Representation Learning

Lecture 04 | Part 1

Coordinate Vectors

Change of Basis

• Let $\mathcal{U} = {\hat{u}^{(1)}, ..., \hat{u}^{(d)}}$ be an orthonormal basis.

• The coordinates of \vec{x} w.r.t. \mathcal{U} are:

$$\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{U}} = \begin{pmatrix} \vec{x} \cdot \hat{u}^{(1)} \\ \vec{x} \cdot \hat{u}^{(2)} \\ \vdots \\ \vec{x} \cdot \hat{u}^{(d)} \end{pmatrix}$$

Exercise

Suppose
$$\vec{x} = (2, 1)^T$$
 and let $\hat{u}^{(1)} = \frac{1}{\sqrt{2}} (1, 1)^T$ and $\hat{u}^{(2)} = \frac{1}{\sqrt{2}} (-1, 1)^T$. What is $[\vec{x}]_{\mathcal{U}}$?

Exercise

Let $\vec{x} = (-1, 4)^T$ and suppose: $\hat{u}^{(1)} \cdot \hat{e}^{(1)} = 3$ $\hat{u}^{(2)} \cdot \hat{e}^{(1)} = -1$ $\hat{u}^{(1)} \cdot \hat{e}^{(2)} = -2$ $\hat{u}^{(2)} \cdot \hat{e}^{(2)} = 5$ What is $[\vec{x}]_{\mathcal{U}}$?

Representation Learning

Lecture 04 | Part 2

Functions of a Vector

Functions of a Vector

- In ML, we often work with functions of a vector: $f : \mathbb{R}^d \to \mathbb{R}^{d'}$.
- Example: a prediction function, $H(\vec{x})$.
- Functions of a vector can return:

 a number: f : ℝ^d → ℝ¹
 a vector f : ℝ^d → ℝ^{d'}
 something else?

Transformations

A transformation f is a function that takes in a vector, and returns a vector of the same dimensionality.

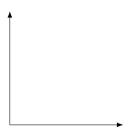
• That is,
$$\vec{f} : \mathbb{R}^d \to \mathbb{R}^d$$
.

Visualizing Transformations

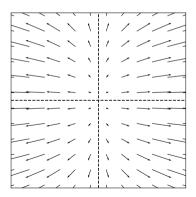
A transformation is a **vector field**.

Assigns a vector to each point in space.

• Example:
$$\vec{f}(\vec{x}) = (3x_1, x_2)^T$$

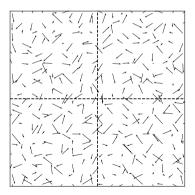


► $\vec{f}(\vec{x}) = (3x_1, x_2)^T$



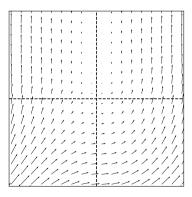
Arbitrary Transformations

Arbitrary transformations can be quite complex.



Arbitrary Transformations

Arbitrary transformations can be quite complex.



Linear Transformations

Luckily, we often¹ work with simpler, linear transformations.

A transformation *f* is linear if:

$$\vec{f}(\alpha \vec{x} + \beta \vec{y}) = \alpha \vec{f}(\vec{x}) + \beta \vec{f}(\vec{y})$$

¹Sometimes, just to make the math tractable!

Checking Linearity

To check if a transformation is linear, use the definition.

• **Example:**
$$\vec{f}(\vec{x}) = (x_2, -x_1)^T$$

Exercise Let $\vec{f}(\vec{x}) = (x_1 + 3, x_2)$. Is \vec{f} a linear transformation?

Implications of Linearity

Suppose \vec{f} is a linear transformation. Then:

$$\vec{f}(\vec{x}) = \vec{f}(x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)})$$
$$= x_1 \vec{f}(\hat{e}^{(1)}) + x_2 \vec{f}(\hat{e}^{(2)})$$

I.e., *f* is totally determined by what it does to the basis vectors.

The Complexity of Arbitrary Transformations

Suppose *f* is an **arbitrary** transformation.

► I tell you
$$\vec{f}(\hat{e}^{(1)}) = (2, 1)^T$$
 and $\vec{f}(\hat{e}^{(2)}) = (-3, 0)^T$.

► I tell you
$$\vec{x} = (x_1, x_2)^T$$
.

• What is $\vec{f}(\vec{x})$?

The Simplicity of Linear Transformations

Suppose *f* is a **linear** transformation.

► I tell you
$$\vec{f}(\hat{e}^{(1)}) = (2, 1)^T$$
 and $\vec{f}(\hat{e}^{(2)}) = (-3, 0)^T$.

► I tell you
$$\vec{x} = (x_1, x_2)^T$$
.

• What is $\vec{f}(\vec{x})$?

Exercise

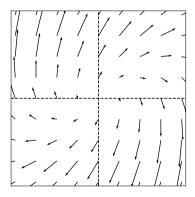
- Suppose *f* is a **linear** transformation.
- ► I tell you $\vec{f}(\hat{e}^{(1)}) = (2, 1)^T$ and $\vec{f}(\hat{e}^{(2)}) = (-3, 0)^T$. ► I tell you $\vec{x} = (3, -4)^T$.
- What is $\vec{f}(\vec{x})$?

Key Fact

- Linear functions are determined **entirely** by what they do on the basis vectors.
- ▶ I.e., to tell you what f does, I only need to tell you $\vec{f}(\hat{e}^{(1)})$ and $\vec{f}(\hat{e}^{(2)})$.
- This makes the math easy!

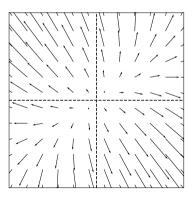
Example Linear Transformation

$$\vec{f}(\vec{x}) = (x_1 + 3x_2, -3x_1 + 5x_2)^T$$



Another Example Linear Transformation

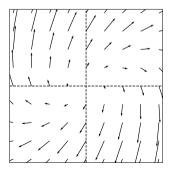
$$\vec{f}(\vec{x}) = (2x_1 - x_2, -x_1 + 3x_2)^T$$

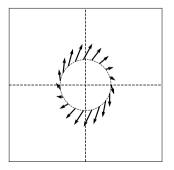


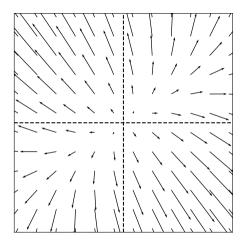
Note

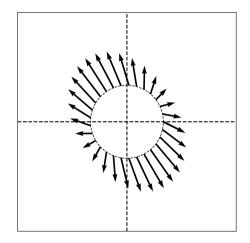
Because of linearity, along any given direction \vec{f} changes only in scale.

$$\vec{f}(\lambda \hat{x}) = \lambda \vec{f}(\hat{x})$$









Linear Transformations and Bases

We have been writing transformations in coordinate form. For example:

$$\vec{f}(\vec{x}) = (x_1 + x_2, x_1 - x_2)^T$$

► To do so, we assumed the **standard basis**.

• If we use a different basis, the formula for \vec{f} changes.

- Suppose that in the standard basis, $\vec{f}(\vec{x}) = (x_1 + x_2, x_1 x_2)^T$. Let $\hat{u}^{(1)} = \frac{1}{\sqrt{2}}(1, 1)^T$ and $\hat{u}^{(2)} = \frac{1}{\sqrt{2}}(-1, 1)^T$.
- Write $[\vec{x}]_{\mathcal{U}} = (z_1, z_2)^T$.
- What is $[\vec{f}(\vec{x})]_{\mathcal{U}}$ in terms of z_1 and z_2 ?

- Suppose that in the standard basis, $\vec{f}(\vec{x}) = (x_1 + x_2, x_1 x_2)^T$. Let $\hat{u}^{(1)} = \frac{1}{\sqrt{2}}(1, 1)^T$ and $\hat{u}^{(2)} = \frac{1}{\sqrt{2}}(-1, 1)^T$.
- Write $[\vec{x}]_{\mathcal{U}} = (z_1, z_2)^T$.
- What is $[\vec{f}(\vec{x})]_{\mathcal{U}}$ in terms of z_1 and z_2 ?

- Suppose that in the standard basis, $\vec{f}(\vec{x}) = (x_1 + x_2, x_1 x_2)^T$. Let $\hat{u}^{(1)} = \frac{1}{\sqrt{2}}(1, 1)^T$ and $\hat{u}^{(2)} = \frac{1}{\sqrt{2}}(-1, 1)^T$.
- Write $[\vec{x}]_{\mathcal{U}} = (z_1, z_2)^T$.
- What is $[\vec{f}(\vec{x})]_{\mathcal{U}}$ in terms of z_1 and z_2 ?