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Convolutions



Convolutional Networks (ConvNets)
● Hierarchical Representation Learning [Zeiler & Fergus 2013]
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Figure courtesy: Yann LeCun



Evolution of ConvNets

40

AlexNet, 8 layers VGG, 19 layers GoogleNet, 22 layers ResNet, 152 layers

Figure courtesy: Kaiming He
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From Simple to Complex▶ Complex shapes are made of simple patterns▶ The human visual system uses this fact▶ Line detector→ shape detector→ …→ face
detector▶ Can we replicate this with a deep NN?



Edge Detector

▶ How do we find vertical
edges in an image?▶ One solution: convolution
with an edge filter.



Vertical Edge Filter



Idea

▶ Take a patch of the image,
same size as filter.▶ Perform “dot product”
between patch and filter.▶ If large, this is a (vertical)
edge.

image patch:

filter:



Idea▶ Move the filter over the entire image, repeat
procedure.
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procedure.
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Convolution▶ The result is the (2d) convolution of the filter
with the image.▶ Output is also 2-dimensional array.▶ Called a response map.



Example: Vertical Filter



Example: Horizontal Filter



More About Filters▶ Typically 3×3 or 5×5.▶ Variations: different stride, image padding.



3-d Filters▶ Black and white images are 2-d arrays.▶ But color images are 3-d arrays:▶ a.k.a., tensors▶ Three color channels: red, green, blue.▶ height × width × 3▶ How does convolution work here?



Color Image



3-d Filter▶ The filter must also have three channels:▶ 3 × 3 × 3, 5 × 5 × 3, etc.



3-d Filter



3-d Filter



3-d Filter



Convolution with 3-d Filter▶ Filter must have same number of channels as
image.▶ 3 channels if image RGB.▶ Result is still a 2-d array.



General Case

▶ Input “image” has 𝑘
channels.▶ Filter must have 𝑘
channels as well.▶ e.g., 3 × 3 × 𝑘▶ Output is still 2 − 𝑑
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Convolutional Neural Networks



Convolutional Neural Networks▶ CNNs are the state-of-the-art for many computer
vision tasks▶ Idea: use convolution in early layers to create
new feature representation.▶ But! Filters are learned.



Input Convolutional Layer

image

�lters

response map + ReLU



Input Convolutional Layer▶ Input image with one channel (grayscale)▶ 𝑘1 filters of size ℓ × ℓ × 1▶ Results in 𝑘1 convolutions, stacked to make
response map.▶ ReLU (or other nonlinearity) applied entrywise.



Second Convolutional Layer

prev. layer response map + ReLU

�lters

response map + ReLU



Second Convolutional Layer▶ Input is a 3-d tensor.▶ “Stack” of 𝑘1 response maps.▶ 𝑘2 filters, each a 3-d tensor with 𝑘1 channels.▶ Output is a 3-d tensor with 𝑘2 channels.



More Convolutional Layers▶ May add more convolutional layers.▶ Last convolutional layer used as input to a
feedforward, fully-connected network.▶ Need to “flatten” the output tensor.



Flattening

...



Full Network

�lters

image

�lters

response map + ReLU

...



What is learned?▶ The filters themselves.▶ The weights in the feedforward NN used for
prediction.



Max Pooling

▶ Max pooling is an
important part of
convolutional layers in
practice.▶ Reduces size of response
map, number of
parameters.
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Example: Image Classification



Problem

▶ Predict whether image is
of a car or a truck.
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Problem

▶ Predict whether image is
of a car or a truck.



Details▶ 3-channel 32 × 32 color images▶ 10,000 training images; 2,000 test1▶ Cars, trucks in different orientations, scales▶ Balanced: 50% cars, 50% trucks

1CIFAR-10



Approach #1: Least Squares
Classifier▶ Train directly on raw features (grayscale)▶ Result: 72% train accuracy, 63% test accuracy▶ Need a better feature representation



Approach #2: Convolutional Neural
Network

�lters

image

�lters

response map + ReLU

...



Architecture▶ 3 convolutional layers with 32, 64, 64 filters▶ ReLU, max pooling after first two▶ Dense layer with 64 hidden neurons, ReLU▶ Output layer with sigmoid activation▶ Minimize cross-entropy loss; use dropout



The Code
model = keras.models.Sequential()

model.add( keras.layers.Conv2D(32, (7, 7), activation='relu', input_shape=(32, 32, 1)))
model.add(keras.layers.MaxPooling2D((2, 2)))

model.add(keras.layers.Conv2D(64, (5, 5), activation='relu'))
model.add(keras.layers.MaxPooling2D((2, 2)))

model.add(keras.layers.Conv2D(64, (3, 3), activation='relu'))

model.add(keras.layers.Flatten())
model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Dense(64, activation='relu'))
model.add(keras.layers.Dense(1, activation='sigmoid'))



The Code
model.compile(

optimizer=keras.optimizers.RMSprop(),
loss=keras.losses.BinaryCrossentropy(),
metrics=['accuracy']

)

model.fit(
X_train,
y_train,
epochs=30,
validation_data=(X_test, y_test)

)



Results▶ 94% train accuracy, 90% test accuracy



Results
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Filters



Next Steps▶ In practice, you might not train your own CNN▶ Instead, take “pre-trained” convolutional layers
from a much bigger network▶ Attach untrained fully-connected layer and train▶ This is transfer learning


