pDsC /4o0&

Represaitatom [earning

Lecture 21 Part 1

Neural Networks

Beyond RBFs

When training RBFs, we fixed the basis functions
before training the weights.

Representation learning was decoupled from
learning the prediction function.

Now: learn representation and prediction
function together.

Linear Models

H(X) = Wy + Wy Xq + oo + WyXy

Generalizing Linear Models
The brain is a network of neurons.

The output of a neuron is used as an input to
another.

Idea: chain together multiple “neurons” into a
neural network.

Neural Network' (One Hidden Layer)

Specifically, a fully-connected, feed-forward neural network

Architecture

Neurons are organized into layers.
Input layer, output layer, and hidden layers.

Number of cells in input layer determined by
dimensionality of input feature vectors.

Number of cells in hidden layer(s) is determined
by you.

Output layer can have >1 neuron.

Architecture

Can have more than one hidden layer.
A network is “deep” if it has >1 hidden layer.

Hidden layers can have different number of
neurons.

Neural Network (Two Hidden Layers)

Network Weights
A neural network is a type of function.

Like a linear model, a NN is totally determined
by its weights.

But there are often many more weights to learn!

Notation

Input is layer #0.

W) denotes weight
of connection
between neuron j in
layer (i - 1) and
neuron R in layer i

Layer weights are
2-d arrays.

Notation

Each hidden/output
neuron gets a
“dummy” input of 1.

Jth node in ith layer
assigned a bias
weight of b,(-’)

Biases for layer are
a vector: bt

Typically, we will not
draw the weights.

We will not draw the
dummy input, too,
but it is there.

Notation

wo =G5 9 W(z>=(%)

H

Example

A

(3,-2,-2)7 b@ = (-4)7

Evaluation

These are “fully-connected, feed-forward”
networks with one output.

They are functions H(X) : RY - R’

To evaluate H(X), compute result of layer i, use
as inputs for layer i + 1.

Evaluation as Matrix Multiplication

Let z}i) be the output of nodej in layer i.
Make a vector of these outputs: 200 = (24", 20,)T

Observe that 2 = [W¢] 2(-1) 4 p)

Each Layer is a Function

We can think of each layer as a function mapping
a vector to a vector.

M(3) = [Wm]T 3+H0)
HM . R? » R3 0‘

O——O

HO(z =[w<2>] e é’
H? : R3 > R

NNs as Function Composition

The full NN is a composition of layer functions.

e

o g/@

H(%) = HOHM(z)) = [w@]' ([W”] x+b1))+b<2

D

3(1)

NNs as Function Composition

In general, if there kR hidden layers:

H()?) = H(k”) (H(3) (H(2) (H“)()_&))))

Show that:
H(X) = (W] (WO % + M) + B = i - Aug(X)

for some appropriately-defined vector w.

Result

The composition of linear functions is again a
linear function.

The NNs we have seen so far are all equivalent to
linear models!

For NNs to be more useful, we will need to add
non-linearity.

Activations

So far, the output of a neuron has been a linear
function of its inputs:

Wq + WqiXq + WyXy + ...
Can be arbitrarily large or small.

But real neurons are activated non-linearly.
E.g., saturation.

Idea

To add nonlinearity, we will apply a non-linear
activation function g to the output of each

hidden neuron (and sometimes the output
neuron).

Linear Activation

The linear activation is what we've been using.
N

N

o(z)=z

Sigmoid Activation

The sigmoid models saturation in many natural

processes.
N

—_—
n
\\%
N

RelLU Activation

The Rectified Linear Unit (ReLU) tends to work

better in practice.
N

g(z) = max{0, z}

Notation

2" is the linear activation before g is applied.
af’ = g(z) is the actual output of the neuron.

Example

g = RelLU
Linear output
X=(3,-1)1
EOM

1
all =
o AV =
o

2
A1 -

o)

al) =
2 =

Output Activations

The activation of the output neuron(s) can be
different than the activation of the hidden
neurons.

In classification, sigmoid activation makes sense.

In regression, linear activation makes sense.

Main Idea

A neural network with linear activations is a lin-

ear model. If non-linear activations are used, the
model is made non-linear.

pDsC /4o0&

Represaitatom [earning

Lecture 21 Part 2

Demo

Feature Map

We have seen how to fit non-linear patterns with
linear models via basis functions (i.e., a feature
map).

H(X) = Wy + Wy @q(X) + ... + Wydp(X)

These basis functions are fixed before learning.

Downside: we have to choose ¢ somehow.

Learning a Feature Map

Interpretation: The hidden layers of a neural
network learn a feature map.

Each Layer is a Function

We can think of each layer as a function mapping
a vector to a vector.

M(3) = [W<1>]T3+5(1>
HD : R? > R

HO(z =[w<2>] e
H? : R3 - R’

Each Layer is a Function

The hidden layer performs a feature map from R? to R3.
The output layer makes a prediction in R3.

Intuition: The feature map is learned so as to make the
output layer’s job “easier”.

Demo

Train a deep network to classify the data below.

Hidden layers will learn a new feature map that
makes the data linearly separable.

We'll use three hidden
layers, with last having
two neurons.

We can see this new
representation!

Plug in X and see
activations of last hidden
layer.

Demo

Y
=/

2\

&)/

/

Y

N\ /N N\ 7N\ N\

Learning a New Representation

k..

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

\.h uﬂ .~.... ALy W
\k.n..m,. Nu.”..”..

& 8 8 i 0¥
4 .ﬂ.ﬁ? L

Learning a New Representation

Learning a New Representation

Learning a New Representation

E

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Deep Learning

The NN has learned a new representation in
which the data is easily classified.

pDsC /4o0&

Represaitaton [earmg

Lecture 21 Part 3

Training Neural Networks

Training

How do we learn the weights of a (deep) neural
network?

Remember...

How did we learn the weights in linear least
squares regression?

5\
(S
el

Empirical Risk Minimization
Collect a training set, {(X, y,)}
Pick the form of the prediction function, H.
Pick a loss function.

Minimize the empirical risk w.rt. that loss.

Remember: Linear Least Squares

Pick the form of the prediction function, H.
E.g., linear: H(X; W) = wy + W, X, + ... + WyXy = Aug(X) - w

Pick a loss function.
E.g., the square loss.

Minimize the empirical risk w.rt. that loss:

n

Req(W) = zm)-¥i)? = Z(Aug(x“'))-v*v—y,-)z

i=1

Minimizing Risk

To minimize risk, we often use vector calculus.
Either set V;,R(W) = 0 and solve...
Or use gradient descent: walk in opposite direction of
vV, R(W).

Recall, V;R(W) = (OR/ow,, OR/dwy, ..., 0R [ow,)"

In General

Let £ be the loss function, let H(X; W) be the
prediction function.

The empirical risk:

Gradient of H

To minimize risk, we want to compute V;R.
To compute V;R, we want to compute V;H.

This will depend on the form of H.

Example: Linear Model

Suppose H is a linear prediction function:

H(X; W) = Wy + WXy + ... + WX

What is V;H with respect to W?

Example: Linear Model

Consider oH [ow,:

§ |
-

Example: Neural Networks

Suppose H is a neural network (with nonlinear
activations).

What is VH?
It's more complicated...

Parameter Vectors

It is often useful to pack all of the network’s
weights into a parameter vector, W.

Order is arbitrary:

N 1) 11,01 1) (1) @) (2 2) (2

= (WO, WD, b0 b0 W@ W@, e p@
The network is a function H(x; w).

Goal of learning: find the “best” w.

Gradient of Neural Network

V;H is a vector-valued function.

Plugging a data point, X, and a parameter vector,
W, into V;H “evaluates the gradient”, results in a
vector, same size as w.

Suppose WY = -2,w{) = -5,W) = 2 and X =
(3,2,-2)" and all biases are 0. ReLU activations are
used. What is oH /oW{)(X,)?

Example

Consider aH/awﬁ):

m
&/

Example

Consider aH/awﬁ):

m
&/

Example

Consider aH/awﬂ):

m
&/

A Better Way

Computing the gradient is straightforward...
But can involve a lot of repeated work.

Backpropagation is an algorithm for efficiently
computing the gradient of a neural network.

