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Lecture 22 Part 1

Neural Networks



Notation

2" is the linear activation before g is applied.
af’ = g(z) is the actual output of the neuron.



Example

g = RelLU
Linear output
X=(3,-1)1
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Output Activations

The activation of the output neuron(s) can be
different than the activation of the hidden
neurons.

In classification, sigmoid activation makes sense.

In regression, linear activation makes sense.



Main Idea

A neural network with linear activations is a lin-

ear model. If non-linear activations are used, the
model is made non-linear.
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Demo



Feature Map

We have seen how to fit non-linear patterns with
linear models via basis functions (i.e., a feature
map).

H(X) = Wy + Wy @q(X) + ... + Wydp(X)

These basis functions are fixed before learning.

Downside: we have to choose ¢ somehow.



Learning a Feature Map

Interpretation: The hidden layers of a neural
network learn a feature map.



Each Layer is a Function

We can think of each layer as a function mapping
a vector to a vector.

M(3) = [W<1>]T3+5(1>
HD : R? > R

HO(z =[w<2>] e
H? : R3 - R’




Each Layer is a Function

The hidden layer performs a feature map from R? to R3.
The output layer makes a prediction in R3.

Intuition: The feature map is learned so as to make the
output layer’s job “easier”.




Demo

Train a deep network to classify the data below.

Hidden layers will learn a new feature map that
makes the data linearly separable.



We'll use three hidden
layers, with last having
two neurons.

We can see this new
representation!

Plug in X and see
activations of last hidden
layer.

Demo
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Learning a New Representation
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Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation
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Learning a New Representation
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Learning a New Representation
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Learning a New Representation
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Learning a New Representation




Learning a New Representation




Deep Learning

The NN has learned a new representation in
which the data is easily classified.
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Training Neural Networks



Training

How do we learn the weights of a (deep) neural
network?




Remember...

How did we learn the weights in linear least
squares regression?
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Empirical Risk Minimization
Collect a training set, {(X, y,)}
Pick the form of the prediction function, H.
Pick a loss function.

Minimize the empirical risk w.rt. that loss.



Remember: Linear Least Squares

Pick the form of the prediction function, H.
E.g., linear: H(X; W) = wy + W, X, + ... + WyXy = Aug(X) - w

Pick a loss function.
E.g., the square loss.

Minimize the empirical risk w.rt. that loss:

n

Req(W) = zm )-¥i)? = Z(Aug(x“'))-v*v—y,-)z

i=1



Minimizing Risk

To minimize risk, we often use vector calculus.
Either set V;,R(W) = 0 and solve...
Or use gradient descent: walk in opposite direction of
vV, R(W).

Recall, V;R(W) = (OR/ow,, OR/dwy, ..., 0R [ow,)"



In General

Let £ be the loss function, let H(X; W) be the
prediction function.

The empirical risk:




Gradient of H

To minimize risk, we want to compute V;R.
To compute V;R, we want to compute V;H.

This will depend on the form of H.



Example: Linear Model

Suppose H is a linear prediction function:

H(X; W) = Wy + WXy + ... + WX

What is V;H with respect to W?



Example: Linear Model

Consider oH [ow,:
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Example: Neural Networks

Suppose H is a neural network (with nonlinear
activations).

What is VH?
It's more complicated...




Parameter Vectors

It is often useful to pack all of the network’s
weights into a parameter vector, W.

Order is arbitrary:

N 1) 11,01 1) (1) @) (2 2) (2

= (WO, WD, b0 b0 W@ W@, e p@
The network is a function H(x; w).

Goal of learning: find the “best” w.



Gradient of Neural Network

V;H is a vector-valued function.

Plugging a data point, X, and a parameter vector,
W, into V;H “evaluates the gradient”, results in a
vector, same size as w.




Suppose WY = -2,w{) = -5,W) = 2 and X =
(3,2,-2)" and all biases are 0. ReLU activations are
used. What is oH /oW{)(X, )?




Example

Consider aH/awﬁ):

m
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Example

Consider aH/awﬁ):

m
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Example

Consider aH/awﬂ):

m
&/




A Better Way

Computing the gradient is straightforward...
But can involve a lot of repeated work.

Backpropagation is an algorithm for efficiently
computing the gradient of a neural network.
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Backpropagation



Gradient of a Network

We want to compute the gradient V;H.
That is, aH/aW,.(f) and aH/ab,@) for all valid i,J, .

A network is a composition of functions.

We'll make good use of the chain rule.



Recall: The Chain Rule

d _dfdg
af(g(x» " dg dx

= f'(g(x)) g'(x)



Some Notation

We'll consider an arbitrary node in layer £ of a
neural network.

Let g be the activation function.

n, denotes the number of nodes in layer ¢.



Arbitrary Node




Claim #1

oH _ oH (e-1)
aW,.(;’) az}*’)

i




Claim #2




Claim #3

oH

(b+1)

aa? & azf”)




What is 0H/ob{"?




General Formulas

For any node in any neural network?, we have the
following recursive formulas:
Zn(’+1 aH ({,"'1)

oH OH (0

—_ = = Z:

oD 5al® g'( /)
Ji J

OH _ (l’ 1)

ow) - az() i

OH _ OH
ab® 50
J Ji

"Fully-connected, feedforward network



Main Idea

The derivatives in layer £ depend on derivatives in
layer £ + 1.




Backpropagation
Idea: compute the derivatives in last layers, first.

That is:
Compute derivatives in last layer, #; store them.
Use to compute derivatives in layer £ - 1.
Use to compute derivatives in layer £ - 2.



Backpropagation

Given an input X and a current parameter vector w:

Evaluate the network to compute 2" and a!” for all nodes.
For each layer ¢ from last to first:

n _OH (P+1)
Compute Zk’{ 20 Wi,

l
Compute 2 m = (*’) g ( j)
l

Compute -2 = 2q()
U c)z}.
Compute 2 = 2of
P ab az}”)

i



Example

Compute the entries of the gradient given:

1

0 1

W‘”=(§ -3) W<z>=(2 1) W<3>=(_32) %=(2,1) g(2) = RelU

an’1 BH W(P”) dH oH
k=1 a az}") aa,(’)

aa“



Aside: Derivative of RelLU

N

g(z) = max{0, z}

0, z<0 <

g'(2) = 1 250




Summary: Backprop

Backprop is an algorithm for efficiently
computing the gradient of a neural network

It is not an algorithm you need to carry out by
hand: your NN library can do it for you.



