DSC 1408 Representation Learning

Lecture 21 Part 1

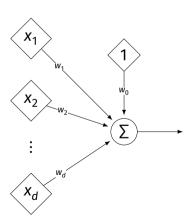
Neural Networks

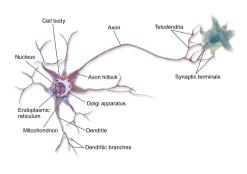
Beyond RBFs

- When training RBFs, we fixed the basis functions before training the weights.
- Representation learning was decoupled from learning the prediction function.
- Now: learn representation and prediction function together.

Linear Models

$$H(\vec{x}) = w_0 + w_1 x_1 + ... + w_d x_d$$



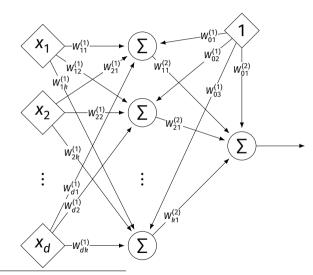


Generalizing Linear Models

- ► The brain is a **network** of neurons.
- The output of a neuron is used as an input to another.

► **Idea:** chain together multiple "neurons" into a neural network.

Neural Network¹ (One Hidden Layer)



¹Specifically, a fully-connected, feed-forward neural network

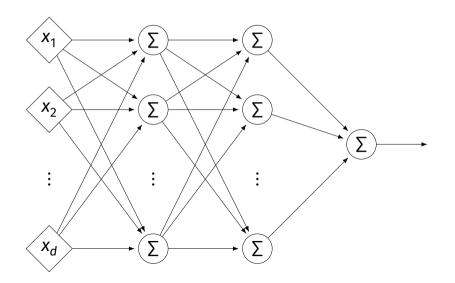
Architecture

- Neurons are organized into layers.
 - Input layer, output layer, and hidden layers.
- Number of cells in input layer determined by dimensionality of input feature vectors.
- Number of cells in hidden layer(s) is determined by you.
- Output layer can have >1 neuron.

Architecture

- Can have more than one hidden layer.
 - A network is "deep" if it has >1 hidden layer.
- Hidden layers can have different number of neurons.

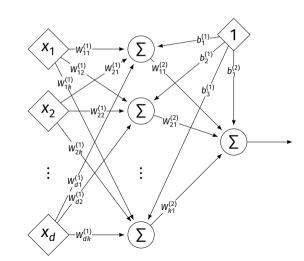
Neural Network (Two Hidden Layers)



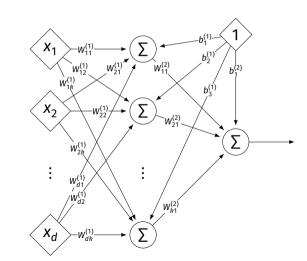
Network Weights

- A neural network is a type of function.
- Like a linear model, a NN is totally determined by its weights.
- But there are often many more weights to learn!

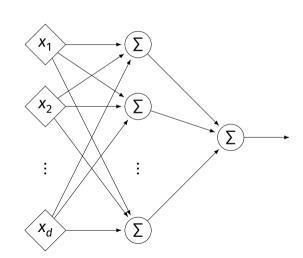
- Input is layer #0.
- W⁽ⁱ⁾_{jk} denotes weight of connection between neuron j in layer (i − 1) and neuron k in layer i
- Layer weights are 2-d arrays.



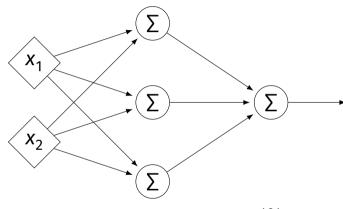
- Each hidden/output neuron gets a "dummy" input of 1.
- jth node in ith layer assigned a bias weight of b_i⁽ⁱ⁾
- Biases for layer are a vector: $\vec{b}^{(i)}$



- Typically, we will not draw the weights.
- We will not draw the dummy input, too, but it is there.

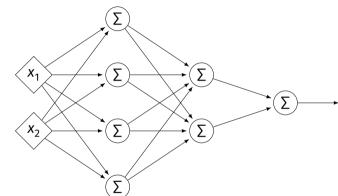


Example



$$W^{(1)} = \begin{pmatrix} 2 & -1 & 0 \\ 4 & 5 & 2 \end{pmatrix} \qquad W^{(2)} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}$$
$$\vec{b}^{(1)} = (3, -2, -2)^{T} \qquad \vec{b}^{(2)} = (-4)^{T}$$

Example



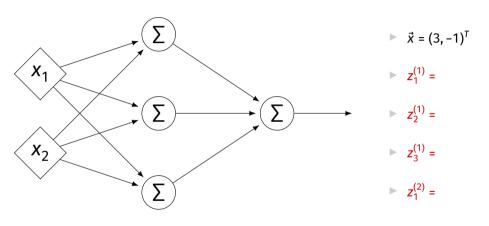
$$W^{(1)} = \begin{pmatrix} 2 & -1 & -3 & 0 \\ 4 & 5 & -7 & 2 \end{pmatrix} W^{(2)} = \begin{pmatrix} 1 & 2 \\ -4 & 3 \\ -6 & -2 \\ 3 & 4 \end{pmatrix} W^{(3)} = \begin{pmatrix} -1 & 5 \end{pmatrix}$$

$$\vec{b}^{(1)} = (3, 6, -2, -2)^T \vec{b}^{(2)} = (-4, 0)^T \vec{b}^{(3)} = (1)^T$$

Evaluation

- These are "fully-connected, feed-forward" networks with one output.
- ► They are functions $H(\vec{x}) : \mathbb{R}^d \to \mathbb{R}^1$
- To evaluate $H(\vec{x})$, compute result of layer i, use as inputs for layer i + 1.

Example

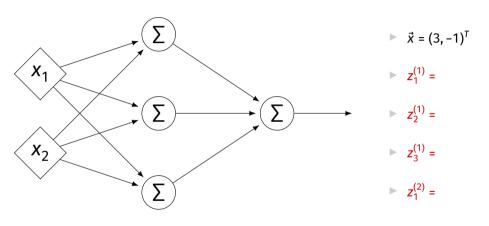


$$W^{(1)} = \begin{pmatrix} 2 & -1 & 0 \\ 4 & 5 & 2 \end{pmatrix}$$
 $W^{(2)} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}$ $\vec{b}^{(1)} = (3, -2, -2)^T$ $\vec{b}^{(2)} = (-4)^T$

Evaluation as Matrix Multiplication

- Let $z_i^{(i)}$ be the output of node j in layer i.
- Make a vector of these outputs: $\vec{z}^{(i)} = (z_1^{(i)}, z_2^{(i)}, ...)^T$
- Observe that $\vec{z}^{(i)} = [W^{(i)}]^T \vec{z}^{(i-1)} + \vec{b}^{(i)}$

Example



$$W^{(1)} = \begin{pmatrix} 2 & -1 & 0 \\ 4 & 5 & 2 \end{pmatrix}$$
 $W^{(2)} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}$ $\vec{b}^{(1)} = (3, -2, -2)^T$ $\vec{b}^{(2)} = (-4)^T$

Each Layer is a Function

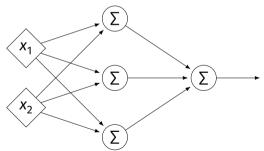
We can think of each layer as a function mapping a vector to a vector.

$$H^{(1)}(\vec{z}) = [W^{(1)}]^T \vec{z} + \vec{b}^{(1)}$$

$$\vdash H^{(1)}: \mathbb{R}^2 \to \mathbb{R}^3$$

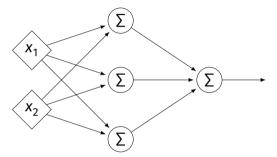
$$H^{(2)}(\vec{z}) = [W^{(2)}]^T \vec{z} + \vec{b}^{(2)}$$

$$\vdash H^{(2)}: \mathbb{R}^3 \to \mathbb{R}^1$$



NNs as Function Composition

► The full NN is a composition of layer functions.



$$H(\vec{x}) = H^{(2)}(H^{(1)}(\vec{x})) = \left[W^{(2)}\right]^T \underbrace{\left(\left[W^{(1)}\right]^T \vec{x} + \vec{b}^{(1)}\right)}_{\neq (1)} + \vec{b}^{(2)}$$

NNs as Function Composition

▶ In general, if there k hidden layers:

$$H(\vec{x}) = H^{(k+1)} \left(\cdots H^{(3)} \left(H^{(2)} \left(H^{(1)} (\vec{x}) \right) \right) \cdots \right)$$

Exercise

Show that:

$$H(\vec{x}) = [W^{(2)}]^T ([W^{(1)}]^T \vec{x} + \vec{b}^{(1)}) + \vec{b}^{(2)} = \vec{w} \cdot \text{Aug}(\vec{x})$$

 $H(\vec{x}) = [W^{(2)}]^T ([W^{(1)}]^T \vec{x} + \vec{b}^{(1)}) + \vec{b}^{(2)} = \vec{w} \cdot Aug(\vec{x})$

for some appropriately-defined vector \vec{w} .

Result

The composition of linear functions is again a linear function.

The NNs we have seen so far are all equivalent to linear models!

For NNs to be more useful, we will need to add non-linearity.

Activations

So far, the output of a neuron has been a linear function of its inputs:

$$W_0 + W_1 X_1 + W_2 X_2 + \dots$$

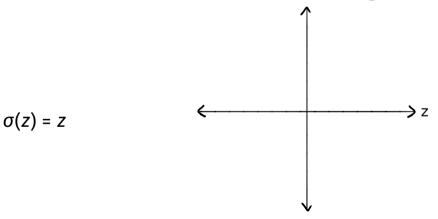
- Can be arbitrarily large or small.
- But real neurons are activated non-linearly.
 - E.g., saturation.

Idea

► To add nonlinearity, we will apply a non-linear activation function g to the output of each hidden neuron (and sometimes the output neuron).

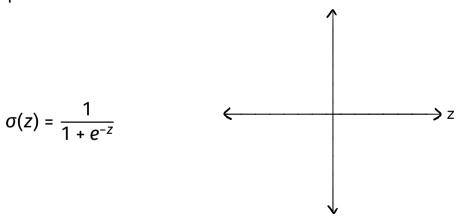
Linear Activation

► The linear activation is what we've been using.



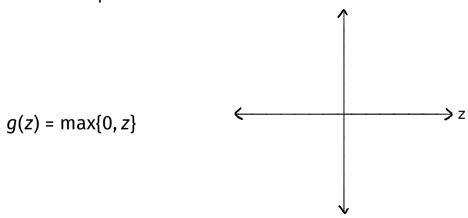
Sigmoid Activation

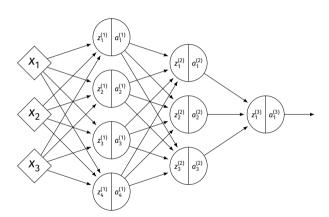
► The **sigmoid** models saturation in many natural processes.



ReLU Activation

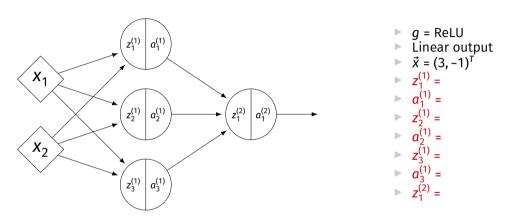
► The Rectified Linear Unit (ReLU) tends to work better in practice.





- $ightharpoonup z_i^{(i)}$ is the linear activation before g is applied.
- $a_i^{(i)} = g(z^{(i)})$ is the actual output of the neuron.

Example



$$W^{(1)} = \begin{pmatrix} 2 & -1 & 0 \\ 4 & 5 & 2 \end{pmatrix}$$
 $W^{(2)} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}$ $\vec{b}^{(1)} = (3, -2, -2)^T$ $\vec{b}^{(2)} = (-4)^T$

Output Activations

The activation of the output neuron(s) can be different than the activation of the hidden neurons.

- In classification, **sigmoid** activation makes sense.
- In regression, **linear** activation makes sense.

Main Idea

A neural network with linear activations is a linear model. If non-linear activations are used, the model is made non-linear.

DSC 1408 Representation Learning

Lecture 21 Part 2

Demo

Feature Map

We have seen how to fit non-linear patterns with linear models via basis functions (i.e., a feature map).

$$H(\vec{x}) = w_0 + w_1 \phi_1(\vec{x}) + ... + w_k \phi_k(\vec{x})$$

- ► These basis functions are fixed **before** learning.
- **Downside:** we have to choose $\vec{\phi}$ somehow.

Learning a Feature Map

► **Interpretation:** The hidden layers of a neural network **learn** a feature map.

Each Layer is a Function

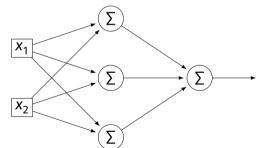
We can think of each layer as a function mapping a vector to a vector.

$$H^{(1)}(\vec{z}) = [W^{(1)}]^T \vec{z} + \vec{b}^{(1)}$$

$$\vdash H^{(1)}: \mathbb{R}^2 \to \mathbb{R}^3$$

$$H^{(2)}(\vec{z}) = [W^{(2)}]^T \vec{z} + \vec{b}^{(2)}$$

$$H^{(2)}: \mathbb{R}^3 \to \mathbb{R}^1$$



Each Layer is a Function

- ▶ The hidden layer performs a feature map from \mathbb{R}^2 to \mathbb{R}^3 .
- ▶ The output layer makes a prediction in \mathbb{R}^3 .
- Intuition: The feature map is learned so as to make the output layer's job "easier".

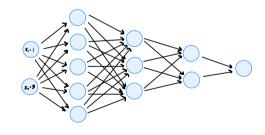


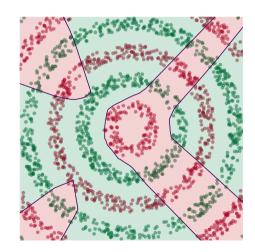
Demo

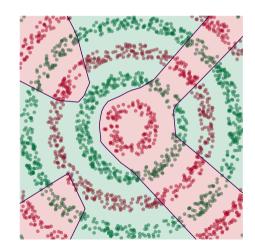
- Train a deep network to classify the data below.
- Hidden layers will learn a new feature map that makes the data linearly separable.

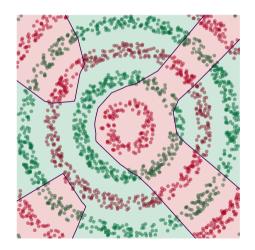
Demo

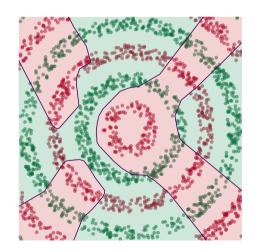
- We'll use three hidden layers, with last having two neurons.
- We can see this new representation!
- Plug in \vec{x} and see activations of last hidden layer.

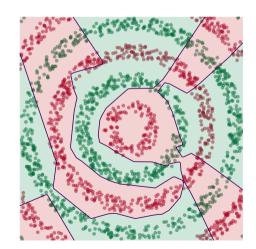


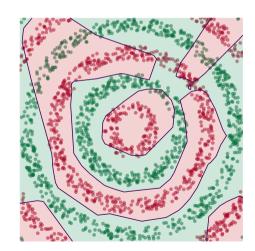


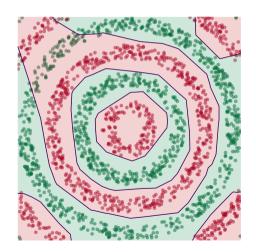


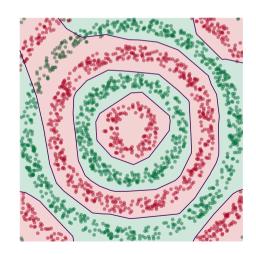


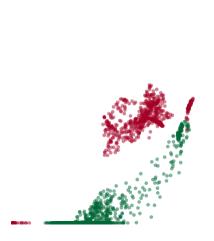


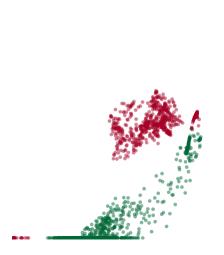




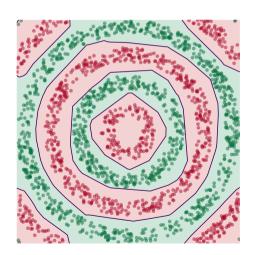


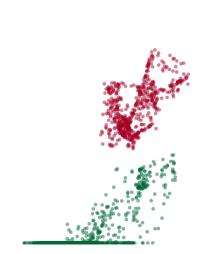




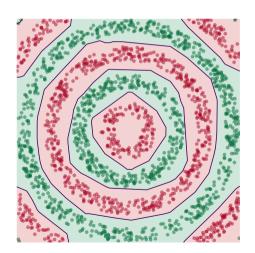












Deep Learning

► The NN has learned a new **representation** in which the data is easily classified.

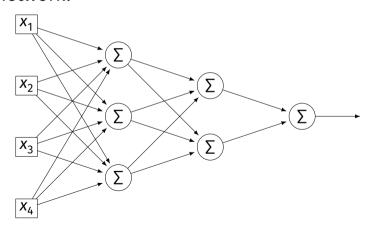
DSC 1408 Representation Learning

Lecture 21 Part 3

Training Neural Networks

Training

How do we learn the weights of a (deep) neural network?



Remember...

How did we learn the weights in linear least squares regression?



Empirical Risk Minimization

- 0. Collect a training set, $\{(\vec{x}^{(i)}, y_i)\}$
- 1. Pick the form of the prediction function, H.
- 2. Pick a loss function.
- 3. Minimize the empirical risk w.r.t. that loss.

Remember: Linear Least Squares

- O. Pick the form of the prediction function, H.
 - ► E.g., linear: $H(\vec{x}; \vec{w}) = w_0 + w_1 x_1 + ... + w_d x_d = \text{Aug}(\vec{x}) \cdot \vec{w}$
- 1. Pick a loss function.
 - E.g., the square loss.
- 2. Minimize the empirical risk w.r.t. that loss:

$$R_{sq}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (H(\vec{x}^{(i)}) - y_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (Aug(\vec{x}^{(i)}) \cdot \vec{w} - y_i)^2$$

Minimizing Risk

- To minimize risk, we often use **vector calculus**.
 - ► Either set $\nabla_{\vec{w}} R(\vec{w}) = 0$ and solve...
 - Or use gradient descent: walk in opposite direction of $\nabla_{\vec{w}} R(\vec{w})$.
- ► Recall, $\nabla_{\vec{w}} R(\vec{w}) = (\partial R / \partial w_0, \partial R / \partial w_1, ..., \partial R / \partial w_d)^T$

In General

- Let ℓ be the loss function, let $H(\vec{x}; \vec{w})$ be the prediction function.
- ► The empirical risk:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Using the chain rule:

$$\nabla_{\vec{w}} R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ell}{\partial H} \nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})$$

Gradient of H

- ► To minimize risk, we want to compute $\nabla_{\vec{w}} R$.
- ► To compute $\nabla_{\vec{w}} R$, we want to compute $\nabla_{\vec{w}} H$.
- ► This will depend on the form of *H*.

Example: Linear Model

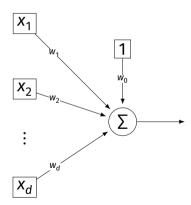
Suppose H is a linear prediction function:

$$H(\vec{x}; \vec{w}) = w_0 + w_1 x_1 + ... + w_d x_d$$

▶ What is $\nabla_{\vec{w}}H$ with respect to \vec{w} ?

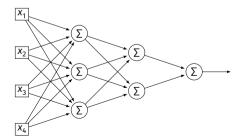
Example: Linear Model

► Consider $\partial H/\partial w_1$:



Example: Neural Networks

- Suppose H is a neural network (with nonlinear activations).
- \triangleright What is ∇H ?
 - ► It's more complicated...



Parameter Vectors

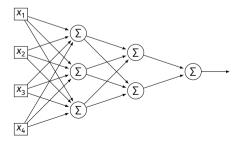
- It is often useful to pack all of the network's weights into a parameter vector, \vec{w} .
- Order is arbitrary:

$$\vec{W} = (W_{11}^{(1)}, W_{12}^{(1)}, \dots, b_1^{(1)}, b_2^{(1)}, W_{11}^{(2)}, W_{12}^{(2)}, \dots, b_1^{(2)}, b_2^{(2)}, \dots)^T$$

- ► The network is a function $H(\vec{x}; \vec{w})$.
- ► Goal of learning: find the "best" \vec{w} .

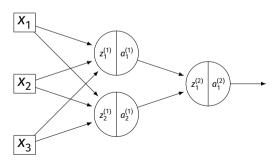
Gradient of Neural Network

- $ightharpoonup \nabla_{\vec{w}} H$ is a vector-valued function.
- Plugging a data point, \vec{x} , and a parameter vector, \vec{w} , into $\nabla_{\vec{w}}H$ "evaluates the gradient", results in a vector, same size as \vec{w} .



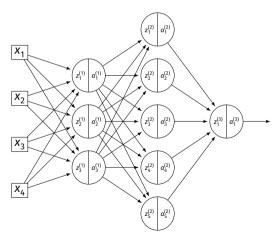
Exercise

Suppose $W_{11}^{(1)} = -2$, $W_{21}^{(1)} = -5$, $W_{31}^{(1)} = 2$ and $\vec{x} = (3, 2, -2)^T$ and all biases are 0. ReLU activations are used. What is $\partial H/\partial W_{11}^{(1)}(\vec{x}, \vec{w})$?



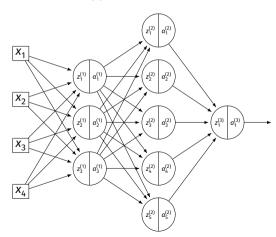
Example

► Consider $\partial H/\partial W_{11}^{(3)}$:



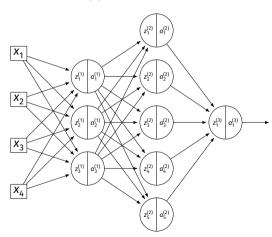
Example

► Consider $\partial H/\partial W_{11}^{(2)}$:



Example

► Consider $\partial H/\partial W_{11}^{(1)}$:



A Better Way

- Computing the gradient is straightforward...
- But can involve a lot of repeated work.
- Backpropagation is an algorithm for efficiently computing the gradient of a neural network.