# DSC 1408 Representation Learning

Lecture 25 Part 1

**Convolutions** 

# Convolutional Networks (ConvNets)

Hierarchical Representation Learning [Zeiler & Fergus 2013]

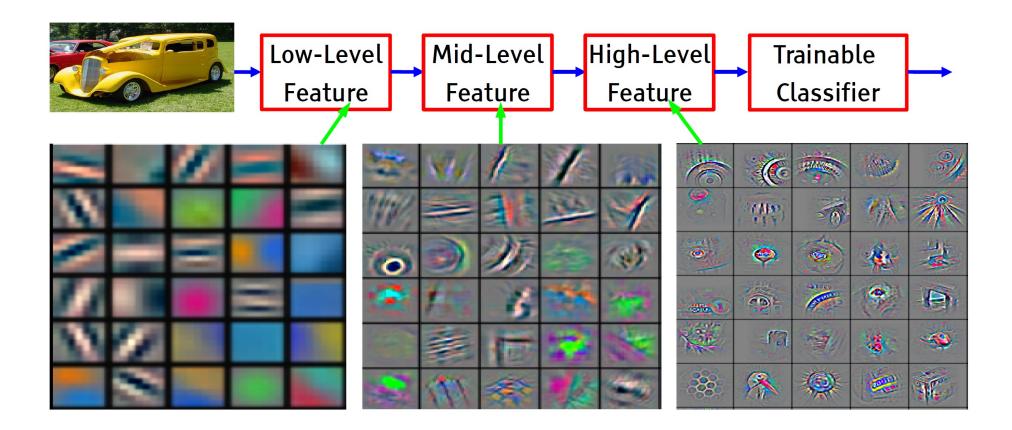
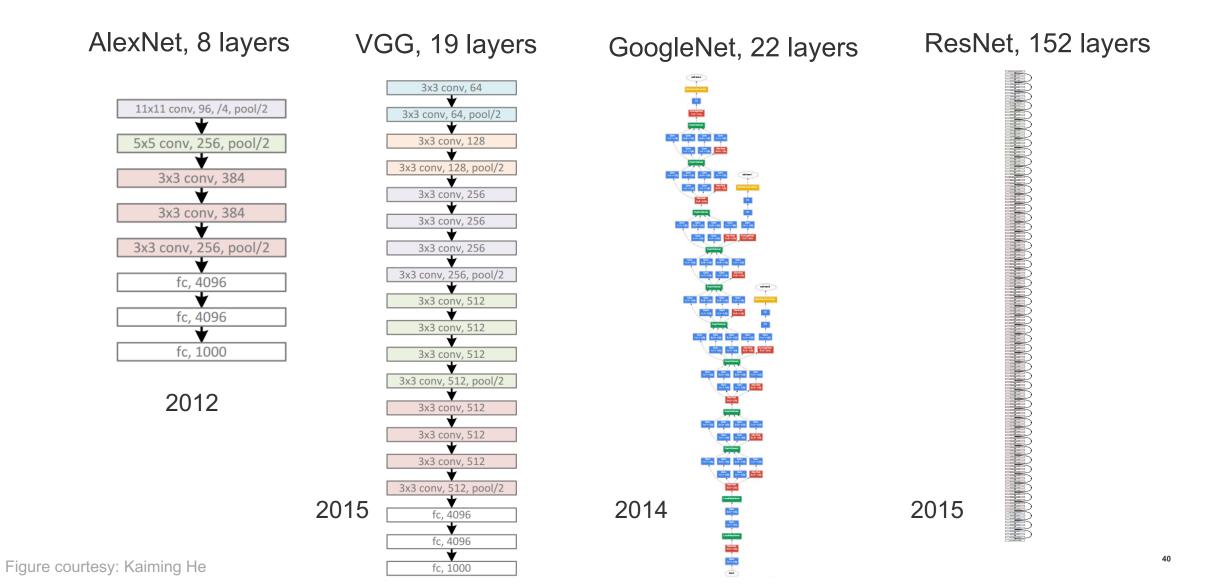


Figure courtesy: Yann LeCun

# **Evolution of ConvNets**



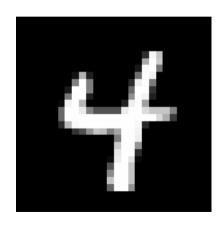
4 /---+

# From Simple to Complex

- Complex shapes are made of simple patterns
- ► The human visual system uses this fact
- ▶ Line detector → shape detector → ... → face detector
- Can we replicate this with a deep NN?

# **Edge Detector**

- How do we find vertical edges in an image?
- One solution: convolution with an edge filter.



**Vertical Edge Filter** 

- Take a patch of the image, same size as filter.
- Perform "dot product" between patch and filter.
- If large, this is a (vertical) edge.

| imag | ge pa | atch |
|------|-------|------|
|      |       |      |
|      |       |      |
|      |       |      |

| f | ilter | : |
|---|-------|---|
|   |       |   |
|   |       |   |
|   |       |   |

| 0 | 0 | 0  | 0 | 0 | 0  |  |          |          |   |  |  |  |
|---|---|----|---|---|----|--|----------|----------|---|--|--|--|
| 0 | 0 | .9 | 0 | 0 | .7 |  |          |          |   |  |  |  |
| 0 | 0 | .9 | 0 | 0 | .8 |  |          | П        |   |  |  |  |
| 0 | 0 | .8 | 0 | 0 | .9 |  | <b>₽</b> | $\vdash$ | = |  |  |  |
| 0 | 0 | .7 | 0 | 0 | 0  |  | *        |          | _ |  |  |  |
|   |   |    |   |   |    |  |          | Ш        |   |  |  |  |
|   |   |    |   |   |    |  |          |          |   |  |  |  |
|   |   |    |   |   |    |  |          |          |   |  |  |  |

| 0 | 0 | 0  | 0 | 0 | 0  |  |          |            |  |  |  |
|---|---|----|---|---|----|--|----------|------------|--|--|--|
| 0 | 0 | .9 | 0 | 0 | .7 |  |          |            |  |  |  |
| 0 | 0 | .9 | 0 | 0 | .8 |  |          | ٦          |  |  |  |
| 0 | 0 | .8 | 0 | 0 | .9 |  | <b>₽</b> | ┤_         |  |  |  |
| 0 | 0 | .7 | 0 | 0 | 0  |  | *        | <b>┤</b> ̄ |  |  |  |
|   |   |    |   |   |    |  |          |            |  |  |  |
|   |   |    |   |   |    |  |          |            |  |  |  |
|   |   |    |   |   |    |  |          |            |  |  |  |

| 0 | 0 | 0  | 0 | 0 | 0  |  |          |   |  |  |  |
|---|---|----|---|---|----|--|----------|---|--|--|--|
| 0 | 0 | .9 | 0 | 0 | .7 |  |          |   |  |  |  |
| 0 | 0 | .9 | 0 | 0 | .8 |  |          |   |  |  |  |
| 0 | 0 | .8 | 0 | 0 | .9 |  | <b>₽</b> | = |  |  |  |
| 0 | 0 | .7 | 0 | 0 | 0  |  | *        | _ |  |  |  |
|   |   |    |   |   |    |  |          |   |  |  |  |
|   |   |    |   |   |    |  |          |   |  |  |  |
|   |   |    |   |   |    |  |          |   |  |  |  |

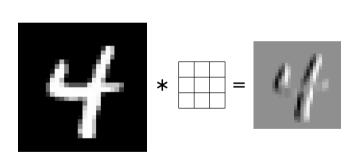
| 0 | 0 | 0  | 0 | 0 | 0  |  |   |   |  |  |  |
|---|---|----|---|---|----|--|---|---|--|--|--|
| 0 | 0 | .9 | 0 | 0 | .7 |  |   |   |  |  |  |
| 0 | 0 | .9 | 0 | 0 | .8 |  |   |   |  |  |  |
| 0 | 0 | .8 | 0 | 0 | .9 |  | * | = |  |  |  |
| 0 | 0 | .7 | 0 | 0 | 0  |  | • | _ |  |  |  |
|   |   |    |   |   |    |  |   |   |  |  |  |
|   |   |    |   |   |    |  |   |   |  |  |  |
|   |   |    |   |   |    |  |   |   |  |  |  |

| 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>.9<br>.9<br>.8<br>.7 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>.7<br>.8<br>.9 |  | * |  | = |  |  |  |
|------------------|------------------|---------------------------|------------------|------------------|---------------------|--|---|--|---|--|--|--|
|                  |                  |                           |                  |                  |                     |  |   |  |   |  |  |  |

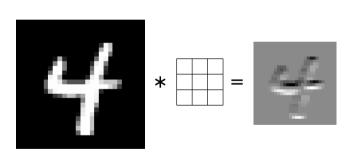
#### Convolution

- ► The result is the (2d) **convolution** of the filter with the image.
- Output is also 2-dimensional array.
- Called a response map.

# **Example: Vertical Filter**



# **Example: Horizontal Filter**

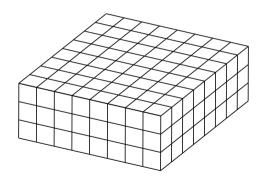


#### **More About Filters**

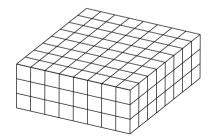
- ► Typically 3×3 or 5×5.
- ► Variations: different **stride**, image **padding**.

- Black and white images are 2-d arrays.
- But color images are 3-d arrays:
  - a.k.a., tensors
  - ► Three color **channels**: red, green, blue.
  - ► height × width × 3
- How does convolution work here?

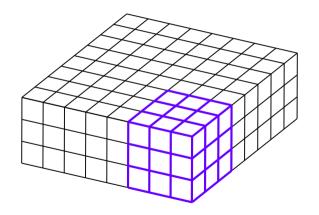
# **Color Image**

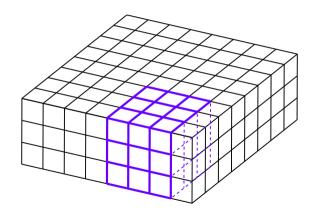


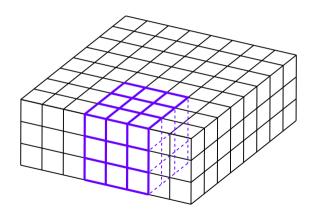
- ► The filter must also have three channels:
  - $\triangleright$  3 × 3 × 3, 5 × 5 × 3, etc.











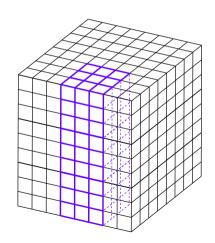
#### **Convolution with 3-d Filter**

- Filter must have same number of channels as image.
  - ▶ 3 channels if image RGB.

Result is still a 2-d array.

#### **General Case**

- ► Input "image" has *k* channels.
- Filter must have *k* channels as well.
  - ► e.g., 3 × 3 × k
- ► Output is still 2 d



# DSC 1408 Representation Learning

Lecture 25 Part 2

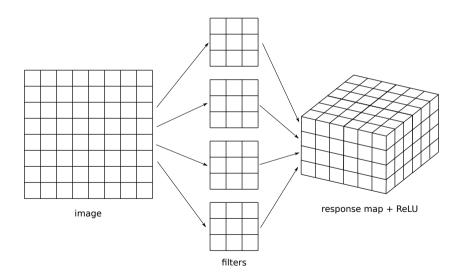
**Convolutional Neural Networks** 

#### **Convolutional Neural Networks**

CNNs are the state-of-the-art for many computer vision tasks

- ► **Idea**: use convolution in early layers to create new feature representation.
- But! Filters are learned.

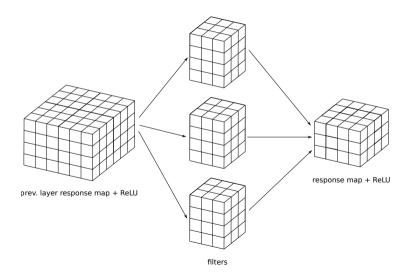
# **Input Convolutional Layer**



# **Input Convolutional Layer**

- Input image with one channel (grayscale)
- ►  $k_1$  filters of size  $\ell \times \ell \times 1$
- Results in  $k_1$  convolutions, stacked to make response map.
- ReLU (or other nonlinearity) applied entrywise.

# **Second Convolutional Layer**



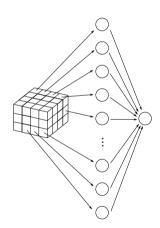
# **Second Convolutional Layer**

- Input is a 3-d tensor.
  - ▶ "Stack" of  $k_1$  response maps.
- $\triangleright$   $k_2$  filters, each a 3-d tensor with  $k_1$  channels.
- $\triangleright$  Output is a 3-d tensor with  $k_2$  channels.

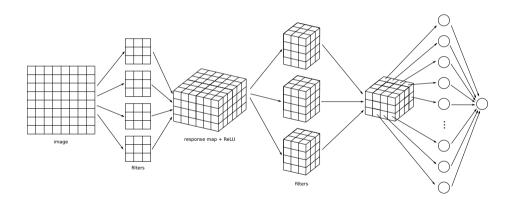
# **More Convolutional Layers**

- May add more convolutional layers.
- Last convolutional layer used as input to a feedforward, fully-connected network.
- Need to "flatten" the output tensor.

# **Flattening**



## **Full Network**

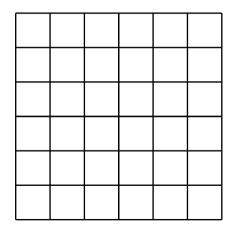


#### What is learned?

- ► The filters themselves.
- ► The weights in the feedforward NN used for prediction.

# **Max Pooling**

- Max pooling is an important part of convolutional layers in practice.
- Reduces size of response map, number of parameters.



# DSC 1408 Representation Learning

Lecture 25 Part 3

**Example: Image Classification** 





















#### **Details**

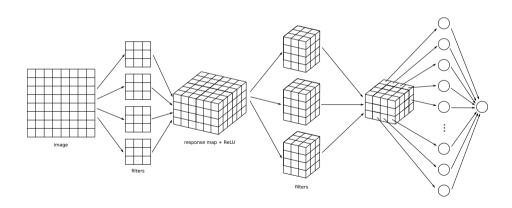
- ► 3-channel 32 × 32 color images
- ▶ 10,000 training images; 2,000 test<sup>1</sup>
- ► Cars, trucks in different orientations, scales
- ▶ Balanced: 50% cars, 50% trucks

<sup>&</sup>lt;sup>1</sup>CIFAR-10

# Approach #1: Least Squares Classifier

- Train directly on raw features (grayscale)
- Result: 72% train accuracy, 63% test accuracy
- Need a better feature representation

#### Approach #2: Convolutional Neural Network



#### **Architecture**

- ▶ 3 convolutional layers with 32, 64, 64 filters
- ReLU, max pooling after first two
- Dense layer with 64 hidden neurons, ReLU
- Output layer with sigmoid activation
- Minimize cross-entropy loss; use dropout

#### The Code

```
model = keras.models.Sequential()
model.add( keras.layers.Conv2D(32, (7, 7), activation='relu', input_shape=(32, 32, 1)))
model.add(keras.lavers.MaxPooling2D((2, 2)))
model.add(keras.layers.Conv2D(64. (5, 5), activation='relu'))
model.add(keras.lavers.MaxPooling2D((2, 2)))
model.add(keras.layers.Conv2D(64, (3, 3), activation='relu'))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dropout(0.5))
model.add(keras.lavers.Dense(64. activation='relu'))
model.add(keras.lavers.Dense(1. activation='sigmoid'))
```

#### The Code

```
model.compile(
    optimizer=keras.optimizers.RMSprop(),
    loss=keras.losses.BinaryCrossentropy(),
    metrics=['accuracy']
model.fit(
    X_train,
    v train,
    epochs=30,
    validation_data=(X_test, y_test)
```

▶ 94% train accuracy, 90% test accuracy





truck / car









truck / truck

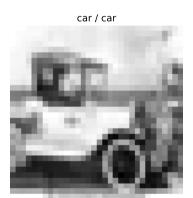


truck / truck



truck / truck







truck / truck



truck / truck



truck / truck



















truck / truck

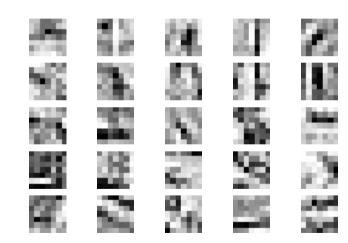








# Filters



#### **Next Steps**

- In practice, you might not train your own CNN
- Instead, take "pre-trained" convolutional layers from a much bigger network
- Attach untrained fully-connected layer and train
- This is transfer learning