

Lecture 26 Part 1

Autoencoders

Representation Learning

At a high level, representation learning finds an encoding function $encode(\vec{x}) : \mathbb{R}^d \to \mathbb{R}^k$.

Ideally, this function captures useful aspects of the data distribution.

Decoding

- Encoding can decrease dimensionality.
- Intuitively, we may want to preserve as much "information" about x as possible.
- We should be able to decode the encoding and reconstruct the original point, approximately.

 $\vec{x} \approx \text{decode}(\text{encode}(\vec{x}))$

Representation Learning

► **Goal:** find an encoder (and decoder) such that encode(decode(\vec{x})) $\approx \vec{x}$

Reconstruction Error

- In general, decode(encode(x)) will not be exactly equal to x.
- One way of quantifying the difference w.r.t. data is the (l₂) reconstruction error:

$$\sum_{i=1}^{n} \|\vec{x}^{(i)} - \text{decode}(\text{encode}(\vec{x}^{(i)}))\|^2$$

Note

Of course, it is trivial to find an encoder/decoder with zero reconstruction error:

$$encode(\vec{x}) = \vec{x} = decode(\vec{x})$$

Such an encoder is not useful.

Instead, we constrain the form of the encoder so that it cannot simply copy the input.

Example: PCA

- Assume encode(x
) = Ux
 , for some matrix U
 whose k ≤ d columns are orthonormal.

 That is, the encoding is an orthogonal projection.
- **Goal:** find *U* to minimize reconstruction error on a dataset $\vec{x}^{(1)}, ..., \vec{x}^{(d)}$.
- Solution: pick columns of U to be top k eigenvectors of data covariance matrix.

Now

- encode(\vec{x}) = $U\vec{x}$ is a linear encoding function.
- What if we let encode be nonlinear?
- ► That is, let's generalize PCA.

Encoder as a Neural Network

- Assume encode(\vec{x}) is a (deep) **neural network**.
- Output is not a single number, but k numbers.
 I.e., a vector in R^k
- Can use nonlinear activations, have more than one layer.

Encoder as a Neural Network

Encoder as a Neural Network

- The output of the encoder is the new representation.
- ► To train the encoder, we'll need a **decoder**.

Decoder as a Neural Network

Assume decode(\vec{z}) is a (deep) **neural network**.

- Output is not a single number, but *d* numbers.
 Same dimensionality as original input, *x*.
 - ▶ I.e., a vector in \mathbb{R}^d
- Can use nonlinear activations, have more than one layer.

Decoder as a Neural Network

decode(encode(\vec{x})) as a NN

► Together, decode(encode(\vec{x})) is a neural network $H(\vec{x}) : \mathbb{R}^d \to \mathbb{R}^d$.

decode(encode(\vec{x})) as a NN

Training

- ► We want $H(\vec{x}) \approx \vec{x}$
- One approach: train network to minimize reconstruction error.

$$\begin{split} \sum_{i=1}^{n} \|\vec{x}^{(i)} - H(\vec{x}^{(i)})\|^2 &= \sum_{i=1}^{n} \sum_{j=1}^{d} (\vec{x}_j^{(i)} - (H(\vec{x}^{(i)}))_j)^2 \\ &= \sum_{i=1}^{n} \sum_{j=1}^{d} (\vec{x}_j^{(i)} - a_j^{(2)}(\vec{x}^{(i)}))^2 \end{split}$$

Training

- The network can be trained using gradient-based methods.
 - E.g., stochastic gradient descent.
- Note: this is an **unsupervised** learning problem.

Autoencoders

When the encoder/decoder are NNs, H(x) = decode(encode(x)) is an autoencoder.

Generalizing PCA

- We can view autoencoders as generalizations of PCA.
- Consider again the encoder that performs an orthogonal projection:

 $encode(\vec{x}) = U^T \vec{x}$

 $decode(\vec{z}) = U\vec{z}$

encode/decode are neural networks (with linear activations).

Lecture 26 Part 2

Conclusion of DSC 140B

Recap

- DSC 140B was about representation learning.
- We saw PCA, Laplacian Eigenmaps, RBF Networks, neural networks and deep learning
- Learned ML methods, but also theoretical tools for understanding why other ML methods work

More Deep Learning

- We have only scratched the surface of deep learning.
 - LSTMs, transformer models, graph neural networks, deep RL, GANs, etc.
- In this class, we focused on the fundamental principles behind NNs.
- You might consider taking CSE 151B.

More Deep Learning

• Latest progresses: e.g., Sora, GAIA-1

Sora

GAIA-1 for auto-driving

Prompted with a couple of seconds of the same starting context. Then it can unroll multiple possible futures.

GAIA-1 for auto-driving

Inject a natural language prompt "**It's night, and we have turned on our headlights**." after three seconds.

Limitations in Large Models

Limitations in Large Models

Explain why this is funny

GPT-4V

... The final panel reveals the punchline: the robot has merely produced a pile of crumpled paper, just like the human did, suggesting that the robot also suffers from writer's block ... highlighting a situation where the human and the AI are equally challenged

Limitations in Large Models

How to solve the limitations?

- Better model architectures
- Better learning algorithms
- Better inference algorithms

You may consider taking "DSC 291: Machine Learning with Few Labels"

Diverse machine learning algorithms

maximum likelihood estimation reinforcement learning as inference inverse RL active learning data re-weighting policy optimization data augmentation reward-augmented maximum likelihood label smoothing softmax policy gradient imitation learning actor-critic adversarial domain adaptation posterior regularization GANs knowledge distillation constraint-driven learning intrinsic reward generalized expectation prediction minimization regularized Bayes learning from measurements energy-based GANs weak/distant supervision

[DSC 291: Machine Learning with Few Labels]

Thanks!