psC /140&

Represaitaton [earm@

Lecture 23 Part 1

Backpropagation

Gradient of a Network

We want to compute(the gradient V”H\(
That is, aH/aW,-(f) and oH/[ob: " for all valid i, L.

=

A network is a composition of functions.

We'll make good use of the M.

Arbitrary Node

Claim #1
7 ot

(l’)
=it
J

Claim #2

dH =[:;/l (@)

92" a%f L sat
6 _— =
22\)@)

Claim #3

<)

Z)

e
i -+

General Formulas

9‘@ oH _ | oH 1
NGRS
ab%* iaz.

TFully-connected, feedforward network

Main Idea

The derivatives in layer # depend on derivatives in
layer £ + 1.

Backpropagation
-

Idea: compute the derivatives in last layers, first.

That is:
Compute derivatives in last layer, ¥; store them.
Use to compute derivatives in layer £ - 1.

Use to compute derivatives in layer ? - 2.

Backpropagation

Given an input X and a current parameter vector w:

Evalu network t mpute z% and a) for all nodes.
For each layer{’from st to first: 7=/ - 1
0+ - ,
Compute 2 £ 5 it ¢ Wi
:Sb

Compute 2 - ({, = ;‘;j@g()

(>
Example =0~

Compute the entries of the gradient given: agfg}‘j («xl
2 -3 2 1 3 R e
(ke 2 3) (oo 2) wele(3) 27 - res
W, ‘©
Q X1§z
l Xz—l—@—» z

Q(,JJ X IN> @ “ ')¢
ny 1 W(P+1 _ r oH (?—1)
= 7t = 20 q}
/ 2a® 2 ke azf 0k oz oa 9'(7) 73 07 5z0 7

Aside: Derivative of ReLU

/N

g(z) = max{0, z}
0, z<0) T o0
l

7 - et}
g'(2) 1, z>0 Z

!

Summary: Backprop

Backprop is an algorithm for efficiently
computing the gradient of a neural network

It is not an algorithm you need to carry out by
hand: your NN library can do it for you.

psC /140&

Represaitaton [earm@

Lecture 23 Part 2

Gradient Descent for NN Training

Empirical Risk Minimization

Collect a training set, {(X", y.)}

Pick the form of the prediction function, H.

E.g., a neural network, H.

Pick a loss function.

Minimize the empirical risk w.rt. that loss.

Minimizing Risk

To minimize ri e often use vector calculus.
Either set] = 0 and solve...
Or use gradient desce escent: walk in opposite direction of
V. R(W).

Recall, V;R(W) = (OR/ow,, OR[OWy, ..., 0R[ow,)T

In General

Let £ be the loss function, let H(X; w) be the
prediction function.

The empirical risk:

_, 1< _) Yy s
EZ{) rW y,)
i=1

Using the chain rule:

Training Neural Networks

For neural networks with nonlinear activations,
the risk R(W) is typically complicated. S

The mininimizer cannot be found directly. "

Instead, we use iterative methods, such as
\/_/\/_\/'

gradient descent.
N~ N ——

Iterative Optimization

To minimize a function f(X), we may try to
compute Vf(X); set to 0; solve.

Often, there is no closed-form solution.

How do we minimize f?

N

o

i

(.

Example
eX2+y2 + (X _

+(y - 3)%

2)2

“—

X,Y)

Consider

—

Example

Try solving Vf(x,y) = 0.

The gradient is:

5 xe" o 2(x -2
Vf(x,
\—/ 2ve - 3)

Can we solve the system?
{ 2xeX’ V" 4 2(x-2)=0
2y’ +2(y-3)=0

AR

Example
Try solving Vf(x, y) = 0.

The gradient is:

. 2xeX" Y’ 4 2(x - 2
Vf(x,y) = x2412 ()
2ye* V" + 2(y - 3)

Can we solve the system? Not in closed form.

2xeX’ Y 4 2(x-2)=0
2y’ + 2(y -3) = 0

Idea

=
(@)
©
o
-
o
o
©
)
=
)
©
P -
3
=
[
©
>
o
a
<

Start at an arbitrary location.

“Walk downhill”, towards

minimum.

Which way is down?

Consider a differentiable
function f(x, y).

Tangent plane at P
;

We are standing at P = (X,, ¥,)-
— 7

—_—

In a small region around P, f P
looks like a plane. 2=f(x, y)

Slope of plane in x,y 5][/\
directions: C y
— Ko¥ j

The Gradient

Let f : RY - R be differentiable. The gradient of
f at X is defined: e

TF(5) = (520 3-8, af())

0X, 90X, T oxy

—

Note: Vf@ is a function mappmg RY - RY,

Which way is down?

Tangent plane at P

~

/ﬂ/fﬁ(“”’%)
z=f(x,y)

-Vf(x, Y,) points in direction Yoy,
of steepest descent at (x,, y,). /\
5 4

X

Vf(x,,¥,) boints in direction
of Steepest ascent at (x,, ¥,)-

Gradient Properties

The gradient is used in the linear approximation
of f:

f(XO + 6)(ryO + 6y)

—

Important properties:
Vf(X) points in direction of steepest ascent at X.
-Vf(X) points in direction of steepest descent at X.
In directions oerdoes not change!

IVF(X)|| measures steepness of ascent
N———

Gradientgescent

Pick arbitrary starting point X%, learning rate

parameter n > 0.

Until convergence, repeat:
Compute gradient of f at X; that is, compute Vf(X").
- . - . - - .
Update X(* = X() - pvf(XM).
S

When do we stop?

When difference between X and X" is negligible.)%

l.e., when || X - X0 is small. Yhl

def gradient_descent(
gradient, x, learning_rate=.01,
threshold=.1e-4

while True:
x_new = x - learning_rate » gradient(x)
iF np.linalg.norm(x - x_new) < threshold:
break - -
X = X_new

return x
=

Backprop Revisited

The weights of a neural network can be trained
using gradient descent.

This requires the gradient to be calculated
repeatedly; this is where backprop enters.

Sometimes people use “backprop” to mean
“backprop + SGD”, but this is not strictly correct.

Backprop Revisited

Consider training a NN using the square loss:

of
oH

V, H(XY;)

M-

VWR(VT/) =

1=1

|
.M: .

(H(XD) - y;) T H(XO; W)

-
1
—_

Backprop Revisited

Interpretation:

N S (i), =
VaR() = 2 > (HXO) - y;) TR, i)
i=1

Error Blame

When used in SGD, backprop “propagates error
backward” in order to update weights.

Difficulty of Training NNs

Gradient descent is guaranteed to find optimum
when objective function is convex.?

/

\

N

2Assuming it is properly initialized

Difficulty of Training NNs

When activations are non-linear, neural network
risk is highly non-convex:

/N

A

Vv

Non-Convexity

When R is non-convex, GD can get “stuck” in local
minima.
Solution depends on initialization.

More sophisticated optimizers, using

momentum, adaptation, better initialization, etc.
Adagrad, RMSprop, Adam, etc.

Difficulty of Training (Deep) NNs

Deep networks can suffer from the problem of
vanishing gradients: if w is a weight at the
“front” of the network, 0H/ow can be very small

Vanishing Gradients

If oH/ow is always close to zero, w is updated
very slowly by gradient descent.

In short: early layers are slower to train.

One mitigation: use RelLU instead of sigmoid.

N

Vanishing Gradients

Sigmoid RelLU

psC /140&

Represaitaton [earmg

Lecture 23 Part 3

Stochastic Gradient Descent

Gradient Descent for Minimizing Risk

In ML, we often want to minimize a risk function:

n

R(W) = %Z{’

i=1

Observation

The gradient of the risk function is a sum of
gradients:

-) 1 L ' -)
EZ 1W yl)
1=1

One term for each point in training data.

Problem

In machine learning, the number of training
points n can be very large.

Computing the gradient can be expensive when
nis large.

Therefore, each step of gradient descent can be
expensive.

Idea

The (full) gradient of the risk uses all of the
training data:

n
LS UHHED; i), y,)
i=1

VR(W) =

It is an average of n gradients.

Idea: instead of using all n points, randomly
choose « n.

Stochastic Gradient

Choose a random subset (mini-batch) B of the
training data.

Compute a stochastic gradient:

W) = > VEH(RD; W), y;)

ieB

Stochastic Gradient
VR() ~ > VE(H(XD; W), y;)
IEB
Good: if |B| < n, this is much faster to compute.

Bad: it is a (random) approximation of the full
gradient, noisy.

Stochastic Gradient Descent (SGD)
for ERM

Pick arbitrary starting point X9, learning rate
parameter n > 0, batch size m < n.

Until convergence, repeat:
Randomly sample a batch B of m training data points
(on each iteration).
Compute stochastic gradient of f at X

G =Y VRHED;Ww),y,)

ieB

Update X" = X() - ng

Idea

In practice, a stochastic gradient often works
well enough.

It is better to take many noisy steps quickly than
few exact steps slowly.

Batch Size

Batch size m is a parameter of the algorithm.

The larger m, the more reliable the stochastic
gradient, but the more time it takes to compute.

Extreme case when m = 1 will still work.

Usefulness of SGD

SGD allows learning on massive data sets.

Useful even when exact solutions available.
E.g., least squares regression / classification.

Training NNs in Practice

There are several Python packages for training

NNSs:
PyTorch
Tensorflow / Keras

