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Autoencoders



Representation Learning

At a high level, representation learning finds an
encoding function encode(X) : RY —» R

Ideally, this function captures useful aspects of
the data distribution.



Decoding

Encoding can decrease dimensionality.

Intuitively, we may want to preserve as much
“information” about X as possible.

We should be able to decode the encoding and
reconstruct the original point, approximately.

X ~ decode(encode(X))



Representation Learning

Goal: find an encoder (and decoder) such that

encode(decode(X)) = X



Reconstruction Error

In general, decode(encode(X)) will not be exactly
equal to X.

One way of quantifying the difference w.rt. data
is the ({’2) reconstruction error:

n
Z - decode(encode(x"))]|2

i=1



Note

Of course, it is trivial to find an encoder/decoder
with zero reconstruction error:

-

encode(X) = X = decode(X)
Such an encoder is not useful.

Instead, we constrain the form of the encoder so
that it cannot simply copy the input.



Example: PCA

Assume encode(X) = UX, for some matrix U

whose k < d columns are orthonormal.
That is, the encoding is an orthogonal projection.

Goal: find U to minimize reconstruction error on
a dataset X1, ..., X(@),

Solution: pick columns of U to be top k
eigenvectors of data covariance matrix.



Now
encode(X) = UX is a linear encoding function.
What if we let encode be nonlinear?

That is, let's generalize PCA.



Encoder as a Neural Network

Assume encode(X) is a (deep) neural network.

Output is not a single number, but kR numbers.
l.e., a vector in R

Can use nonlinear activations, have more than
one layer.



Encoder as a Neural Network




Encoder as a Neural Network

The output of the encoder is the new
representation.

To train the encoder, we’ll need a decoder.



Decoder as a Neural Network
Assume decode(Z) is a (deep) neural network.

Output is not a single number, but d numbers.
Same dimensionality as original input, X.
l.e., a vector in RY

Can use nonlinear activations, have more than
one layer.



Decoder as a Neural Network




decode(encode(X)) as a NN

Together, decode(encode(x)) is a neural network
H(X) : RY - RY.



decode(encode(X)) as a NN
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Training

We want H(X) =
) |0 One approach: train network to
minimize reconstruction error.
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Training

The network can be trained using gradient-based

methods.
E.g., stochastic gradient descent.

Note: this is an unsupervised learning problem.



Autoencoders

When the encoder/decoder are NNs,
H(X) = decode(encode(X)) is an autoencoder.



Generalizing PCA

We can view autoencoders as generalizations of
PCA.

Consider again the encoder that performs an
orthogonal projection:

encode(X) = UTX
decode(?) = UZ

encode/decode are neural networks (with linear
activations).
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Conclusion of DSC 140B



Recap
DSC 140B was about representation learning.

We saw PCA, Laplacian Eigenmaps, RBF Networks,
neural networks and deep learning

Learned ML methods, but also theoretical tools
for understanding why other ML methods work



More Deep Learning

We have only scratched the surface of deep
learning.

LSTMs, transformer models, graph neural networks,
deep RL, GANs, etc.

In this class, we focused on the fundamental
principles behind NNs.

You might consider taking CSE 151B.



More Deep Learning

* Latest progresses: e.g., Sora, GAIA-1



Sora




GAIA-1 for auto-driving
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Prompted with a couple
of seconds of the same
starting context. Then it

can unroll multiple
possible futures.
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GAIA-1 for auto-driving

Inject a natural language
prompt “It's night, and we
have turned on our
headlights.” after three
seconds.

Generated by GAIA-)

[Hu, Russell, Yeo, et al., 2023]
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Explain why this is funny
GPT-4V

... The final panel reveals the punchline:
the robot has merely produced a pile of
crumpled paper, just like the human did,
suggesting that the robot also suffers
from writer's block ... highlighting a
situation where the human and the Al
are equally challenged

N
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How to solve the limitations?

e Better model architectures
« Better learning algorithms

 Better inference algorithms

You may consider taking

"DSC 291: Machine Learning

with Few Labels”




Diverse machine learning algorithms

maximum likelihood estimation reinforcement learning as inference
data re-weighting | Inverse RL - hive learning
policy optimization
data augmentation  reward-augmented maximum likelihood

label smoothing softmax policy gradient

imitation learning

actor-critic adversarial domain adaptation
~ GANs posterior regularization
knowledge distillation , _ _
intrinsic reward constraint-driven learning

prediction minimization generalized expectation

regularized Bayes |
learning from measurements

energy-based GANs
weak/distant supervision

[DSC 291: Machine Learning with Few Labels]



Thanks!



