Rethinking Dimensionality

Informally: data expressed with d dimensions,
but its really confined to k-dimensional region

This region is called a manifold
d is the ambient dimension

k is the intrinsic dimension

Example

Ambient dimension: 3

Intrinsic dimension: 2

The Graph Laplacian

DefineL=D-W
D is the degree matrix
W is the similarity matrix (weighted adjacency)

L is called the Graph Laplacian matrix.

It is a very useful object

Very Important Fact
Claim:

Cost(f)=) > wy(fi- £} = fILf

Proof: expand both sides '

'Note that there was originally a 1 in front of fTLf, but this was not
correct as written. See Problem 06 in the Midterm 02 practice for a longer
explanation.

Surface

The surface of a prediction function H is the
surface made by plotting H(X) for all X.

If H is a linear prediction function, and*
X € R, then H(x) is a straight line.
X € R?, the surface is a plane.
X € RY, the surface is a d-dimensional hyperplane.

“when plotted in the original feature coordinate space!

51 e ripe L

L]
not ripe e® ;

hardness

greenness

Least Squares and Outliers

x
4 -4
o
-6 -6
B
-8 -8
4 =2 0 2 4 6 8 4 =2 0 2 4 6 8

Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

®Bishop, Pattern Recognition and Machine Learning

Basis Functions

We will transform:
the time, x,, to |x; - Noon|
the temperature, x,, to |x, - 72|

Formally, we've designed non-linear basis
functions:

©y(Xq,X3) = | %5 - 727]

In general a basis function ¢ maps RY - R

Training

Map each training example X{) to feature space,
creating new training data:

02 pERD), 2= (D), ., F0 = HE)

Fit linear prediction function H in usual way:

HHZ) = wo + W2y + Wy2Zy + ..o + WyZy

Prediction

If we have Z in feature space, prediction is:

HH{Z) = Wo + W2y + Wy2Zy + ..o + WyZy

Prediction

But if we have X from original space, we must
“convert” X to feature space first:

H(X) = H{(((X))
= Hf(((P1()_2), (Pz()_%), seey (pd()_z))T)
= Wy + Wy (X) + Wo5(X) + ... + Wyp,(X)

Decision Boundary

°

® %%
® oo
°

& o®
-..:

° :0
®

NNs as Function Composition

The full NN is a composition of layer functions.

e

o g/@

H(%) = HOHM(z)) = [w@]' ([W”] x+b1))+b<2

D

3(1)

Each Layer is a Function

We can think of each layer as a function mapping
a vector to a vector.

M(3) = [Wm]T 3+H0)
HM . R? » R3 0‘

O——O

HO(z =[w<2>] e é’
H? : R3 > R

Example

Compute the entries of the gradient given:

1

0 1

W‘”=(§ -3) W<z>=(2 1) W<3>=(_32) %=(2,1) g(2) = RelU

an’1 BH W(P”) dH oH
k=1 a az}") aa,(’)

aa“

pDsC /4o0&

Represaitaton [earmg

Lecture 24 Part 1

Gradient Descent for NN Training

Gradient Descent

Pick arbitrary starting point X(?), learning rate
parameter n > 0.

Until convergence, repeat:
Compute gradient of f at X7; that is, compute Vf(x®).
Update X" = X0 - nvf(x").

When do we stop? . .
When difference between X and X" is negligible.
l.e., when || X% - x0*1| is small.

def gradient_descent(
gradient, x, learning_rate=.01,
threshold=.1e-4

while True:
Xx_new = x - learning_rate * gradient(x)
if np.linalg.norm(x - x_new) < threshold:
break
X = X_new
return X

T
o~

@
N o ® © ¥ o 9

— — o o o o o 0_

Backprop Revisited

The weights of a neural network can be trained
using gradient descent.

This requires the gradient to be calculated
repeatedly; this is where backprop enters.

Sometimes people use “backprop” to mean
“backprop + SGD”, but this is not strictly correct.

Backprop Revisited

Consider training a NN using the square loss:

Backprop Revisited

For any node in any neural network’, we have the

following recursive formulas:

OH _ §Mpa1 _0H _ /(8+1)
aa}(e) k=1 azﬁf”) JjR

a"z—?g) - ﬁ’;g) g'(z))
OH _ oH ,(¢-1)
owld oA
OH _ OH

[ENG)
ob j azj

TFully-connected, feedforward network

Backprop Revisited

Interpretation:

2 n
_E (i) ()
n X’ y, YH()

Error Blame

When used in SGD, backprop “propagates error
backward” in order to update weights.

Difficulty of Training NNs

Gradient descent is guaranteed to find optimum
when objective function is convex.?

N

2Assuming it is properly initialized

Difficulty of Training NNs

When activations are non-linear, neural network
risk is highly non-convex:

N

A

Non-Convexity

When R is non-convex, GD can get “stuck” in local
minima.
Solution depends on initialization.

More sophisticated optimizers, using

momentum, adaptation, better initialization, etc.
Adagrad, RMSprop, Adam, etc.

Difficulty of Training (Deep) NNs

Deep networks can suffer from the problem of
vanishing gradients: if w is a weight at the
“front” of the network, oH/ow can be very small

Vanishing Gradients

If 0H/ow is always close to zero, w is updated
very slowly by gradient descent.

In short: early layers are slower to train.

One mitigation: use RelLU instead of sigmoid.

Vanishing Gradients

N

v

Sigmoid

N

pDsC /4o0&

Represaitaton [earmg

Lecture 24 Part 2

Stochastic Gradient Descent

Gradient Descent for Minimizing Risk

In ML, we often want to minimize a risk function:

== Z{’(H(x

-_—

Observation

The gradient of the risk function is a sum of
gradients:

VR(W) = %
i=1

One term for each point in training data.

Problem

In machine learning, the number of training
points n can be very large.

Computing the gradient can be expensive when
nis large.

Therefore, each step of gradient descent can be
expensive.

Idea

The (full) gradient of the risk uses all of the
training data:

It is an average of n gradients.

Idea: instead of using all n points, randomly
choose « n.

Stochastic Gradient

Choose a random subset (mini-batch) B of the
training data.

Compute a stochastic gradient:

VR(W) = Y VR(H(X;), y;)

ieB

Stochastic Gradient
VR(W) = > VR(H(XD; @), y;)
ieB
Good: if |B| < n, this is much faster to compute.

Bad: it is a (random) approximation of the full
gradient, noisy.

Stochastic Gradient Descent (SGD)
for ERM

Pick arbitrary starting point X(?), learning rate
parameter n > 0, batch size m < n.

Until convergence, repeat:
Randomly sample a batch B of m training data points
(on each iteration).
Compute stochastic gradient of f at X():

Z VE(H(XD; W),

ieB

Update X0V = 30 - ng

Idea

In practice, a stochastic gradient often works
well enough.

It is better to take many noisy steps quickly than
few exact steps slowly.

Batch Size

Batch size m is a parameter of the algorithm.

The larger m, the more reliable the stochastic
gradient, but the more time it takes to compute.

Extreme case when m = 1 will still work.

Usefulness of SGD

SGD allows learning on massive data sets.

Useful even when exact solutions available.
E.g., least squares regression / classification.

Training NNs in Practice

There are several Python packages for training

NNs:
PyTorch
Tensorflow / Keras

