# DSC 1408 Representation Learning

Lecture 21 Part 1

**Neural Networks** 

## **Beyond RBFs**

- When training RBFs, we fixed the basis functions before training the weights.
- Representation learning was decoupled from learning the prediction function.
- Now: learn representation and prediction function together.

#### **Linear Models**

$$H(\vec{x}) = w_0 + w_1 x_1 + ... + w_d x_d$$





## **Generalizing Linear Models**

- ► The brain is a **network** of neurons.
- The output of a neuron is used as an input to another.

► **Idea:** chain together multiple "neurons" into a neural network.

## Neural Network<sup>1</sup> (One Hidden Layer)



<sup>&</sup>lt;sup>1</sup>Specifically, a fully-connected, feed-forward neural network

#### **Architecture**

- Neurons are organized into layers.
  - Input layer, output layer, and hidden layers.
- Number of cells in input layer determined by dimensionality of input feature vectors.
- Number of cells in hidden layer(s) is determined by you.
- Output layer can have >1 neuron.

#### **Architecture**

- Can have more than one hidden layer.
  - A network is "deep" if it has >1 hidden layer.
- Hidden layers can have different number of neurons.

## **Neural Network (Two Hidden Layers)**



#### **Network Weights**

- A neural network is a type of function.
- Like a linear model, a NN is totally determined by its weights.
- But there are often many more weights to learn!

- Input is layer #0.
- W<sup>(i)</sup><sub>jk</sub> denotes weight of connection between neuron j in layer (i − 1) and neuron k in layer i
- Layer weights are 2-d arrays.



- Each hidden/output neuron gets a "dummy" input of 1.
- jth node in ith layer assigned a bias weight of b<sub>i</sub><sup>(i)</sup>
- Biases for layer are a vector:  $\vec{b}^{(i)}$



- Typically, we will not draw the weights.
- We will not draw the dummy input, too, but it is there.



## Example



$$W^{(1)} = \begin{pmatrix} 2 & -1 & 0 \\ 4 & 5 & 2 \end{pmatrix} \qquad W^{(2)} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}$$
$$\vec{b}^{(1)} = (3, -2, -2)^{T} \qquad \vec{b}^{(2)} = (-4)^{T}$$

## **Example**



$$W^{(1)} = \begin{pmatrix} 2 & -1 & -3 & 0 \\ 4 & 5 & -7 & 2 \end{pmatrix} W^{(2)} = \begin{pmatrix} 1 & 2 \\ -4 & 3 \\ -6 & -2 \\ 3 & 4 \end{pmatrix} W^{(3)} = \begin{pmatrix} -1 & 5 \end{pmatrix}$$

$$\vec{b}^{(1)} = (3, 6, -2, -2)^T \vec{b}^{(2)} = (-4, 0)^T \vec{b}^{(3)} = (1)^T$$

#### **Evaluation**

- These are "fully-connected, feed-forward" networks with one output.
- ► They are functions  $H(\vec{x}) : \mathbb{R}^d \to \mathbb{R}^1$
- To evaluate  $H(\vec{x})$ , compute result of layer i, use as inputs for layer i + 1.

## **Example**



$$W^{(1)} = \begin{pmatrix} 2 & -1 & 0 \\ 4 & 5 & 2 \end{pmatrix}$$
  $W^{(2)} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}$   $\vec{b}^{(1)} = (3, -2, -2)^T$   $\vec{b}^{(2)} = (-4)^T$ 

### **Evaluation as Matrix Multiplication**

- Let  $z_i^{(i)}$  be the output of node j in layer i.
- Make a vector of these outputs:  $\vec{z}^{(i)} = (z_1^{(i)}, z_2^{(i)}, ...)^T$
- Observe that  $\vec{z}^{(i)} = [W^{(i)}]^T \vec{z}^{(i-1)} + \vec{b}^{(i)}$

## **Example**



$$W^{(1)} = \begin{pmatrix} 2 & -1 & 0 \\ 4 & 5 & 2 \end{pmatrix}$$
  $W^{(2)} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}$   $\vec{b}^{(1)} = (3, -2, -2)^T$   $\vec{b}^{(2)} = (-4)^T$ 

## **Each Layer is a Function**

We can think of each layer as a function mapping a vector to a vector.

$$H^{(1)}(\vec{z}) = [W^{(1)}]^T \vec{z} + \vec{b}^{(1)}$$

$$\vdash H^{(1)}: \mathbb{R}^2 \to \mathbb{R}^3$$

$$H^{(2)}(\vec{z}) = [W^{(2)}]^T \vec{z} + \vec{b}^{(2)}$$

$$\vdash H^{(2)}: \mathbb{R}^3 \to \mathbb{R}^1$$



## **NNs as Function Composition**

► The full NN is a composition of layer functions.



$$H(\vec{x}) = H^{(2)}(H^{(1)}(\vec{x})) = \left[W^{(2)}\right]^T \underbrace{\left(\left[W^{(1)}\right]^T \vec{x} + \vec{b}^{(1)}\right)}_{\neq (1)} + \vec{b}^{(2)}$$

## **NNs as Function Composition**

▶ In general, if there k hidden layers:

$$H(\vec{x}) = H^{(k+1)} \left( \cdots H^{(3)} \left( H^{(2)} \left( H^{(1)} (\vec{x}) \right) \right) \cdots \right)$$

#### **Exercise**

Show that:

$$H(\vec{x}) = [W^{(2)}]^T ([W^{(1)}]^T \vec{x} + \vec{b}^{(1)}) + \vec{b}^{(2)} = \vec{w} \cdot \text{Aug}(\vec{x})$$

 $H(\vec{x}) = [W^{(2)}]^T ([W^{(1)}]^T \vec{x} + \vec{b}^{(1)}) + \vec{b}^{(2)} = \vec{w} \cdot Aug(\vec{x})$ 

for some appropriately-defined vector  $\vec{w}$ .

#### Result

The composition of linear functions is again a linear function.

The NNs we have seen so far are all equivalent to linear models!

For NNs to be more useful, we will need to add non-linearity.

#### **Activations**

So far, the output of a neuron has been a linear function of its inputs:

$$W_0 + W_1 X_1 + W_2 X_2 + \dots$$

- Can be arbitrarily large or small.
- But real neurons are activated non-linearly.
  - E.g., saturation.

#### Idea

► To add nonlinearity, we will apply a non-linear activation function g to the output of each hidden neuron (and sometimes the output neuron).

#### **Linear Activation**

► The linear activation is what we've been using.



## **Sigmoid Activation**

► The **sigmoid** models saturation in many natural processes.



#### **ReLU Activation**

► The Rectified Linear Unit (ReLU) tends to work better in practice.





- $ightharpoonup z_i^{(i)}$  is the linear activation before g is applied.
- $a_i^{(i)} = g(z^{(i)})$  is the actual output of the neuron.

## **Example**



$$W^{(1)} = \begin{pmatrix} 2 & -1 & 0 \\ 4 & 5 & 2 \end{pmatrix}$$
  $W^{(2)} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}$   $\vec{b}^{(1)} = (3, -2, -2)^T$   $\vec{b}^{(2)} = (-4)^T$ 

#### **Output Activations**

The activation of the output neuron(s) can be different than the activation of the hidden neurons.

- In classification, **sigmoid** activation makes sense.
- In regression, **linear** activation makes sense.

#### Main Idea

A neural network with linear activations is a linear model. If non-linear activations are used, the model is made non-linear.

# DSC 1408 Representation Learning

Lecture 21 Part 2

**Demo** 

#### **Feature Map**

We have seen how to fit non-linear patterns with linear models via basis functions (i.e., a feature map).

$$H(\vec{x}) = w_0 + w_1 \phi_1(\vec{x}) + ... + w_k \phi_k(\vec{x})$$

- ► These basis functions are fixed **before** learning.
- **Downside:** we have to choose  $\vec{\phi}$  somehow.

### **Learning a Feature Map**

► **Interpretation:** The hidden layers of a neural network **learn** a feature map.

## **Each Layer is a Function**

We can think of each layer as a function mapping a vector to a vector.

$$H^{(1)}(\vec{z}) = [W^{(1)}]^T \vec{z} + \vec{b}^{(1)}$$

$$\vdash H^{(1)}: \mathbb{R}^2 \to \mathbb{R}^3$$

$$H^{(2)}(\vec{z}) = [W^{(2)}]^T \vec{z} + \vec{b}^{(2)}$$

$$H^{(2)}: \mathbb{R}^3 \to \mathbb{R}^1$$



#### **Each Layer is a Function**

- ▶ The hidden layer performs a feature map from  $\mathbb{R}^2$  to  $\mathbb{R}^3$ .
- ▶ The output layer makes a prediction in  $\mathbb{R}^3$ .
- Intuition: The feature map is learned so as to make the output layer's job "easier".



#### **Demo**

- Train a deep network to classify the data below.
- Hidden layers will learn a new feature map that makes the data linearly separable.



#### **Demo**

- We'll use three hidden layers, with last having two neurons.
- We can see this new representation!
- Plug in  $\vec{x}$  and see activations of last hidden layer.



























































































































#### **Deep Learning**

► The NN has learned a new **representation** in which the data is easily classified.

# DSC 1408 Representation Learning

Lecture 21 Part 3

**Training Neural Networks** 

# **Training**

How do we learn the weights of a (deep) neural network?



### Remember...

How did we learn the weights in linear least squares regression?



## **Empirical Risk Minimization**

- 0. Collect a training set,  $\{(\vec{x}^{(i)}, y_i)\}$
- 1. Pick the form of the prediction function, H.
- 2. Pick a loss function.
- 3. Minimize the empirical risk w.r.t. that loss.

## **Remember: Linear Least Squares**

- O. Pick the form of the prediction function, H.
  - ► E.g., linear:  $H(\vec{x}; \vec{w}) = w_0 + w_1 x_1 + ... + w_d x_d = \text{Aug}(\vec{x}) \cdot \vec{w}$
- 1. Pick a loss function.
  - E.g., the square loss.
- 2. Minimize the empirical risk w.r.t. that loss:

$$R_{sq}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (H(\vec{x}^{(i)}) - y_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (Aug(\vec{x}^{(i)}) \cdot \vec{w} - y_i)^2$$

# **Minimizing Risk**

- To minimize risk, we often use **vector calculus**.
  - ► Either set  $\nabla_{\vec{w}} R(\vec{w}) = 0$  and solve...
  - Or use gradient descent: walk in opposite direction of  $\nabla_{\vec{w}} R(\vec{w})$ .
- ► Recall,  $\nabla_{\vec{w}} R(\vec{w}) = (\partial R / \partial w_0, \partial R / \partial w_1, ..., \partial R / \partial w_d)^T$

#### In General

- Let  $\ell$  be the loss function, let  $H(\vec{x}; \vec{w})$  be the prediction function.
- ► The empirical risk:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Using the chain rule:

$$\nabla_{\vec{w}} R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ell}{\partial H} \nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})$$

#### **Gradient of** H

- ► To minimize risk, we want to compute  $\nabla_{\vec{w}} R$ .
- ► To compute  $\nabla_{\vec{w}} R$ , we want to compute  $\nabla_{\vec{w}} H$ .
- ► This will depend on the form of *H*.

# **Example: Linear Model**

Suppose H is a linear prediction function:

$$H(\vec{x}; \vec{w}) = w_0 + w_1 x_1 + ... + w_d x_d$$

▶ What is  $\nabla_{\vec{w}}H$  with respect to  $\vec{w}$ ?

# **Example: Linear Model**

► Consider  $\partial H/\partial w_1$ :



# **Example: Neural Networks**

- Suppose H is a neural network (with nonlinear activations).
- $\triangleright$  What is  $\nabla H$ ?
  - ► It's more complicated...



#### **Parameter Vectors**

- It is often useful to pack all of the network's weights into a parameter vector,  $\vec{w}$ .
- Order is arbitrary:

$$\vec{W} = (W_{11}^{(1)}, W_{12}^{(1)}, \dots, b_1^{(1)}, b_2^{(1)}, W_{11}^{(2)}, W_{12}^{(2)}, \dots, b_1^{(2)}, b_2^{(2)}, \dots)^T$$

- ► The network is a function  $H(\vec{x}; \vec{w})$ .
- ► Goal of learning: find the "best"  $\vec{w}$ .

#### **Gradient of Neural Network**

- $ightharpoonup \nabla_{\vec{w}} H$  is a vector-valued function.
- Plugging a data point,  $\vec{x}$ , and a parameter vector,  $\vec{w}$ , into  $\nabla_{\vec{w}}H$  "evaluates the gradient", results in a vector, same size as  $\vec{w}$ .



#### **Exercise**

Suppose  $W_{11}^{(1)} = -2$ ,  $W_{21}^{(1)} = -5$ ,  $W_{31}^{(1)} = 2$  and  $\vec{x} = (3, 2, -2)^T$  and all biases are 0. ReLU activations are used. What is  $\partial H/\partial W_{11}^{(1)}(\vec{x}, \vec{w})$ ?



# **Example**

► Consider  $\partial H/\partial W_{11}^{(3)}$ :



# **Example**

► Consider  $\partial H/\partial W_{11}^{(2)}$ :



# **Example**

► Consider  $\partial H/\partial W_{11}^{(1)}$ :



## **A Better Way**

- Computing the gradient is straightforward...
- But can involve a lot of repeated work.
- Backpropagation is an algorithm for efficiently computing the gradient of a neural network.