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Lecture 22 Part 1

Neural Networks



Notation

z}i) is the linear activation before g is applied.
aj(.i) = g(z") is the actual output of the neuron.
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Output Activations

The activation of the output neuron(s) can be

different than the activation of the hidden
neurons.

In classification, sigmoid activation makes sense.

In regression, linear activation makes sense.



A neural network with linear activations is a lin-
ear model. If non-linear activations are used, the
model is made non-linear.
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Demo



Feature Map

We have seen how to fit non-linear patterns with
linear models via basis functions (i.e., a feature
map).

H(R) = wo + W1 9y(R) + .+ Wi By(R)

These basis functions are fixed before learning.

Downside: we have to choose ¢ somehow.



Learning a Feature Map

Interpretation: The hidden layers of a neural
network/learna feature map.
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Each Layer is a Function

The hidden layer performs a feature map from &Etog.
The output la a prediction in R3. g

Intuition: The feature map is learned so as to make the
output layer’s job “easier”.




Demo

Train a deep network to classify the data below.

Hidden layers will learn a new feature map that
makes the data linearly separable.
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We'll use three hidden
layers, with last having
two neurons.

We can see this new
representation!

Plug in X and see
activations of last hidden
layer.

Demo
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Learning a New Representation
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Learning a New Representation
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Learning a New Representation




Deep Learning

The NN has learned a new representation in
which the data is easily classified.
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Training Neural Networks



Training

How do we learn the weights of a (deep) neural
network?
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Remember...

How did we learn the weights in linear least
squares regression?
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Empirical Risk Minimization
Collect a training set, {(X", y.)}
Pick the form of the prediction function,(ll
Pick a loss function.

Minimize the empirical risk w.rt. that loss.



Remember: Linear Least Squares

Pick the form of the prediction function, H.
E.g., linear: H(X; w) = Wug(i) W

Pick a loss function. Q) %
E.g., the square loss. // H QXC / WJ‘ 6 u

Minimize the empirical risk w.rt. that loss:

- 1 / (] 1 < 3(i >
b Ragli) = 5D (HEO)-yi)? = 55 (Aug(R0)- =)
(N i=1 i=1



Z ~ ()C?)Q\//Fyd

Minimizing Risk

To minimize risk;, we often use vector calculus.
Either set V. R(W) = 0 and solve...
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In General

Let £ be the loss function, let H(X; W) be the
prediction function.

The empirical risk:

n
RG) = ~ S (HED; W), y;)
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Gradient of H

To minimize risk, we want to compute VR.

To compute VR, we want to compu

This will depend on the form of H.



Example: Linear Model

Suppose H is a linear prediction function:

H(X; W) = Wy + Wy Xq + ... + WyXy
—_— W

What is V H with respect to w?

éH 5h) _\ﬁiy
\§ H(VD T ordoy, Oy
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Example: Linear Model

Consider oH/ow,: —- Yf
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Example: Neural Networks

Suppose H is a neural network (with nonlinear
activations).

What is VH?
o .
It's more complicated...




Parameter Vectors

It is often useful to pack all of the network’s
weights into a parameter vector, W.

Order is arbitrary:

- 1 1 1 1 2 2 2 2
C\‘__J ——

The network is a function H(X; w).
_—

Goal of learning: find the “best” w.



Gradient of Neural Network

D
"y ] : =
V;H Is a vector valued function.

Plugging a data point, X, and a parameter vector,
W, into V;H “evaluates the gradient”, results in a
vector, same size as w.




Suppose WY = -2,wY = -5-M4Y = 2 and X =
(3,2,-2)" and all biases are 0{ ReLU activations are

used. What is oH /dW{D(X, W)? -7
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Example
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A Better Way

Computing the gradient is straightforward...

But can involve a lot of repeated work.

Backpropagatlon 15 an algorithm for efficiently
he gradient of a neural network.
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Backpropagation



Gradient of a Network

We want to compute the gradient V;H.
That is, oH /oW and oH/ob{" for all valid i,j, .

A network is a composition of functions.

We'll make good use of the chain rule.



Recall: The Chain Rule

d dfdg
dx =2’ (9(3)) = dgdx

= f(g(x))g'(x)



Some Notation

We'll consider an arbitrary node in layer £ of a
neural network.

Let g be the activation function.

n, denotes the number of nodes in layer {.



Arbitrary Node




Claim 1 2




Claim #2
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Claim #3 T
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What is oH /ab,@"’?




General Formulas

For any node in any neural network’, we have the

following recursive formulas:

OH _ 5 M1 _oH  1p/(8+1)
aa](.{’) R=1 azgn) JR

OH _ OH r(Ht

= Z:
o4 aa! 9'(7)
OH__ oH ,(t-1)

(0) — 5O
aW,-j azj

OH _ oH
abt) 50
J J

TFully-connected, feedforward network



Main Idea

The derivatives in layer # depend on derivatives in
layer £ + 1.




Backpropagation
Idea: compute the derivatives in last layers, first.

That is:
Compute derivatives in last layer, #; store them.
Use to compute derivatives in layer £ - 1.
Use to compute derivatives in layer ¢ - 2.



Backpropagation

Given an input X and a current parameter vector w:

Evaluate the network to compute 2 and a!” for all nodes.
For each layer ? from last to first:

OH _ 5 M1 _oH (2+1)
Compute “& = 2 2 e Wi,
J

OH _ OH qr(A
Compute 6= 309 (z))
J J

OH _ OH (l’—1)
Compute @ = 500
1j J
oH _ OH
Compute 0 = 30
J
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Example

Compute the entries of the gradient given:
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Aside: Derivative of ReLU

/N

g(z) = max{0, z}

N

0, z<0
1, z>0




Summary: Backprop

Backprop is an algorithm for efficiently
computing the gradient of a neural network

It is not an algorithm you need to carry out by
hand: your NN library can do it for you.



