Representation Learning

Lecture 04 | Part 1

Coordinate Vectors

Change of Basis

• Let $\mathcal{U} = {\hat{u}^{(1)}, ..., \hat{u}^{(d)}}$ be an orthonormal basis.

▶ The coordinates of \vec{x} w.r.t. \mathcal{U} are:

$$\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{U}} = \begin{pmatrix} \vec{x} \cdot \hat{u}^{(1)} \\ \vec{x} \cdot \hat{u}^{(2)} \\ \vdots \\ \vec{x} \cdot \hat{u}^{(d)} \end{pmatrix}$$

Representation Learning

Lecture 04 | Part 2

Functions of a Vector

Functions of a Vector

- ▶ In ML, we often work with functions of a vector: $f : \mathbb{R}^{d} \to \mathbb{R}^{d'}$.
- Example: a prediction function, $H(\vec{x})$.
- Functions of a vector can return:
 a number: f : R^d → R¹
 a vector f : R^d → R^{d'}
 something else?

Transformations

A transformation f is a function that takes in a vector, and returns a vector of the same dimensionality.

▶ That is, $\vec{f} : \mathbb{R}^d \to \mathbb{R}^d$.

Visualizing Transformations

A transformation is a vector field. Assigns a vector to each point in space. Example: $\vec{f}(\vec{x}) = (3x_1, x_2)^T$ $\begin{array}{c} \lambda = (2, 1) \\ \lambda = (2, 2) \\ \lambda = (2, 2)$

Arbitrary Transformations

Arbitrary transformations can be quite complex.

Arbitrary Transformations

Arbitrary transformations can be quite complex.

Linear Transformations

Luckily, we often¹ work with simpler, linear transformations.

► A transformation *f* is linear if:

$$\vec{f}(\alpha \vec{x} + \beta \vec{y}) = \alpha \vec{f}(\vec{x}) + \beta \vec{f}(\vec{y})$$

¹Sometimes, just to make the math tractable!

Checking Linearity

To check if a transformation is linear, use the definition. • **Example:** $\vec{f}(\vec{x}) = (x_2, -x_1)^T$ X=I BN) = 27 (a)

J.

Implications of Linearity

Suppose \vec{f} is a linear transformation. Then: $\vec{f}(\vec{x}) = \vec{f}(x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)})$ $= x_1 \vec{f}(\hat{e}^{(1)}) + x_2 \vec{f}(\hat{e}^{(2)})$ $= x_1 \vec{f}(\hat{e}^{(1)}) + x_2 \vec{f}(\hat{e}^{(2)})$

I.e., *f* is totally determined by what it does to the basis vectors.

The Complexity of Arbitrary Transformations

Suppose f is an **arbitrary** transformation.

► I tell you
$$\vec{f}(\hat{e}^{(1)}) = (2, 1)^T$$
 and $\vec{f}(\hat{e}^{(2)}) = (-3, 0)^T$.

► I tell you $\vec{x} = (x_1, x_2)^T$.

• What is $\vec{f}(\vec{x})$?

The Simplicity of Linear Transformations

Suppose *f* is a **linear** transformation.

► I tell you
$$\vec{f}(\hat{e}^{(1)}) = (2, 1)^T$$
 and $\vec{f}(\hat{e}^{(2)}) = (-3, 0)^T$.

► I tell you $\vec{x} = (x_1, x_2)^T$.

• What is
$$\vec{f}(\vec{x})$$
?

Exercise

- Suppose *f* is a **linear** transformation.
- ► I tell you $\vec{f}(\hat{e}^{(1)}) = (2, 1)^T$ and $\vec{f}(\hat{e}^{(2)}) = (-3, 0)^T$.

 $=3f(e^{0})$

• I tell you $\vec{x} = (3, -4)^{T}$.

• What is $\vec{f}(\vec{x})$?

Key Fact

- Linear functions are determined **entirely** by what they do on the basis vectors.
- ► I.e., to tell you what f does, I only need to tell you $\vec{f}(\hat{e}^{(1)})$ and $\vec{f}(\hat{e}^{(2)})$.
- This makes the math easy!

trainability on train tau

generalizedady

Example Linear Transformation

$$\vec{f}(\vec{x}) = (x_1 + 3x_2, -3x_1 + 5x_2)^T$$

Another Example Linear Transformation

$$\vec{f}(\vec{x}) = (2x_1 - x_2, -x_1 + 3x_2)^T$$

Note

Because of linearity, along any given direction \vec{f} changes only in scale.

Linear Transformations and Bases

We have been writing transformations in coordinate form. For example:

$$\vec{f}(\vec{x}) = (x_1 + x_2, x_1 - x_2)^T$$

- ► To do so, we assumed the **standard basis**.
- If we use a different basis, the formula for \vec{f} changes.

- Suppose that in the standard basis, $\vec{f}(\vec{x}) = (x_1 + x_2, x_1 x_2)^T$.
 Let $\hat{u}^{(1)} = \frac{1}{\sqrt{2}} (1, 1)^T$ and $\hat{u}^{(2)} = \frac{1}{\sqrt{2}} (-1, 1)^T$.
 Write $[\vec{x}]_{\mathcal{U}} = (z_1, z_2)^T$.
- What is $[\vec{f}(\vec{x})]_{\mathcal{U}}$ in terms of z_1 and z_2 ?

- Suppose that in the standard basis, $\vec{f}(\vec{x}) = (x_1 + x_2, x_1 x_2)^T$.
 Let $\hat{u}^{(1)} = \frac{1}{\sqrt{2}} (1, 1)^T$ and $\hat{u}^{(2)} = \frac{1}{\sqrt{2}} (-1, 1)^T$.
 Write $[\vec{x}]_{\mathcal{U}} = (z_1, z_2)^T$.
- What is $[\vec{f}(\vec{x})]_{\mathcal{U}}$ in terms of z_1 and z_2 ?