DSC 1408 Representation Learning

Lecture 22 Part 1

Neural Networks

Notation

- $\triangleright z_i^{(i)}$ is the linear activation before g is applied.
- $a_i^{(i)} = g(z^{(i)})$ is the actual output of the neuron.

Example

$$W^{(1)} = \begin{pmatrix} 2 & -1 & 0 \\ 4 & 5 & 2 \end{pmatrix} \qquad W^{(2)} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix} \qquad \vec{b}^{(1)} = (3, -2, -2)^T \qquad \vec{b}^{(2)} = (-4)^T$$

Output Activations

The activation of the output neuron(s) can be different than the activation of the hidden neurons.

In classification, sigmoid activation makes sense.

In regression, linear activation makes sense.

Main Idea

A neural network with linear activations is a linear model. If non-linear activations are used, the model is made non-linear.

Lecture 22 Part 2

Demo

Feature Map

► We have seen how to fit non-linear patterns with linear models via basis functions (i.e., a feature map).

$$H(\vec{x}) = w_0 + w_1 \phi_1(\vec{x}) + ... + w_k \phi_k(\vec{x})$$

- ► These basis functions are fixed **before** learning.
- **Downside:** we have to choose $\vec{\phi}$ somehow.

Learning a Feature Map

Interpretation: The hidden layers of a neural network learn a feature map.

Each Layer is a Function

We can think of each layer as a function mapping a vector to a vector.

$$H^{(1)}(\vec{z}) = \begin{bmatrix} W^{(1)} \end{bmatrix}^T \vec{z} + \vec{b}^{(1)}$$

$$H^{(1)} : \mathbb{R}^2 \to \mathbb{R}^3$$

$$H^{(2)}(\vec{z}) = [W^{(2)}]^T \vec{z} + \vec{b}^{(2)}$$

 $H^{(2)}: \mathbb{R}^3 \to \mathbb{R}^1$

Each Layer is a Function

- ► The hidden layer performs a feature map from \mathbb{R}^2 to \mathbb{R}^3 .
- The output layer makes a prediction in \mathbb{R}^3 .
- Intuition: The feature map is learned so as to make the output layer's job "easier".

Demo

- Train a deep network to classify the data below.
- ► Hidden layers will learn a new feature map that makes the data linearly separable.

Demo

- We'll use three hidden layers, with last having two neurons.
- We can see this new representation!
- Plug in \vec{x} and see activations of last hidden layer.

rd fearne 3rd hidden Cayon

Deep Learning

► The NN has learned a new **representation** in which the data is easily classified.

Lecture 22 Part 3

Training Neural Networks

Training

How do we learn the weights of a (deep) neural network?

Remember...

► How did we learn the weights in linear least squares regression?

Empirical Risk Minimization

- 0. Collect a training set, $\{(\vec{x}^{(i)}, y_i)\}$
- 1. Pick the form of the prediction function, H.
- 2. Pick a loss function.
- 3. Minimize the empirical risk w.r.t. that loss.

Remember: Linear Least Squares

- 0. Pick the form of the prediction function, H.
 - ► E.g., linear: $H(\vec{x}; \vec{w}) = w_0 + w_1 x_1 + ... + w_d x_d = \text{Aug}(\vec{x}) \cdot \vec{w}$

2. Minimize the empirical risk w.r.t. that loss:

$$R_{sq}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (H(\vec{x}^{(i)}) - y_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (Aug(\vec{x}^{(i)}) \cdot \vec{w} - y_i)^2$$

 $\vec{a} = (\chi t) \chi \chi$

Minimizing Risk

- To minimize risk, we often use vector calculus.
 - Either set $\nabla_{\vec{w}} R(\vec{w}) = 0$ and solve...
 - Or use gradient descent: walk in opposite direction of $\nabla_{\vec{w}} R(\vec{w})$.
- ► Recall, $\nabla_{\vec{w}} R(\vec{w}) = (\partial R / \partial w_0, \partial R / \partial w_1, ..., \partial R / \partial w_d)^T$

$$\mathcal{N} = \mathcal{N}(t-1) - \mathcal{N} \mathcal{N}(\mathcal{M})$$

£21,00

In General

- Let ℓ be the loss function, let $H(\vec{x}; \vec{w})$ be the prediction function.
- ► The empirical risk:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Using the chain rule;

$$\nabla_{\vec{w}} R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ell}{\partial H} \nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})$$

Gradient of H

► To minimize risk, we want to compute $\nabla_{\vec{w}} R$.

- ► To compute $\nabla_{\vec{w}}R$, we want to compute $\nabla_{\vec{w}}H$.
- ► This will depend on the form of *H*.

Example: Linear Model

Suppose H is a linear prediction function:

$$H(\vec{x}; \vec{w}) = w_0 + w_1 x_1 + ... + w_d x_d$$

What is
$$\nabla_{\vec{W}}H$$
 with respect to \vec{W} ?

$$(\vec{W}) = (\vec{W}) =$$

Example: Linear Model

► Consider $\partial H/\partial w_1$: $\sim \chi_1$

Example: Neural Networks

- Suppose H is a neural network (with nonlinear activations).
- ▶ What is ∇H ?
 - It's more complicated...

Parameter Vectors

- It is often useful to pack all of the network's weights into a parameter vector, \vec{w} .
- Order is arbitrary:

$$\vec{W} = (W_{11}^{(1)}, W_{12}^{(1)}, \dots, b_1^{(1)}, b_2^{(1)}, W_{11}^{(2)}, W_{12}^{(2)}, \dots, b_1^{(2)}, b_2^{(2)}, \dots)^T$$

- ► The network is a function $H(\vec{x}; \vec{w})$.
- ▶ Goal of learning: find the "best" \vec{w} .

Gradient of Neural Network

 $ightharpoonup \nabla_{\vec{W}} H$ is a vector-valued function. \overrightarrow{W}

Plugging a data point, \vec{x} , and a parameter vector, \vec{w} , into $\nabla_{\vec{w}}H$ "evaluates the gradient", results in a vector, same size as \vec{w} .

Exercise

Suppose $W_{11}^{(1)} = -2$, $W_{21}^{(1)} = -5$, $W_{31}^{(1)} = 2$ and $\vec{x} = (3, 2, -2)^T$ and all biases are 0. ReLU activations are used. What is $\partial H/\partial W_{11}^{(1)}(\vec{x}, \vec{w})$?

Example
$$\mathbb{Z}_{l}^{(2)} = \mathcal{A}_{l}^{(2)} \otimes \mathbb{Z}_{l}^{(3)} + \mathcal{A}_{l}^{(2)} \otimes \mathbb{A}_{l}^{(3)}$$

Consider $\partial H/\partial W_{11}^{(3)}$:

$$\mathcal{A}_{l}^{(3)} = \mathcal{A}_{l}^{(2)} \otimes \mathcal{A}_{l}^{(3)} \otimes \mathcal{A}_{l}^{(3)} \otimes \mathcal{A}_{l}^{(2)} \otimes \mathcal{A}_{l}^{(3)} \otimes \mathcal{A}_{l}^{(3)}$$

Example

► Consider $\partial H/\partial W_{11}^{(2)}$:

Example

Consider $\partial H/\partial W_{11}^{(1)}$:

A Better Way

- Computing the gradient is straightforward...
- But can involve a lot of repeated work.
- Backpropagation is an algorithm for efficiently computing the gradient of a neural network.

DSC 1408 Representation Learning

Lecture 22 Part 4

Backpropagation

Gradient of a Network

- ▶ We want to compute the gradient $\nabla_{\vec{w}}H$.
 - ► That is, $\partial H/\partial W_{ii}^{(\ell)}$ and $\partial H/\partial b_i^{(\ell)}$ for all valid i, j, ℓ .
- A network is a composition of functions.
- We'll make good use of the chain rule.

Recall: The Chain Rule

$$\frac{d}{dx}f(g(x)) = \frac{df}{dg}\frac{dg}{dx}$$
$$= f'(g(x))g'(x)$$

Some Notation

We'll consider an arbitrary node in layer ¿ of a neural network.

- Let *g* be the activation function.
- $ightharpoonup n_{\ell}$ denotes the number of nodes in layer ℓ .

Arbitrary Node

Claim #1

Claim #2

Claim #3
$$\frac{\partial H}{\partial a_{j}^{(\ell)}} = \sum_{k=1}^{n_{\ell+1}} \frac{\partial H}{\partial z_{k}^{(\ell+1)}} W_{jk}^{(\ell+1)}$$

 $a_i^{(\ell-1)}$

 $W_{ij}^{(\ell)}$

 $z_i^{(\ell-1)}$

Exercise

What is $\partial H/\partial b_i^{(\ell)}$?

General Formulas

For any node in any neural network¹, we have the following recursive formulas:

$$\frac{\partial H}{\partial W_{ii}^{(\ell)}} = \frac{\partial H}{\partial z_i^{(\ell)}} a_i^{(\ell-1)}$$

¹Fully-connected, feedforward network

Main Idea

The derivatives in layer ℓ depend on derivatives in layer $\ell + 1$.

Backpropagation

- Idea: compute the derivatives in last layers, first.
- ► That is:
 - Compute derivatives in last layer, \(\ext{\epsilon}; \) store them.
 - ► Use to compute derivatives in layer \(\ell 1. \)
 - ▶ Use to compute derivatives in layer \(\ell 2. \)
 - **...**

Backpropagation

Given an input \vec{x} and a current parameter vector \vec{w} :

- 1. Evaluate the network to compute $z_i^{(\ell)}$ and $a_i^{(\ell)}$ for all nodes.
- 2. For each layer \(\ext{from last to first:} \)

► Compute
$$\frac{\partial H}{\partial W_{ij}^{(\ell)}} = \frac{\partial H}{\partial z_j^{(\ell)}} a_i^{(\ell-1)}$$
► Compute $\frac{\partial H}{\partial b_i^{(\ell)}} = \frac{\partial H}{\partial z_i^{(\ell)}}$

Compute
$$\frac{\partial H'}{\partial b_i^{(\ell)}} = \frac{\partial \dot{H}}{\partial z_i^{(\ell)}}$$

Example

Compute the entries of the gradient given:

$$W^{(1)} = \begin{pmatrix} 2 & -3 \\ 2 & 1 \end{pmatrix}$$
 $W^{(2)} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$ $W^{(3)} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ $\vec{x} = (2, 1)^T$ $g(z) = \text{ReLU}$

$$\frac{\partial H}{\partial a_j^{(\ell)}} = \sum_{k=1}^{n_{\ell+1}} \frac{\partial H}{\partial z_k^{(\ell+1)}} W_{jk}^{(\ell+1)} \qquad \frac{\partial H}{\partial z_j^{(\ell)}} = \frac{\partial H}{\partial a_j^{(\ell)}} g'(z_j^{\ell}) \qquad \frac{\partial H}{\partial W_{ij}^{(\ell)}} = \frac{\partial H}{\partial z_j^{(\ell)}} a_i^{(\ell-1)}$$

Aside: Derivative of ReLU

$$g(z) = \max\{0, z\}$$

$$g'(z) = \begin{cases} 0, & z < 0 \\ 1, & z > 0 \end{cases}$$

Summary: Backprop

- Backprop is an algorithm for efficiently computing the gradient of a neural network
- ► It is not an algorithm **you** need to carry out by hand: your NN library can do it for you.