psC /140&

Represaitaton [earm?

Lecture 22 Part 1

Neural Networks

Notation

z}i) is the linear activation before g is applied.
aj(.i) = g(z") is the actual output of the neuron.

Ny g = RelU
2 | o’ Linear output

} -
— X=(3,-1)
® £
% a
2

N
~
=
f
Q
NT
=
-

A_\N’:

-_—Z o Z o Z -

1 1" 1 11 1 1l 11

Output Activations

The activation of the output neuron(s) can be

different than the activation of the hidden
neurons.

In classification, sigmoid activation makes sense.

In regression, linear activation makes sense.

A neural network with linear activations is a lin-
ear model. If non-linear activations are used, the
model is made non-linear.

psC /140&

Represaitaton [earm@

Lecture 22 Part 2

Demo

Feature Map

We have seen how to fit non-linear patterns with
linear models via basis functions (i.e., a feature
map).

H(R) = wo + W1 9y(R) + .+ Wi By(R)

These basis functions are fixed before learning.

Downside: we have to choose ¢ somehow.

Learning a Feature Map

Interpretation: The hidden layers of a neural
network/learna feature map.

H(1

We can think of each layer as a fu
a vector to a vector.

Each Layer is a Function

< [wo)” z4BO)

H) -

R? - R3

H@)(Z) = [W(2)] 3+H@

H?) -

R3 - R

X,

A
S

tion mapping

@_.

Each Layer is a Function

The hidden layer performs a feature map from &Etog.
The output la a prediction in R3. g

Intuition: The feature map is learned so as to make the
output layer’s job “easier”.

Demo

Train a deep network to classify the data below.

Hidden layers will learn a new feature map that
makes the data linearly separable.

ey Ty

a’l"i’{" 3
..'."i" '#A’ ?5‘!.‘? i:,‘%.

We'll use three hidden
layers, with last having
two neurons.

We can see this new
representation!

Plug in X and see
activations of last hidden
layer.

Demo

—

Learning a New Representation

\

s

b

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Deep Learning

The NN has learned a new representation in
which the data is easily classified.

psC /140&

Represaitaton [earmg

Lecture 22 Part 3

Training Neural Networks

Training

How do we learn the weights of a (deep) neural
network?

X1

\
% @\
% -
4 /

X

Remember...

How did we learn the weights in linear least
squares regression?

X1

X3 \WZ\ I
\

Empirical Risk Minimization
Collect a training set, {(X", y.)}
Pick the form of the prediction function,(ll
Pick a loss function.

Minimize the empirical risk w.rt. that loss.

Remember: Linear Least Squares

Pick the form of the prediction function, H.
E.g., linear: H(X; w) = Wug(i) W

Pick a loss function. Q) %
E.g., the square loss. // H QXC / WJ‘ 6 u

Minimize the empirical risk w.rt. that loss:

- 1 / (] 1 < 3(i >
b Ragli) = 5D (HEO)-yi)? = 55 (Aug(R0)- =)
(N i=1 i=1

Z ~ ()C?)Q\//Fyd

Minimizing Risk

To minimize risk;, we often use vector calculus.
Either set V. R(W) = 0 and solve...

—

adientdescent: walk in opposite direction of
< —

Recall, V;R(W) = (OR/ow,, R /ow;, ...,dR [owy)" qu

= (% ~ (1) . 2\
= NNg R ®
& % P

AN =

&

In General

Let £ be the loss function, let H(X; W) be the
prediction function.

The empirical risk:

n
RG) = ~ S (HED; W), y;)

4

Using the

S

Gradient of H

To minimize risk, we want to compute VR.

To compute VR, we want to compu

This will depend on the form of H.

Example: Linear Model

Suppose H is a linear prediction function:

H(X; W) = Wy + Wy Xq + ... + WyXy
—_— W

What is V H with respect to w?

éH 5h) _\ﬁiy
\§ H(VD T ordoy, Oy

\~

Example: Linear Model

Consider oH/ow,: —- Yf

X1

X \WZ\\ VI"
\

Example: Neural Networks

Suppose H is a neural network (with nonlinear
activations).

What is VH?
o .
It's more complicated...

Parameter Vectors

It is often useful to pack all of the network’s
weights into a parameter vector, W.

Order is arbitrary:

- 1 1 1 1 2 2 2 2
C\‘__J ——

The network is a function H(X; w).
_—

Goal of learning: find the “best” w.

Gradient of Neural Network

D
"y] : =
V;H Is a vector valued function.

Plugging a data point, X, and a parameter vector,
W, into V;H “evaluates the gradient”, results in a
vector, same size as w.

Suppose WY = -2,wY = -5-M4Y = 2 and X =
(3,2,-2)" and all biases are 0{ ReLU activations are

used. What is oH /dW{D(X, W)? -7

Q
(1) z
a;y 1% gl\f\)
&
g

S

@\!\Q\N\ AR S R .)
27 5 (3 Example - 0,0, 0 6
\

Consider aH /oW

4, :
aP= (%)

~~

Example

Consider aH /oW!?:

=

— D

ZVUH

A Better Way

Computing the gradient is straightforward...

But can involve a lot of repeated work.

Backpropagatlon 15 an algorithm for efficiently
he gradient of a neural network.

psC /140&

Represaitaton [earm@

Lecture 22 Part 4

Backpropagation

Gradient of a Network

We want to compute the gradient V;H.
That is, oH /oW and oH/ob{" for all valid i,j, .

A network is a composition of functions.

We'll make good use of the chain rule.

Recall: The Chain Rule

d dfdg
dx =2’ (9(3)) = dgdx

= f(g(x))g'(x)

Some Notation

We'll consider an arbitrary node in layer £ of a
neural network.

Let g be the activation function.

n, denotes the number of nodes in layer {.

Arbitrary Node

Claim 1 2

Claim #2

oH _|oH g 3%6 ad‘(/@ a9)

Claim #3 T

J
OH < oH JR
= _ WF+1)
3a® ot Tk
a;" k=192, 7%, &
— H — OH__ 2
o) L IR

What is oH /ab,@"’?

General Formulas

For any node in any neural network’, we have the

following recursive formulas:

OH _ 5 M1 _oH 1p/(8+1)
aa](.{’) R=1 azgn) JR

OH _ OH r(Ht

= Z:
o4 aa! 9'(7)
OH__ oH ,(t-1)

(0) — 5O
aW,-j azj

OH _ oH
abt) 50
J J

TFully-connected, feedforward network

Main Idea

The derivatives in layer # depend on derivatives in
layer £ + 1.

Backpropagation
Idea: compute the derivatives in last layers, first.

That is:
Compute derivatives in last layer, #; store them.
Use to compute derivatives in layer £ - 1.
Use to compute derivatives in layer ¢ - 2.

Backpropagation

Given an input X and a current parameter vector w:

Evaluate the network to compute 2 and a!” for all nodes.
For each layer ? from last to first:

OH _ 5 M1 _oH (2+1)
Compute “& = 2 2 e Wi,
J

OH _ OH qr(A
Compute 6= 309 (z))
J J

OH _ OH (l’—1)
Compute @ = 500
1j J
oH _ OH
Compute 0 = 30
J

j

Example

Compute the entries of the gradient given:

W“):@ '13) W(2)=(S 1) W(3)=(_32) X

X1 §<> Zg1) 0(11) @@\

OH _ <M1 OH (2+71) oH oH ’
2L =yt h on _ OH 4'(Z1
aa](.") zk'1 6255”) jk 0z oa'? g (J

1
—~
N

—_—
~
~|
Q
—
N
~
1
A
D
—
c

Aside: Derivative of ReLU

/N

g(z) = max{0, z}

N

0, z<0
1, z>0

Summary: Backprop

Backprop is an algorithm for efficiently
computing the gradient of a neural network

It is not an algorithm you need to carry out by
hand: your NN library can do it for you.

