DSC 140B Representation Learning

Lecture 23 Part 1

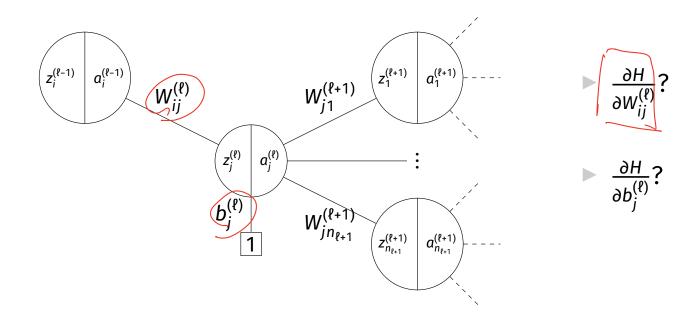
Backpropagation

Gradient of a Network

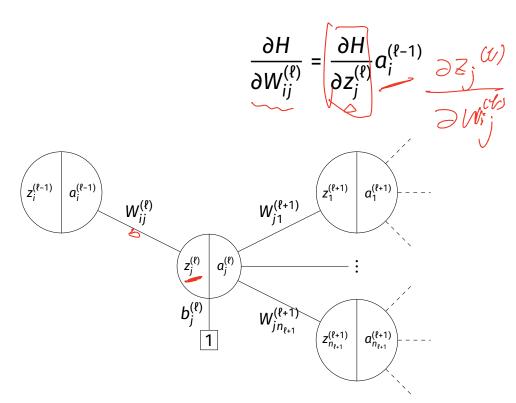
► We want to compute the gradient $\nabla_{\vec{w}}H$. ► That is, $\partial H/\partial W_{ij}^{(\ell)}$ and $\partial H/\partial b_i^{(\ell)}$ for all valid *i*, *j*, *l*.

- A network is a composition of functions.
- We'll make good use of the chain rule.

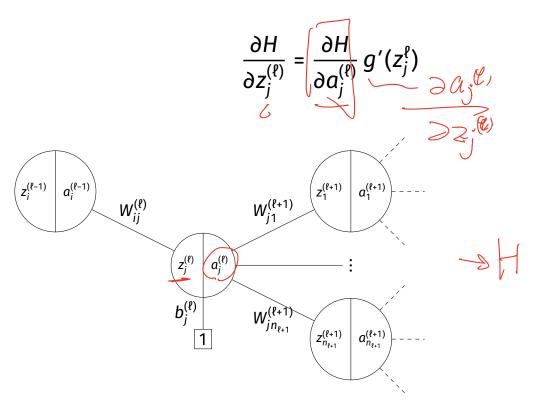
Arbitrary Node

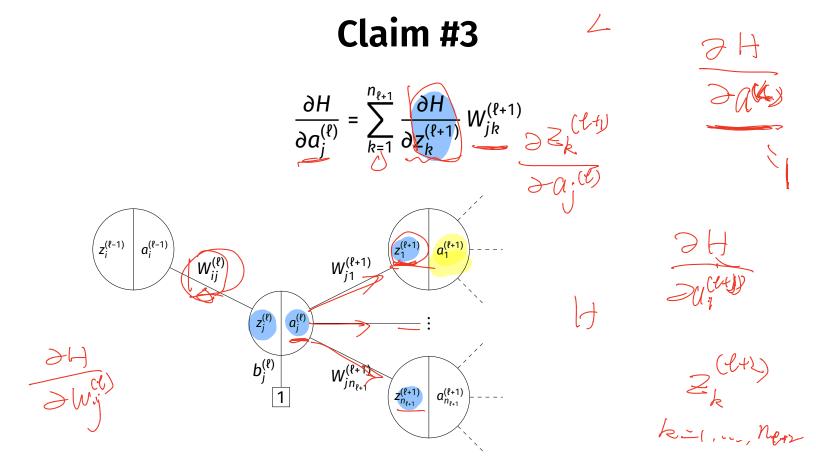


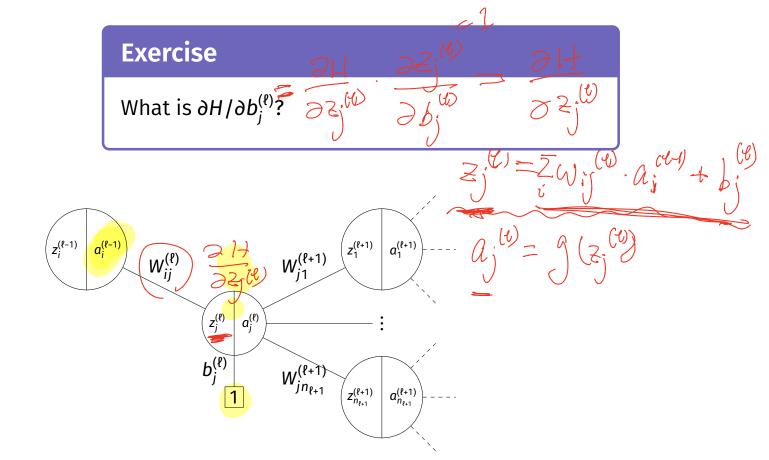
Claim #1



Claim #2







General Formulas

▶ For any node in any neural network¹, we have the following recursive formulas: $W_{jk}^{(l+1)}$ $\sum_{k=1}^{n_{\ell+1}}$ 9H $\partial a_{i}^{(l)}$ $= \frac{g'(z_i^{\ell})}{\partial a_i^{(\ell)}} g'(z_i^{\ell})$ ЭH ЭΗ Da (t-1) 9Н

¹Fully-connected, feedforward network

Main Idea

The derivatives in layer l depend on derivatives in layer l + 1.

Backpropagation

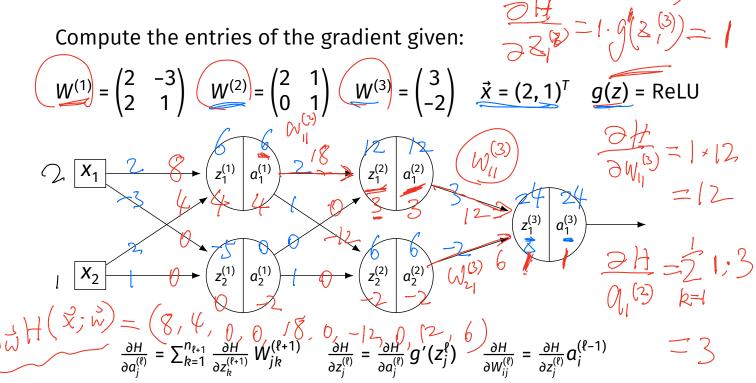
- Idea: compute the derivatives in last layers, first.
- That is:
 - Compute derivatives in last layer, *l*; store them.
 - Use to compute derivatives in layer l 1.
 - Use to compute derivatives in layer l 2.
 - ••

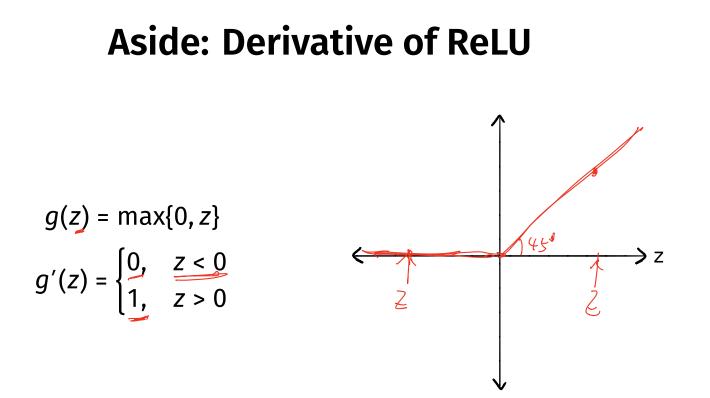
Backpropagation

Given an input \vec{x} and a current parameter vector \vec{w} :

- 1. Evaluate the network to compute $z_i^{(\ell)}$ and $a_i^{(\ell)}$ for all nodes.
- 2. For each layer ℓ from last to first: $\ell = \ell \longrightarrow 1$
 - Compute $\frac{\partial H}{\partial a_{\ell}^{(\ell)}} = \sum_{k=1}^{n_{\ell+1}} \frac{\partial H}{\partial z_k^{(\ell+1)}} W_{jk}^{(\ell+1)}$
 - Compute $\frac{\partial H}{\partial z_{i}^{(\ell)}} = \frac{\partial H}{\partial q_{i}^{(\ell)}} g'(z_{j}^{\ell})$
 - Compute $\frac{\partial H}{\partial W_{ij}^{(\ell)}} = \frac{\partial H}{\partial z_i^{(\ell)}} a_i^{(\ell-1)}$
 - Compute $\frac{\partial H}{\partial b_j^{(\ell)}} = \frac{\partial H}{\partial z_j^{(\ell)}}$

 $H = G_{1}^{(3)}$





Summary: Backprop

- Backprop is an algorithm for efficiently computing the gradient of a neural network
- It is not an algorithm you need to carry out by hand: your NN library can do it for you.

Representation Learning

Lecture 23 Part 2

Gradient Descent for NN Training

Empirical Risk Minimization

- 0. Collect a training set, $\{(\vec{x}^{(i)}, y_i)\}$
- Pick the form of the prediction function, H.
 E.g., a neural network, H.
- 2. Pick a loss function.
- 3. Minimize the empirical risk w.r.t. that loss.

Minimizing Risk

- ► To minimize risk, we often use **vector calculus**.
 - Either set $\nabla_{\vec{w}} R(\vec{w}) = 0$ and solve...
 - Or use gradient descent: walk in opposite direction of $\nabla_{\vec{w}} R(\vec{w})$.
- ► Recall, $\nabla_{\vec{w}} R(\vec{w}) = (\partial R / \partial w_0, \partial R / \partial w_1, ..., \partial R / \partial w_d)^T$

In General

- ► Let ℓ be the loss function, let $H(\vec{x}; \vec{w})$ be the prediction function.
- ► The empirical risk:

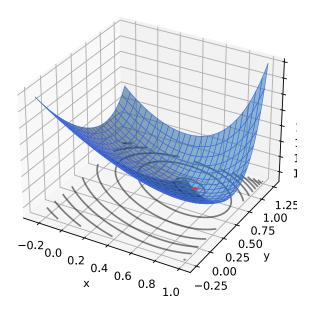
Training Neural Networks

- For neural networks with nonlinear activations, the risk R(w) is typically complicated.
- The minimizer cannot be found directly.
- Instead, we use iterative methods, such as gradient descent.

Iterative Optimization

- To minimize a function $f(\vec{x})$, we may try to compute $\vec{\nabla} f(\vec{x})$; set to 0; solve.
- Often, there is no closed-form solution.
- ► How do we minimize *f*?

Consider $f(x, y) = e^{x^2 + y^2} + (x - 2)^2 + (y - 3)^2$.



Try solving
$$\vec{\nabla} f(x, y) = 0$$
.

► The gradient is:

$$\vec{\nabla}f(x,y) = \begin{pmatrix} 2xe^{x^2+y^2} + 2(x-2) \\ 2ye^{x^2+y^2} + 2(y-3) \end{pmatrix}$$

Can we solve the system?

$$\begin{cases} 2xe^{x^2+y^2} + 2(x-2) = 0\\ 2ye^{x^2+y^2} + 2(y-3) = 0 \end{cases}$$

х* у*.

Try solving
$$\vec{\nabla} f(x, y) = 0$$
.

► The gradient is:

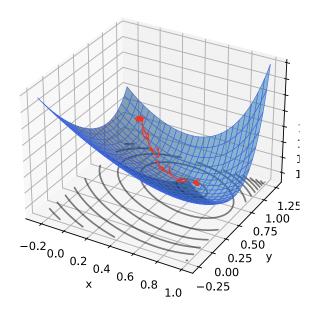
$$\vec{\nabla}f(x,y) = \begin{pmatrix} 2xe^{x^2+y^2} + 2(x-2) \\ 2ye^{x^2+y^2} + 2(y-3) \end{pmatrix}$$

Can we solve the system? Not in closed form.

$$2xe^{x^2+y^2} + 2(x-2) = 0$$
$$2ye^{x^2+y^2} + 2(y-3) = 0$$

Idea

- Apply an iterative approach.
- Start at an arbitrary location.
- "Walk downhill", towards minimum.



Which way is down?

- Consider a differentiable function f(x, y).
- We are standing at $P = (x_0, y_0)$.
- In a small region around P, f looks like a plane.
- Slope of plane in x, y directions:

 $(x_0, y_0) \quad \frac{\partial f}{\partial v}(x_0, y_0) \stackrel{(x, y)}{\rightarrow} (x_0, y_0)$

Tangent plane at P z = f(x, y)Xoxy

The Gradient

• Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable. The gradient of f at \vec{x} is defined:

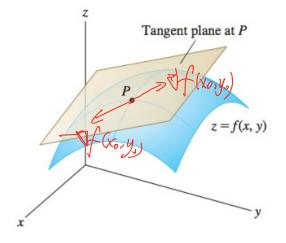
$$\vec{\nabla} f(\vec{x}) = \left(\frac{\partial f}{\partial x_1}(\vec{x}), \frac{\partial f}{\partial x_2}(\vec{x}), \dots, \frac{\partial f}{\partial x_d}(\vec{x})\right)^T$$

Note:
$$\vec{\nabla} f(\vec{x})$$
 is a function mapping $\mathbb{R}^d \to \mathbb{R}^d$.

Which way is down?

▶ $(\nabla f(x_0, y_0))$ points in direction of steepest **ascent** at (x_0, y_0) .

► $-\vec{\nabla}f(x_0, y_0)$ points in direction of steepest **descent** at (x_0, y_0) .



Gradient Properties

The gradient is used in the linear approximation of *f*:

$$f(x_0 + \delta_x, y_0 + \delta_y) \approx f(x_0, y_0) + \vec{\delta} \cdot \vec{\nabla} f(x_0, y_0)$$

Important properties:

- $\checkmark \vec{\nabla} f(\vec{x})$ points in direction of **steepest ascent** at \vec{x} .
- \blacktriangleright $-\vec{\nabla}f(\vec{x})$ points in direction of **steepest descent** at \vec{x} .
- In directions orthogonal to Vf(x), f does not change!
 ∥Vf(x)∥ measures steepness of ascent

Gradient Descent

• Pick arbitrary starting point $\vec{x}^{(0)}$ learning rate parameter $\eta > 0$.

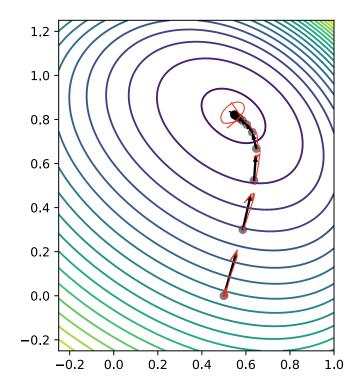
Until convergence, repeat:

- Compute gradient of f at $\vec{x}^{(i)}$; that is, compute $\vec{\nabla} f(\vec{x}^{(i)})$.
 Update $\vec{x}^{(i+1)} = \vec{x}^{(i)} \eta \vec{\nabla} f(\vec{x}^{(i)})$.

When do we stop?

- ► When difference between $\vec{x}^{(i)}$ and $\vec{x}^{(i+1)}$ is negligible. ► I.e., when $\|\vec{x}^{(i)} \vec{x}^{(i+1)}\|$ is small.

```
def gradient descent(
           gradient, x, learning_rate=.01,
           threshold=.1e-4
):
     while True:
          x_new = x - learning_rate * gradient(x)
if np.linalg.norm(x - x_new) < threshold:</pre>
                break
           x = x_{new}
     return x
```



Backprop Revisited

- The weights of a neural network can be trained using gradient descent.
- This requires the gradient to be calculated repeatedly; this is where backprop enters.
- Sometimes people use "backprop" to mean "backprop + SGD", but this is not strictly correct.

Backprop Revisited

Consider training a NN using the square loss:

$$\nabla_{\vec{w}} R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ell}{\partial H} \nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})$$
$$= \frac{2}{n} \sum_{i=1}^{n} (H(\vec{x}^{(i)}) - y_i) \nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})$$

Backprop Revisited

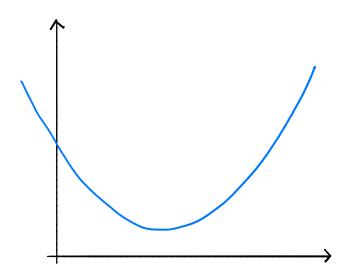
Interpretation:

$$\nabla_{\vec{w}} R(\vec{w}) = \frac{2}{n} \sum_{i=1}^{n} \underbrace{(H(\vec{x}^{(i)}) - y_i)}_{\text{Error}} \underbrace{\nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})}_{\text{Blame}}$$

When used in SGD, backprop "propagates error backward" in order to update weights.

Difficulty of Training NNs

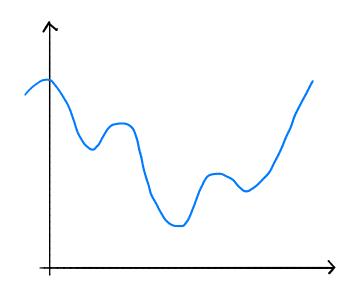
Gradient descent is guaranteed to find optimum when objective function is convex.²



²Assuming it is properly initialized

Difficulty of Training NNs

When activations are non-linear, neural network risk is highly non-convex:

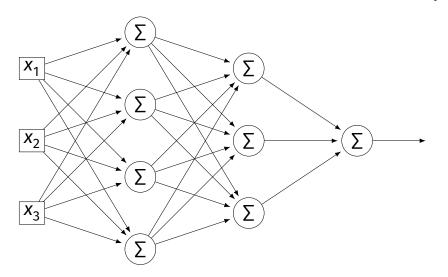


Non-Convexity

- When R is non-convex, GD can get "stuck" in local minima.
 - Solution depends on initialization.
- More sophisticated optimizers, using momentum, adaptation, better initialization, etc.
 Adagrad, RMSprop, Adam, etc.

Difficulty of Training (Deep) NNs

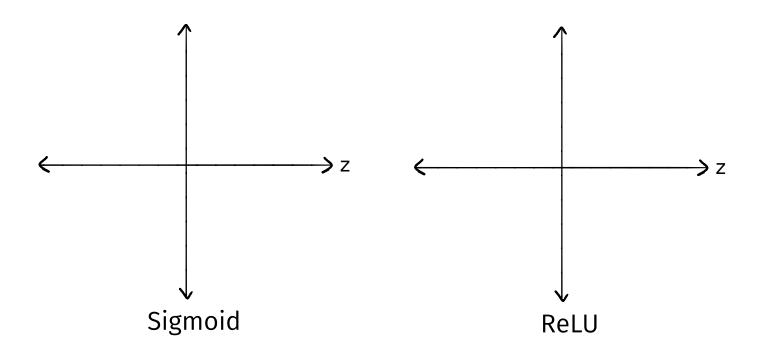
Deep networks can suffer from the problem of vanishing gradients: if w is a weight at the "front" of the network, ∂H/∂w can be very small



Vanishing Gradients

- If ∂H/∂w is always close to zero, w is updated very slowly by gradient descent.
- In short: early layers are slower to train.
- One mitigation: use ReLU instead of sigmoid.

Vanishing Gradients



Lecture 23 Part 3

Stochastic Gradient Descent

Gradient Descent for Minimizing Risk

In ML, we often want to minimize a risk function:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Observation

The gradient of the risk function is a sum of gradients:

$$\vec{\nabla}R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \vec{\nabla}\ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

One term for each point in training data.

Problem

- In machine learning, the number of training points n can be very large.
- Computing the gradient can be expensive when n is large.
- Therefore, each step of gradient descent can be expensive.

Idea

The (full) gradient of the risk uses all of the training data:

$$\nabla R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

- ▶ It is an average of *n* gradients.
- Idea: instead of using all n points, randomly choose << n.</p>

Stochastic Gradient

Choose a random subset (mini-batch) B of the training data.

Compute a stochastic gradient:

$$\nabla R(\vec{w}) \approx \sum_{i \in B} \vec{\nabla} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Stochastic Gradient

$$\nabla R(\vec{w}) \approx \sum_{i \in B} \vec{\nabla} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

- **Good:** if $|B| \ll n$, this is much faster to compute.
- Bad: it is a (random) approximation of the full gradient, noisy.

Stochastic Gradient Descent (SGD) for ERM

- Pick arbitrary starting point $\vec{x}^{(0)}$, learning rate parameter $\eta > 0$, batch size $m \ll n$.
- Until convergence, repeat:
 - Randomly sample a batch B of m training data points (on each iteration).
 - Compute stochastic gradient of f at $\vec{x}^{(i)}$:

$$\vec{g} = \sum_{i \in B} \vec{\nabla} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

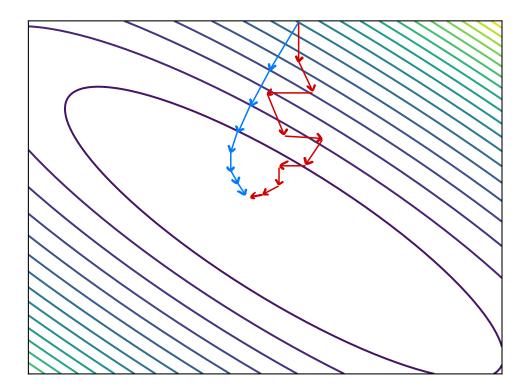
• Update
$$\vec{x}^{(i+1)} = \vec{x}^{(i)} - \eta \vec{g}$$

Idea

- In practice, a stochastic gradient often works well enough.
- It is better to take many noisy steps quickly than few exact steps slowly.

Batch Size

- ▶ Batch size *m* is a parameter of the algorithm.
- The larger *m*, the more reliable the stochastic gradient, but the more time it takes to compute.
- Extreme case when m = 1 will still work.



Usefulness of SGD

- ► SGD allows learning on **massive** data sets.
- Useful even when exact solutions available.
 E.g., least squares regression / classification.

Training NNs in Practice

- There are several Python packages for training NNs:
 - PyTorch
 - Tensorflow / Keras