
Lecture 21| Part 1

Neural Networks



Beyond RBFs▶ When training RBFs, we fixed the basis functions
before training the weights.▶ Representation learning was decoupled from
learning the prediction function.▶ Now: learn representation and prediction
function together.



Linear Models

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑𝑥1
𝑥2
𝑥𝑑⋮

∑
1𝑤1

𝑤2
𝑤𝑑

𝑤0



Generalizing Linear Models▶ The brain is a network of neurons.▶ The output of a neuron is used as an input to
another.▶ Idea: chain together multiple “neurons” into a
neural network.



Neural Network1 (One Hidden Layer)

𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮ ∑

1𝑊(1)11𝑊(1)12𝑊(1)1𝑘 𝑊(1)21
𝑊(1)22

𝑊(1)2𝑘𝑊(1)𝑑1𝑊(1)𝑑2
𝑊(1)𝑑𝑘

𝑊(2)11
𝑊(2)21

𝑊(2)𝑘1

𝑊(1)01𝑊(1)02𝑊(1)03 𝑊(2)01

1Specifically, a fully-connected, feed-forward neural network



Architecture▶ Neurons are organized into layers.▶ Input layer, output layer, and hidden layers.▶ Number of cells in input layer determined by
dimensionality of input feature vectors.▶ Number of cells in hidden layer(s) is determined
by you.▶ Output layer can have >1 neuron.



Architecture▶ Can have more than one hidden layer.▶ A network is “deep” if it has >1 hidden layer.▶ Hidden layers can have different number of
neurons.



Neural Network (Two Hidden Layers)𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮

∑
∑
∑
⋮ ∑



Network Weights▶ A neural network is a type of function.▶ Like a linear model, a NN is totally determined
by its weights.▶ But there are often many more weights to learn!



Notation

▶ Input is layer #0.▶ 𝑊 (𝑖)𝑗𝑘 denotes weight
of connection
between neuron 𝑗 in
layer (𝑖 − 1) and
neuron 𝑘 in layer 𝑖▶ Layer weights are
2-d arrays.

𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮ ∑

1𝑊(1)11𝑊(1)12𝑊(1)1𝑘 𝑊(1)21
𝑊(1)22

𝑊(1)2𝑘𝑊(1)𝑑1𝑊(1)𝑑2
𝑊(1)𝑑𝑘

𝑊(2)11
𝑊(2)21

𝑊(2)𝑘1

𝑏(1)1𝑏(1)2𝑏(1)3 𝑏(2)1



Notation

▶ Each hidden/output
neuron gets a
“dummy” input of 1.▶ 𝑗th node in 𝑖th layer
assigned a bias
weight of 𝑏(𝑖)𝑗▶ Biases for layer are
a vector: 𝑏⃗(𝑖)

𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮ ∑

1𝑊(1)11𝑊(1)12𝑊(1)1𝑘 𝑊(1)21
𝑊(1)22

𝑊(1)2𝑘𝑊(1)𝑑1𝑊(1)𝑑2
𝑊(1)𝑑𝑘

𝑊(2)11
𝑊(2)21

𝑊(2)𝑘1

𝑏(1)1𝑏(1)2𝑏(1)3 𝑏(2)1



Notation

▶ Typically, we will not
draw the weights.▶ We will not draw the
dummy input, too,
but it is there.

𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮ ∑



Example

𝑥1
𝑥2

∑
∑
∑

∑
𝑊 (1) = (2 −1 04 5 2) 𝑊 (2) = ( 32−4)𝑏⃗(1) = (3, −2, −2)𝑇 𝑏⃗(2) = (−4)𝑇



Example

𝑥1
𝑥2

∑
∑
∑
∑

∑
∑ ∑

𝑊 (1) = (2 −1 −3 04 5 −7 2) 𝑊 (2) = ( 1 2−4 3−6 −23 4 ) 𝑊 (3) = (−1 5)𝑏⃗(1) = (3, 6, −2, −2)𝑇 𝑏⃗(2) = (−4, 0)𝑇 𝑏⃗(3) = (1)𝑇



Evaluation▶ These are “fully-connected, feed-forward”
networks with one output.▶ They are functions 𝐻( ⃗𝑥) ∶ ℝ𝑑 → ℝ1▶ To evaluate 𝐻( ⃗𝑥), compute result of layer 𝑖, use
as inputs for layer 𝑖 + 1.



Example

𝑥1
𝑥2

∑
∑
∑

∑
▶ ⃗𝑥 = (3, −1)𝑇▶ 𝑧(1)1 =▶ 𝑧(1)2 =▶ 𝑧(1)3 =▶ 𝑧(2)1 =𝑊 (1) = (2 −1 04 5 2) 𝑊 (2) = ( 32−4) 𝑏⃗(1) = (3, −2, −2)𝑇 𝑏⃗(2) = (−4)𝑇



Evaluation as Matrix Multiplication▶ Let 𝑧(𝑖)𝑗 be the output of node 𝑗 in layer 𝑖.▶ Make a vector of these outputs: ⃗𝑧(𝑖) = (𝑧(𝑖)1 , 𝑧(𝑖)2 , …)𝑇▶ Observe that ⃗𝑧(𝑖) = [𝑊 (𝑖)]𝑇 ⃗𝑧(𝑖−1) + 𝑏⃗(𝑖)



Example

𝑥1
𝑥2

∑
∑
∑

∑
▶ ⃗𝑥 = (3, −1)𝑇▶ 𝑧(1)1 =▶ 𝑧(1)2 =▶ 𝑧(1)3 =▶ 𝑧(2)1 =𝑊 (1) = (2 −1 04 5 2) 𝑊 (2) = ( 32−4) 𝑏⃗(1) = (3, −2, −2)𝑇 𝑏⃗(2) = (−4)𝑇



Each Layer is a Function▶ We can think of each layer as a function mapping
a vector to a vector.▶ 𝐻(1)( ⃗𝑧) = [𝑊 (1)]𝑇 ⃗𝑧+𝑏⃗(1)▶ 𝐻(1) ∶ ℝ2 → ℝ3▶ 𝐻(2)( ⃗𝑧) = [𝑊 (2)]𝑇 ⃗𝑧+𝑏⃗(2)▶ 𝐻(2) ∶ ℝ3 → ℝ1

𝑥1
𝑥2

∑
∑
∑

∑



NNs as Function Composition▶ The full NN is a composition of layer functions.

𝑥1
𝑥2

∑
∑
∑

∑
𝐻( ⃗𝑥) = 𝐻(2)(𝐻(1)( ⃗𝑥)) = [𝑊 (2)]𝑇 ([𝑊 (1)]𝑇 ⃗𝑥 + 𝑏⃗(1))⏟⏟⏟⏟⏟⏟⏟⃗𝑧(1) +𝑏⃗(2)



NNs as Function Composition▶ In general, if there 𝑘 hidden layers:𝐻( ⃗𝑥) = 𝐻(𝑘+1) (⋯𝐻(3) (𝐻(2) (𝐻(1)( ⃗𝑥))) ⋯)



Exercise
Show that:𝐻( ⃗𝑥) = [𝑊 (2)]𝑇 ([𝑊 (1)]𝑇 ⃗𝑥 + 𝑏⃗(1)) + 𝑏⃗(2) = 𝑤⃗ ⋅ Aug( ⃗𝑥)
for some appropriately-defined vector 𝑤⃗.



Result▶ The composition of linear functions is again a
linear function.▶ The NNs we have seen so far are all equivalent to
linear models!▶ For NNs to be more useful, we will need to add
non-linearity.



Activations▶ So far, the output of a neuron has been a linear
function of its inputs:𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + …▶ Can be arbitrarily large or small.▶ But real neurons are activated non-linearly.▶ E.g., saturation.



Idea▶ To add nonlinearity, we will apply a non-linear
activation function 𝑔 to the output of each
hidden neuron (and sometimes the output
neuron).



Linear Activation▶ The linear activation is what we’ve been using.

𝜎(𝑧) = 𝑧 z



Sigmoid Activation▶ The sigmoid models saturation in many natural
processes.

𝜎(𝑧) = 11 + 𝑒−𝑧 z



ReLU Activation▶ The Rectified Linear Unit (ReLU) tends to work
better in practice.

𝑔(𝑧) = max{0, 𝑧} z



Notation

𝑥1
𝑥2
𝑥3

𝑧(1)1 𝑎(1)1
𝑧(1)2 𝑎(1)2
𝑧(1)3 𝑎(1)3
𝑧(1)4 𝑎(1)4

𝑧(2)1 𝑎(2)1
𝑧(2)2 𝑎(2)2
𝑧(2)3 𝑎(2)3

𝑧(3)1 𝑎(3)1

▶ 𝑧(𝑖)𝑗 is the linear activation before 𝑔 is applied.▶ 𝑎(𝑖)𝑗 = 𝑔(𝑧(𝑖)) is the actual output of the neuron.



Example

𝑥1
𝑥2

𝑧(1)1 𝑎(1)1
𝑧(1)2 𝑎(1)2
𝑧(1)3 𝑎(1)3

𝑧(2)1 𝑎(2)1
▶ 𝑔 = ReLU▶ Linear output▶ ⃗𝑥 = (3, −1)𝑇▶ 𝑧(1)1 =▶ 𝑎(1)1 =▶ 𝑧(1)2 =▶ 𝑎(1)2 =▶ 𝑧(1)3 =▶ 𝑎(1)3 =▶ 𝑧(2)1 =𝑊 (1) = (2 −1 04 5 2) 𝑊 (2) = ( 32−4) 𝑏⃗(1) = (3, −2, −2)𝑇 𝑏⃗(2) = (−4)𝑇



Output Activations▶ The activation of the output neuron(s) can be
different than the activation of the hidden
neurons.▶ In classification, sigmoid activation makes sense.▶ In regression, linear activation makes sense.



Main Idea
A neural network with linear activations is a lin-
ear model. If non-linear activations are used, the
model is made non-linear.
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Demo



Feature Map▶ We have seen how to fit non-linear patterns with
linear models via basis functions (i.e., a feature
map). 𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜙1( ⃗𝑥) + … + 𝑤𝑘𝜙𝑘( ⃗𝑥)▶ These basis functions are fixed before learning.▶ Downside: we have to choose 𝜙⃗ somehow.



Learning a Feature Map▶ Interpretation: The hidden layers of a neural
network learn a feature map.



Each Layer is a Function▶ We can think of each layer as a function mapping
a vector to a vector.▶ 𝐻(1)( ⃗𝑧) = [𝑊 (1)]𝑇 ⃗𝑧+𝑏⃗(1)▶ 𝐻(1) ∶ ℝ2 → ℝ3▶ 𝐻(2)( ⃗𝑧) = [𝑊 (2)]𝑇 ⃗𝑧+𝑏⃗(2)▶ 𝐻(2) ∶ ℝ3 → ℝ1

𝑥1
𝑥2

∑
∑
∑

∑



Each Layer is a Function▶ The hidden layer performs a feature map from ℝ2 to ℝ3.▶ The output layer makes a prediction in ℝ3.▶ Intuition: The feature map is learned so as to make the
output layer’s job “easier”.

𝑥1
𝑥2

∑
∑
∑

∑



Demo▶ Train a deep network to classify the data below.▶ Hidden layers will learn a new feature map that
makes the data linearly separable.



Demo▶ We’ll use three hidden
layers, with last having
two neurons.▶ We can see this new
representation!▶ Plug in ⃗𝑥 and see
activations of last hidden
layer.



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Deep Learning▶ The NN has learned a new representation in
which the data is easily classified.
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Training Neural Networks



Training▶ How do we learn the weights of a (deep) neural
network?𝑥1

𝑥2
𝑥3
𝑥4

∑
∑
∑

∑
∑ ∑



Remember...▶ How did we learn the weights in linear least
squares regression?𝑥1

𝑥2
𝑥𝑑⋮

∑
1𝑤1

𝑤2
𝑤𝑑

𝑤0



Empirical Risk Minimization

0. Collect a training set, {( ⃗𝑥(𝑖), 𝑦𝑖)}
1. Pick the form of the prediction function, 𝐻.
2. Pick a loss function.

3. Minimize the empirical risk w.r.t. that loss.



Remember: Linear Least Squares
0. Pick the form of the prediction function, 𝐻.▶ E.g., linear: 𝐻( ⃗𝑥; 𝑤⃗) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑 = Aug( ⃗𝑥) ⋅ 𝑤⃗
1. Pick a loss function.▶ E.g., the square loss.

2. Minimize the empirical risk w.r.t. that loss:𝑅sq(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 (𝐻( ⃗𝑥(𝑖))−𝑦𝑖)2 = 1𝑛 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗ −𝑦𝑖)2



Minimizing Risk▶ To minimize risk, we often use vector calculus.▶ Either set ∇𝑤⃗𝑅(𝑤⃗) = 0 and solve...▶ Or use gradient descent: walk in opposite direction of∇𝑤⃗𝑅(𝑤⃗).▶ Recall, ∇𝑤⃗𝑅(𝑤⃗) = (𝜕𝑅/𝜕𝑤0, 𝜕𝑅/𝜕𝑤1, … , 𝜕𝑅/𝜕𝑤𝑑)𝑇



In General▶ Let ℓ be the loss function, let 𝐻( ⃗𝑥; 𝑤⃗) be the
prediction function.▶ The empirical risk:𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 ℓ(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)▶ Using the chain rule:∇𝑤⃗𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 𝜕ℓ𝜕𝐻∇𝑤⃗𝐻( ⃗𝑥(𝑖); 𝑤⃗)



Gradient of 𝐻▶ To minimize risk, we want to compute ∇𝑤⃗𝑅.▶ To compute ∇𝑤⃗𝑅, we want to compute ∇𝑤⃗𝐻.▶ This will depend on the form of 𝐻.



Example: Linear Model▶ Suppose 𝐻 is a linear prediction function:𝐻( ⃗𝑥; 𝑤⃗) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑▶ What is ∇𝑤⃗𝐻 with respect to 𝑤⃗?



Example: Linear Model▶ Consider 𝜕𝐻/𝜕𝑤1:𝑥1
𝑥2
𝑥𝑑⋮

∑
1𝑤1

𝑤2
𝑤𝑑

𝑤0



Example: Neural Networks▶ Suppose 𝐻 is a neural network (with nonlinear
activations).▶ What is ∇𝐻?▶ It’s more complicated...𝑥1

𝑥2
𝑥3
𝑥4

∑
∑
∑

∑
∑ ∑



Parameter Vectors▶ It is often useful to pack all of the network’s
weights into a parameter vector, 𝑤⃗.▶ Order is arbitrary:𝑤⃗ = (𝑊 (1)11 , 𝑊 (1)12 , … , 𝑏(1)1 , 𝑏(1)2 , 𝑊 (2)11 , 𝑊 (2)12 , … , 𝑏(2)1 , 𝑏(2)2 , …)𝑇▶ The network is a function 𝐻( ⃗𝑥; 𝑤⃗).▶ Goal of learning: find the “best” 𝑤⃗.



Gradient of Neural Network▶ ∇𝑤⃗𝐻 is a vector-valued function.▶ Plugging a data point, ⃗𝑥, and a parameter vector,𝑤⃗, into ∇𝑤⃗𝐻 “evaluates the gradient”, results in a
vector, same size as 𝑤⃗.𝑥1

𝑥2
𝑥3
𝑥4

∑
∑
∑

∑
∑ ∑



Exercise

Suppose 𝑊 (1)11 = −2,𝑊 (1)21 = −5,𝑊 (1)31 = 2 and ⃗𝑥 =(3, 2, −2)𝑇 and all biases are 0. ReLU activations are
used. What is 𝜕𝐻/𝜕𝑊 (1)11 ( ⃗𝑥, 𝑤⃗)?𝑥1

𝑥2
𝑥3

𝑧(1)1 𝑎(1)1
𝑧(1)2 𝑎(1)2

𝑧(2)1 𝑎(2)1



Example▶ Consider 𝜕𝐻/𝜕𝑊 (3)11 :
𝑥1
𝑥2
𝑥3
𝑥4

𝑧(1)1 𝑎(1)1
𝑧(1)2 𝑎(1)2
𝑧(1)3 𝑎(1)3

𝑧(2)1 𝑎(2)1
𝑧(2)2 𝑎(2)2
𝑧(2)3 𝑎(2)3
𝑧(2)4 𝑎(2)4
𝑧(2)5 𝑎(2)5

𝑧(3)1 𝑎(3)1



Example▶ Consider 𝜕𝐻/𝜕𝑊 (2)11 :
𝑥1
𝑥2
𝑥3
𝑥4

𝑧(1)1 𝑎(1)1
𝑧(1)2 𝑎(1)2
𝑧(1)3 𝑎(1)3

𝑧(2)1 𝑎(2)1
𝑧(2)2 𝑎(2)2
𝑧(2)3 𝑎(2)3
𝑧(2)4 𝑎(2)4
𝑧(2)5 𝑎(2)5

𝑧(3)1 𝑎(3)1



Example▶ Consider 𝜕𝐻/𝜕𝑊 (1)11 :
𝑥1
𝑥2
𝑥3
𝑥4

𝑧(1)1 𝑎(1)1
𝑧(1)2 𝑎(1)2
𝑧(1)3 𝑎(1)3

𝑧(2)1 𝑎(2)1
𝑧(2)2 𝑎(2)2
𝑧(2)3 𝑎(2)3
𝑧(2)4 𝑎(2)4
𝑧(2)5 𝑎(2)5

𝑧(3)1 𝑎(3)1



A Better Way▶ Computing the gradient is straightforward...▶ But can involve a lot of repeated work.▶ Backpropagation is an algorithm for efficiently
computing the gradient of a neural network.


