over the line of 45°. Give two orthogonal eigenvectors of the transformation.

Alternate Procedure: Guess and Check

1. Guess a vector \vec{x}.
2. Check that $\vec{f}(\vec{x})=\lambda \vec{x}$.

Exercise

Draw as many (linearly independent) eigenvectors as you can:

$$
A=\left(\begin{array}{cc}
5 & 5 \\
-10 & 12
\end{array}\right)
$$

Caution!

- Not all matrices have even one eigenvector! ${ }^{3}$
- When does a matrix have multiple (linearly independent) eigenvectors?
${ }^{3}$ That is, with a real-valued eigenvalue.

Symmetric Matrices

- Recall: a matrix A is symmetric if $A^{T}=A$.

The Spectral Theorem ${ }^{4}$

\Rightarrow Theorem: Let A be an $n \times n$ symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

What?

- What does the spectral theorem mean?
- What is an eigenvector, really?
- Why are they useful?

Example Linear Transformation

$$
A=\left(\begin{array}{cc}
5 & 5 \\
-10 & 12
\end{array}\right)
$$

Example Linear Transformation

$$
A=\left(\begin{array}{cc}
-2 & -1 \\
-5 & 3
\end{array}\right)
$$

Example Symmetric Linear Transformation

$$
A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right)
$$

Observation \#1

- Symmetric linear transformations have axes of symmetry.

Observation \#2

The axes of symmetry are orthogonal to one another.

Observation \#3

The action of \vec{f} along an axis of symmetry is simply to scale its input.

Observation \#4

The size of this scaling can be different for each axis.

Main Idea

The eigenvectors of a symmetric linear transformation (matrix) are its axes of symmetry. The eigenvalues describe how much each axis of symmetry is scaled.

Diagonal Matrices

- If A is diagonal, its eigenvectors are simply the standard basis vectors.

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 5
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
2 & -0.1 \\
-0.1 & 5
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
2 & -0.2 \\
-0.2 & 5
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
2 & -0.3 \\
-0.3 & 5
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
2 & -0.4 \\
-0.4 & 5
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
2 & -0.5 \\
-0.5 & 5
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
2 & -0.6 \\
-0.6 & 5
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
2 & -0.7 \\
-0.7 & 5
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
2 & -0.8 \\
-0.8 & 5
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
2 & -0.9 \\
-0.9 & 5
\end{array}\right)
$$

Non-Diagonal Symmetric Matrices

- When a symmetric matrix is not diagonal, its eigenvectors are not the standard basis vectors.
- But they can be used to form an orthonormal basis!

The Spectral Theorem5

- Theorem: Let A be an $n \times n$ symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

${ }^{5}$ for symmetric matrices

What about total symmetry?

Every vector is an eigenvector.

$$
A=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right)
$$

Computing Eigenvectors

$$
\begin{aligned}
& \text { "> } A=\text { np.array }([[2,-1],[-1,3]]) \\
& \text { "> np.linalg.eigh(A) } \\
& \text { (array([1.38196601, 3.61803399]), } \\
& \quad \operatorname{array}([[-0.85065081,-0.52573111], \\
& \quad[-0.52573111,0.85065081]]))
\end{aligned}
$$

[^0]: ${ }^{2}$ with respect to the standard basis $\hat{e}^{(1)}, \hat{e}^{(2)}$

