
Rethinking Dimensionality▶ Informally: data expressed with 𝑑 dimensions,
but its really confined to 𝑘-dimensional region▶ This region is called a manifold▶ 𝑑 is the ambient dimension▶ 𝑘 is the intrinsic dimension

Example

▶ Ambient dimension: 3▶ Intrinsic dimension: 2

The Graph Laplacian▶ Define 𝐿 = 𝐷 − 𝑊▶ 𝐷 is the degree matrix▶ 𝑊 is the similarity matrix (weighted adjacency)▶ 𝐿 is called the Graph Laplacian matrix.▶ It is a very useful object

Very Important Fact▶ Claim: Cost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2 = ⃗𝑓𝑇𝐿 ⃗𝑓
▶ Proof: expand both sides 1

1Note that there was originally a 12 in front of ⃗𝑓𝑇𝐿 ⃗𝑓, but this was not
correct as written. See Problem 06 in the Midterm 02 practice for a longer
explanation.

Surface▶ The surface of a prediction function 𝐻 is the
surface made by plotting 𝐻(⃗𝑥) for all ⃗𝑥.▶ If 𝐻 is a linear prediction function, and4▶ ⃗𝑥 ∈ 𝑅1, then 𝐻(𝑥) is a straight line.▶ ⃗𝑥 ∈ ℝ2, the surface is a plane.▶ ⃗𝑥 ∈ ℝ𝑑, the surface is a 𝑑-dimensional hyperplane.

4when plotted in the original feature coordinate space!

Least Squares and Outliers

6

6Bishop, Pattern Recognition and Machine Learning

Basis Functions▶ We will transform:▶ the time, 𝑥1, to |𝑥1 − Noon|▶ the temperature, 𝑥2, to |𝑥2 − 72∘|▶ Formally, we’ve designed non-linear basis
functions: 𝜑1(𝑥1, 𝑥2) = |𝑥1 − Noon|𝜑2(𝑥1, 𝑥2) = |𝑥2 − 72∘|▶ In general a basis function 𝜑 maps ℝ𝑑 → ℝ

Training▶ Map each training example ⃗𝑥(𝑖) to feature space,
creating new training data:⃗𝑧(1) = 𝜑⃗(⃗𝑥(1)), ⃗𝑧(2) = 𝜑⃗(⃗𝑥(2)), … , ⃗𝑧(𝑛) = 𝜑⃗(⃗𝑥(𝑛))▶ Fit linear prediction function 𝐻 in usual way:𝐻𝑓(⃗𝑧) = 𝑤0 + 𝑤1𝑧1 + 𝑤2𝑧2 + … + 𝑤𝑑𝑧𝑑

Prediction▶ If we have ⃗𝑧 in feature space, prediction is:𝐻𝑓(⃗𝑧) = 𝑤0 + 𝑤1𝑧1 + 𝑤2𝑧2 + … + 𝑤𝑑𝑧𝑑

Prediction▶ But if we have ⃗𝑥 from original space, we must
“convert” ⃗𝑥 to feature space first:𝐻(⃗𝑥) = 𝐻𝑓(𝜑⃗(⃗𝑥))= 𝐻𝑓((𝜑1(⃗𝑥), 𝜑2(⃗𝑥), … , 𝜑𝑑(⃗𝑥))𝑇)= 𝑤0 + 𝑤1𝜑1(⃗𝑥) + 𝑤2𝜑2(⃗𝑥) + … + 𝑤𝑑𝜑𝑑(⃗𝑥)

Decision Boundary

NNs as Function Composition▶ The full NN is a composition of layer functions.

𝑥1
𝑥2

∑
∑
∑

∑
𝐻(⃗𝑥) = 𝐻(2)(𝐻(1)(⃗𝑥)) = [𝑊 (2)]𝑇 ([𝑊 (1)]𝑇 ⃗𝑥 + 𝑏⃗(1))⏟⏟⏟⏟⏟⏟⏟⃗𝑧(1) +𝑏⃗(2)

Each Layer is a Function▶ We can think of each layer as a function mapping
a vector to a vector.▶ 𝐻(1)(⃗𝑧) = [𝑊 (1)]𝑇 ⃗𝑧+𝑏⃗(1)▶ 𝐻(1) ∶ ℝ2 → ℝ3▶ 𝐻(2)(⃗𝑧) = [𝑊 (2)]𝑇 ⃗𝑧+𝑏⃗(2)▶ 𝐻(2) ∶ ℝ3 → ℝ1

𝑥1
𝑥2

∑
∑
∑

∑

Example
Compute the entries of the gradient given:𝑊 (1) = (2 −32 1) 𝑊 (2) = (2 10 1) 𝑊 (3) = (3−2) ⃗𝑥 = (2, 1)𝑇 𝑔(𝑧) = ReLU

𝑥1
𝑥2

𝑧(1)1 𝑎(1)1
𝑧(1)2 𝑎(1)2

𝑧(2)1 𝑎(2)1
𝑧(2)2 𝑎(2)2

𝑧(3)1 𝑎(3)1
𝜕𝐻𝜕𝑎(ℓ)𝑗 = ∑𝑛ℓ+1𝑘=1 𝜕𝐻𝜕𝑧(ℓ+1)𝑘 𝑊 (ℓ+1)𝑗𝑘 𝜕𝐻𝜕𝑧(ℓ)𝑗 = 𝜕𝐻𝜕𝑎(ℓ)𝑗 𝑔′(𝑧ℓ𝑗) 𝜕𝐻𝜕𝑊(ℓ)𝑖𝑗 = 𝜕𝐻𝜕𝑧(ℓ)𝑗 𝑎(ℓ−1)𝑖

Lecture 24| Part 1

Gradient Descent for NN Training

Gradient Descent▶ Pick arbitrary starting point ⃗𝑥(0), learning rate
parameter 𝜂 > 0.▶ Until convergence, repeat:▶ Compute gradient of 𝑓 at ⃗𝑥(𝑖); that is, compute ∇⃗𝑓(⃗𝑥(𝑖)).▶ Update ⃗𝑥(𝑖+1) = ⃗𝑥(𝑖) − 𝜂∇⃗𝑓(⃗𝑥(𝑖)).▶ When do we stop?▶ When difference between ⃗𝑥(𝑖) and ⃗𝑥(𝑖+1) is negligible.▶ I.e., when ‖ ⃗𝑥(𝑖) − ⃗𝑥(𝑖+1)‖ is small.

def gradient_descent(
gradient, x, learning_rate=.01,
threshold=.1e-4

):
while True:

x_new = x - learning_rate * gradient(x)
if np.linalg.norm(x - x_new) < threshold:

break
x = x_new

return x

Backprop Revisited▶ The weights of a neural network can be trained
using gradient descent.▶ This requires the gradient to be calculated
repeatedly; this is where backprop enters.▶ Sometimes people use “backprop” to mean
“backprop + SGD”, but this is not strictly correct.

Backprop Revisited▶ Consider training a NN using the square loss:∇𝑤⃗𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 𝜕ℓ𝜕𝐻∇𝑤⃗𝐻(⃗𝑥(𝑖); 𝑤⃗)= 2𝑛 𝑛∑𝑖=1 (𝐻(⃗𝑥(𝑖)) − 𝑦𝑖) ∇𝑤⃗𝐻(⃗𝑥(𝑖); 𝑤⃗)

General Formulas▶ For any node in any neural network1, we have the
following recursive formulas:▶ 𝜕𝐻𝜕𝑎(ℓ)𝑗 = ∑𝑛ℓ+1𝑘=1 𝜕𝐻𝜕𝑧(ℓ+1)𝑘 𝑊 (ℓ+1)𝑗𝑘▶ 𝜕𝐻𝜕𝑧(ℓ)𝑗 = 𝜕𝐻𝜕𝑎(ℓ)𝑗 𝑔′(𝑧ℓ𝑗)▶ 𝜕𝐻𝜕𝑊 (ℓ)𝑖𝑗 = 𝜕𝐻𝜕𝑧(ℓ)𝑗 𝑎(ℓ−1)𝑖▶ 𝜕𝐻𝜕𝑏(ℓ)𝑗 = 𝜕𝐻𝜕𝑧(ℓ)𝑗

1Fully-connected, feedforward network

Backprop Revisited▶ Consider training a NN using the square loss:∇𝑤⃗𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 𝜕ℓ𝜕𝐻∇𝑤⃗𝐻(⃗𝑥(𝑖); 𝑤⃗)= 2𝑛 𝑛∑𝑖=1 (𝐻(⃗𝑥(𝑖)) − 𝑦𝑖) ∇𝑤⃗𝐻(⃗𝑥(𝑖); 𝑤⃗)

Backprop Revisited▶ Interpretation:∇𝑤⃗𝑅(𝑤⃗) = 2𝑛 𝑛∑𝑖=1 (𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)⏟
Error

∇𝑤⃗𝐻(⃗𝑥(𝑖); 𝑤⃗)⏟
Blame▶ When used in SGD, backprop “propagates error

backward” in order to update weights.

Difficulty of Training NNs▶ Gradient descent is guaranteed to find optimum
when objective function is convex.2

2Assuming it is properly initialized

Difficulty of Training NNs▶ When activations are non-linear, neural network
risk is highly non-convex:

Non-Convexity▶ When 𝑅 is non-convex, GD can get “stuck” in local
minima.▶ Solution depends on initialization.▶ More sophisticated optimizers, using
momentum, adaptation, better initialization, etc.▶ Adagrad, RMSprop, Adam, etc.

Difficulty of Training (Deep) NNs▶ Deep networks can suffer from the problem of
vanishing gradients: if 𝑤 is a weight at the
“front” of the network, 𝜕𝐻/𝜕𝑤 can be very small

𝑥1
𝑥2
𝑥3

∑
∑
∑
∑

∑
∑
∑

∑

Vanishing Gradients▶ If 𝜕𝐻/𝜕𝑤 is always close to zero, 𝑤 is updated
very slowly by gradient descent.▶ In short: early layers are slower to train.▶ One mitigation: use ReLU instead of sigmoid.

Vanishing Gradients

z

Sigmoid

z

ReLU

Lecture 24| Part 2

Stochastic Gradient Descent

Gradient Descent for Minimizing Risk▶ In ML, we often want to minimize a risk function:𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

Observation▶ The gradient of the risk function is a sum of
gradients: ∇⃗𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 ∇⃗ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)▶ One term for each point in training data.

Problem▶ In machine learning, the number of training
points 𝑛 can be very large.▶ Computing the gradient can be expensive when𝑛 is large.▶ Therefore, each step of gradient descent can be
expensive.

Idea▶ The (full) gradient of the risk uses all of the
training data:∇𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 ∇ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)▶ It is an average of 𝑛 gradients.▶ Idea: instead of using all 𝑛 points, randomly
choose ≪ 𝑛.

Stochastic Gradient▶ Choose a random subset (mini-batch) 𝐵 of the
training data.▶ Compute a stochastic gradient:∇𝑅(𝑤⃗) ≈ ∑𝑖∈𝐵 ∇⃗ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

Stochastic Gradient

∇𝑅(𝑤⃗) ≈ ∑𝑖∈𝐵 ∇⃗ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)▶ Good: if |𝐵| ≪ 𝑛, this is much faster to compute.▶ Bad: it is a (random) approximation of the full
gradient, noisy.

Stochastic Gradient Descent (SGD)
for ERM▶ Pick arbitrary starting point ⃗𝑥(0), learning rate

parameter 𝜂 > 0, batch size 𝑚 ≪ 𝑛.▶ Until convergence, repeat:▶ Randomly sample a batch 𝐵 of 𝑚 training data points
(on each iteration).▶ Compute stochastic gradient of 𝑓 at ⃗𝑥(𝑖):𝑔⃗ = ∑𝑖∈𝐵 ∇⃗ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)▶ Update ⃗𝑥(𝑖+1) = ⃗𝑥(𝑖) − 𝜂𝑔⃗

Idea▶ In practice, a stochastic gradient often works
well enough.▶ It is better to take many noisy steps quickly than
few exact steps slowly.

Batch Size▶ Batch size 𝑚 is a parameter of the algorithm.▶ The larger 𝑚, the more reliable the stochastic
gradient, but the more time it takes to compute.▶ Extreme case when 𝑚 = 1 will still work.

&
v

V
L

L

2 &
↓

2

2 C L

v L

v<-L

Usefulness of SGD▶ SGD allows learning on massive data sets.▶ Useful even when exact solutions available.▶ E.g., least squares regression / classification.

Training NNs in Practice▶ There are several Python packages for training
NNs:▶ PyTorch▶ Tensorflow / Keras▶ This week’s discussion was a Tensorflow tutorial.

