Representation Learning

Lecture 21 Part 1

Neural Networks

Beyond RBFs

When training RBFs, we fixed the basis functions before training the weights.

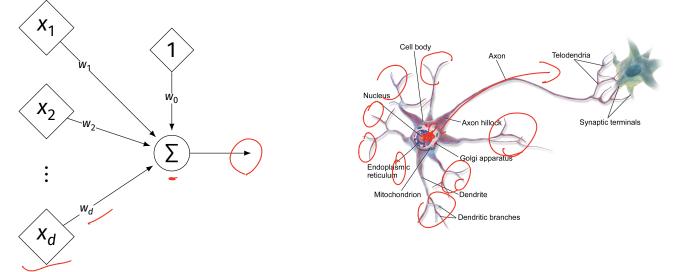
Representation learning was decoupled from learning the prediction function.

Now: learn representation and prediction function together.

Linear Models

$$H(\vec{x}) = W_0 + W_1 X_1 + \dots + W_d X_d$$

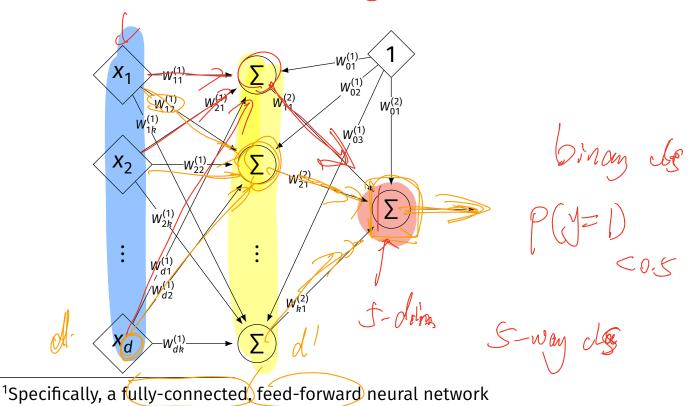
Neuron



Generalizing Linear Models

- ► The brain is a **network** of neurons.
- The output of a neuron is used as an input to another.
- Idea: chain together multiple "neurons" into a neural network.

Neural Network¹ (One Hidden Layer)



Architecture

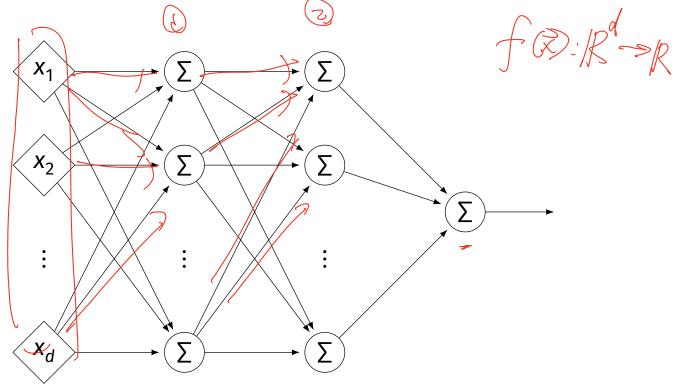
- Neurons are organized into layers.
 Input layer, output layer, and hidden layers.
- Number of cells in input layer determined by dimensionality of input feature vectors.
- Number of cells in hidden layer(s) is determined by you.
- Output layer can have >1 neuron.

Architecture

Can have more than one hidden layer.
 A network is "deep" if it has >1 hidden layer.

Hidden layers can have different number of neurons.

Neural Network (Two Hidden Layers)



9 X

Network Weights

- ► A neural network is a type of function.
- Like a linear model, a NN is totally determined by its weights.
- But there are often many more weights to learn!

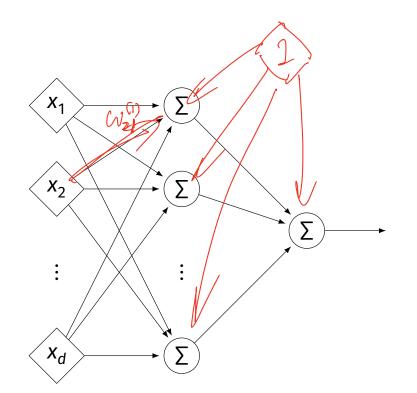
Notation #0 #J X_1 $W_{11}^{(1)}$ $b_{2}^{(1)}$ $W_{12}^{(1)}$ $W_{21}^{(1)}$ W^2 $b_{1}^{(2)}$ $W_{1k}^{(1)}$ $b_{3}^{(1)}$ X $-W_{22}^{(1)}$ $W_{21}^{(2)}$ $W_{2h}^{(1)}$. $W_{d1}^{(1)}$ $W_{k1}^{(2)}$ $-W_{dk}^{(1)}$

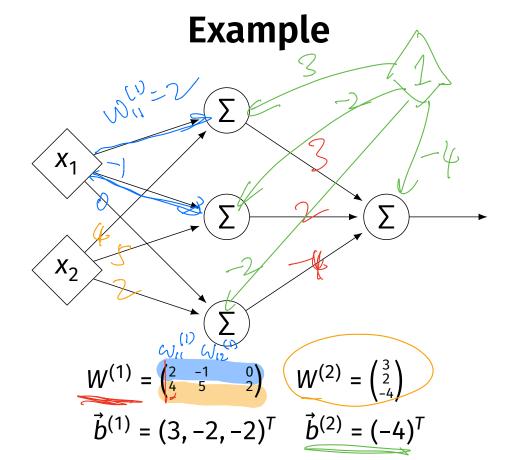
- Input is layer #0.
- W⁽ⁱ⁾_{jk} denotes weight of connection
 between neuron j in layer (i 1) and
 neuron k in layer i
- Layer weights are 2-d arrays.

HER - w. Xit - + wixd Notation HER - w. Hugher - w. Hugher - w. Hugher - w. Hugher Each hidden/output neuron gets a X₁ $W_{11}^{(1)}$ "dummy" input of 1. W₁⁽²⁾ $W_{21}^{(1)}$ $b_{1}^{(2)}$ -W⁽¹⁾₂₂ jth node in ith layer Х₂ assigned a bias weight of $b_i^{(i)}$ Biases for layer are $W_{k1}^{(2)}$ a vector: $\vec{b}^{(i)}$ $W_{dk}^{(1)}$ Х_d

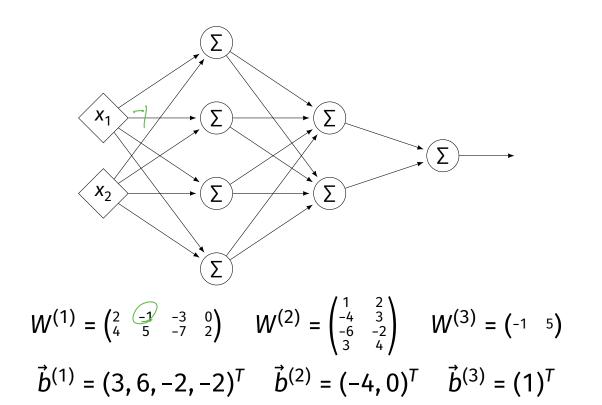
Notation

- Typically, we will not draw the weights.
- We will not draw the dummy input, too, but it is there.



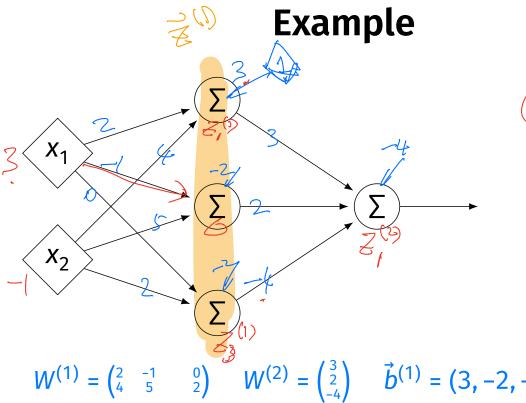


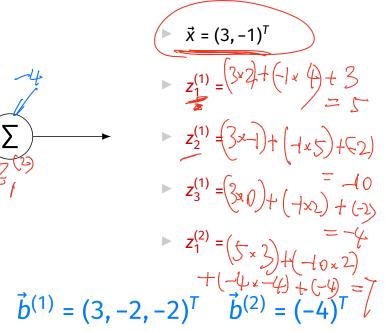
Example



Evaluation

- These are "fully-connected, feed-forward" networks with <u>one output</u>.
- ▶ They are functions $H(\vec{x}) : \mathbb{R}^d \to \mathbb{R}^1$
- To evaluate $H(\vec{x})$, compute result of layer *i*, use as inputs for layer *i* + 1.

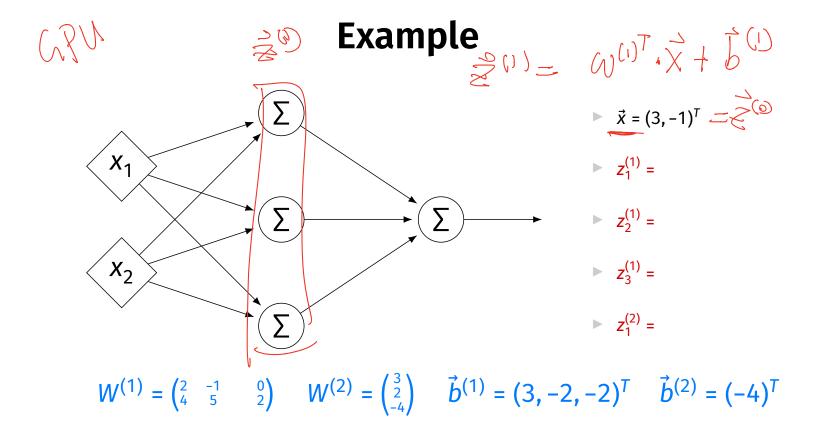




Evaluation as Matrix Multiplication

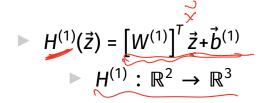
- Let $z_j^{(i)}$ be the output of node *j* in layer *i*.
- Make a vector of these outputs: $\vec{z}^{(i)} = (z_1^{(i)}, z_2^{(i)}, ...)^T$

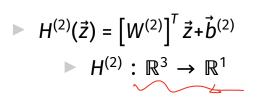
• Observe that
$$\vec{z}^{(i)} = [W^{(i)}]^T \vec{z}^{(i-1)} + \vec{b}^{(i)}$$

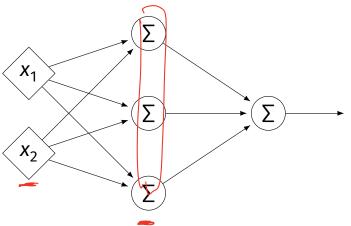


$f(\bar{x}) = \mu^{1} \rightarrow \mu^{1}$ Each Layer is a Function

We can think of each layer as a function mapping a vector to a vector.

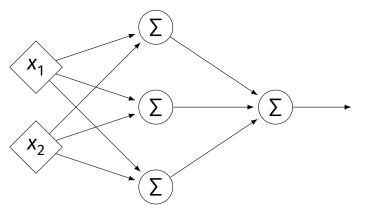






NNs as Function Composition

► The full NN is a composition of layer functions.

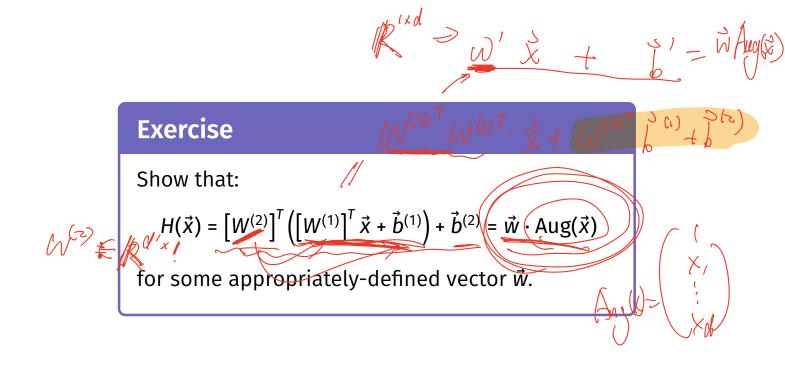


$$H(\vec{x}) = \underline{H^{(2)}(H^{(1)}(\vec{x}))} = \begin{bmatrix} W^{(2)} \end{bmatrix}^T \underbrace{\left(\begin{bmatrix} W^{(1)} \end{bmatrix}^T \vec{x} + \vec{b}^{(1)} \right)}_{\vec{z}^{(1)}} + \vec{b}^{(2)}$$

NNs as Function Composition

► In general, if there *k* hidden layers:

$$H(\vec{x}) = H^{(k+1)} \left(\cdots H^{(3)} \left(H^{(2)} \left(H^{(1)}(\vec{x}) \right) \right) \cdots \right)$$



Result

- The composition of linear functions is again a linear function.
- The NNs we have seen so far are all equivalent to linear models!
- For NNs to be more useful, we will need to add non-linearity.

Activations

So far, the output of a neuron has been a linear function of its inputs:

$$W_0 + W_1 X_1 + W_2 X_2 + \dots$$

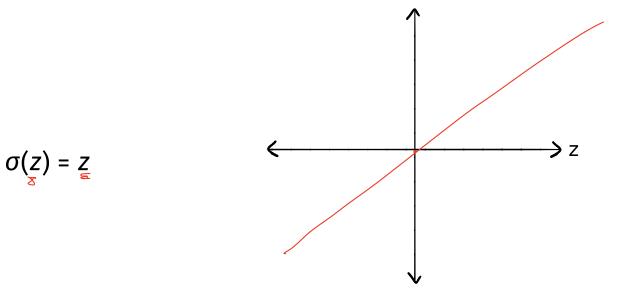
- Can be arbitrarily large or small.
- But real neurons are activated non-linearly.
 E.g., saturation.

Idea

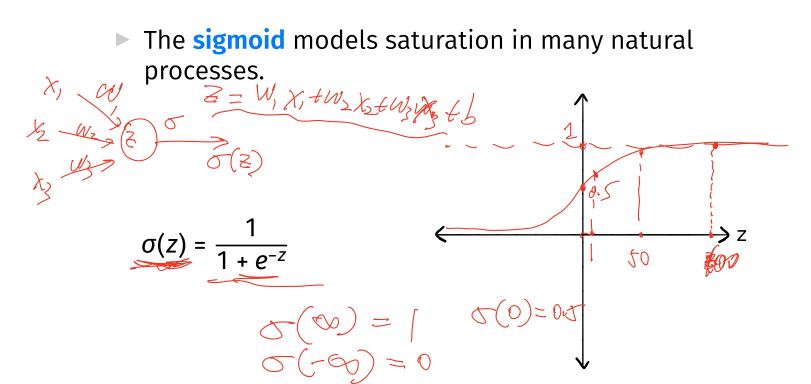
To add nonlinearity, we will apply a non-linear activation function g to the output of each hidden neuron (and sometimes the output neuron).

Linear Activation

The linear activation is what we've been using.



Sigmoid Activation



ReLU Activation

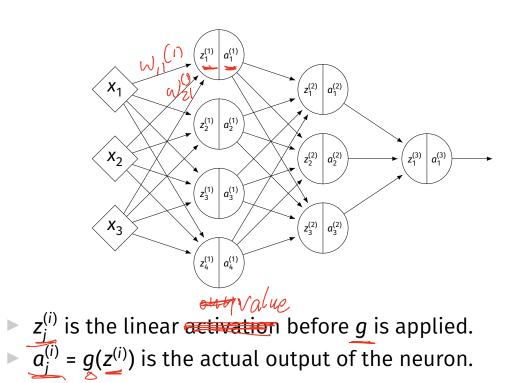
The Rectified Linear Unit (ReLU) tends to work better in practice.

Spense

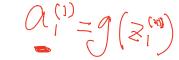
≻Ζ

Notation

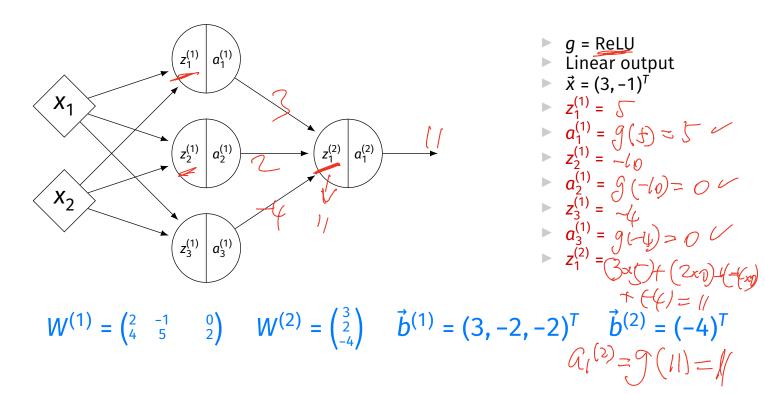
 $\mathbb{Z}_{1}^{(1)} = (\mathcal{U}_{n}^{(1)} \times_{1} + \mathcal{U}_{2}^{(1)} \times_{2})$



+ Wz (4 X3 + L ()



Example



Output Activations

- The activation of the output neuron(s) can be different than the activation of the hidden neurons.
- ► In classification, **sigmoid** activation makes sense.
- ► In regression, **linear** activation makes sense.

Main Idea

A neural network with linear activations is a linear model. If non-linear activations are used, the model is made non-linear.

Lecture 21 Part 2

Demo

Feature Map

We have seen how to fit non-linear patterns with linear models via basis functions (i.e., a feature map).

$$H(\vec{x}) = w_0 + w_1 \phi_1(\vec{x}) + \dots + w_k \phi_k(\vec{x})$$

- These basis functions are fixed **before** learning.
- **Downside:** we have to choose $\vec{\phi}$ somehow.

Learning a Feature Map

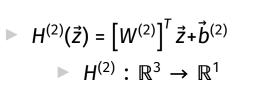
Interpretation: The hidden layers of a neural network learn a feature map.

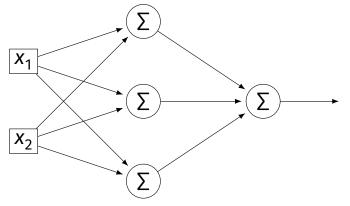
Each Layer is a Function

We can think of each layer as a function mapping a vector to a vector.

$$H^{(1)}(\vec{z}) = \left[W^{(1)}\right]^T \vec{z} + \vec{b}^{(1)}$$

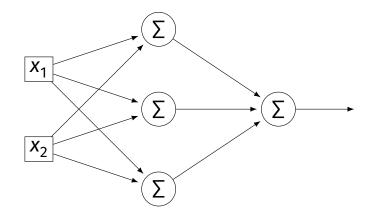
$$H^{(1)} : \mathbb{R}^2 \to \mathbb{R}^3$$





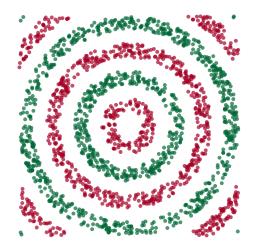
Each Layer is a Function

- The hidden layer performs a feature map from \mathbb{R}^2 to \mathbb{R}^3 .
- The output layer makes a prediction in \mathbb{R}^3 .
- Intuition: The feature map is learned so as to make the output layer's job "easier".



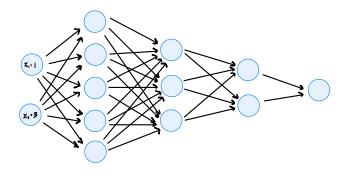
Demo

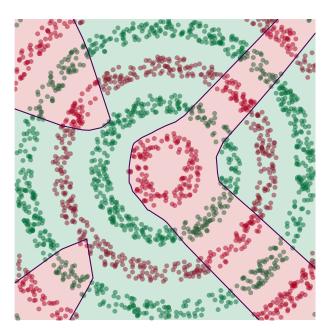
- Train a deep network to classify the data below.
- Hidden layers will learn a new feature map that makes the data linearly separable.

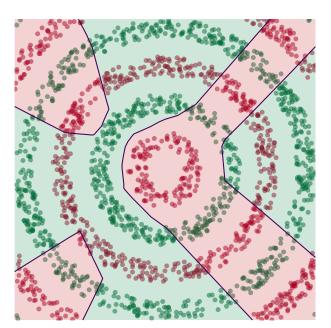


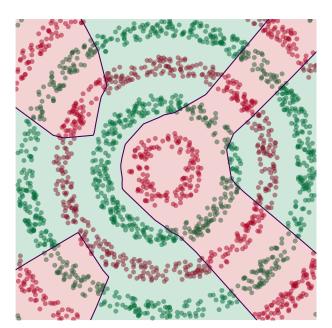
Demo

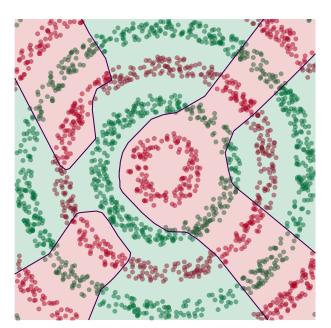
- We'll use three hidden layers, with last having two neurons.
- We can see this new representation!
- Plug in x and see activations of last hidden layer.

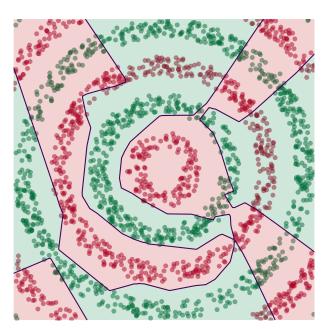


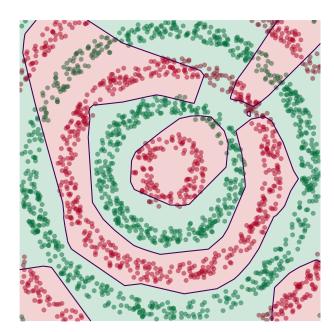


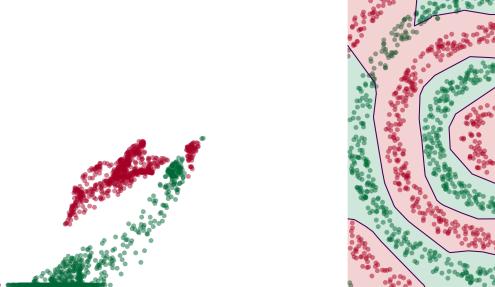


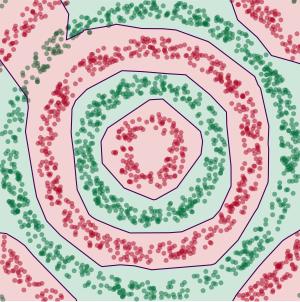


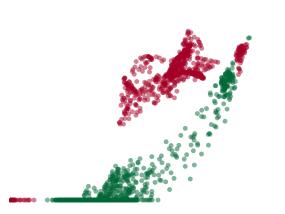


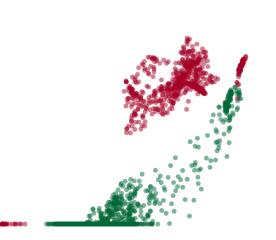


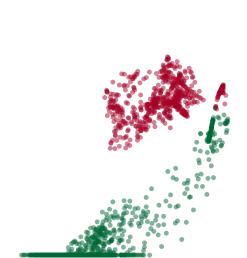


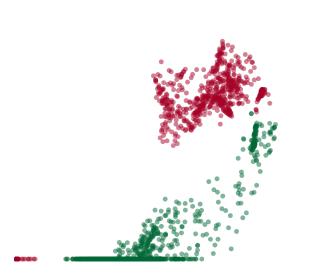


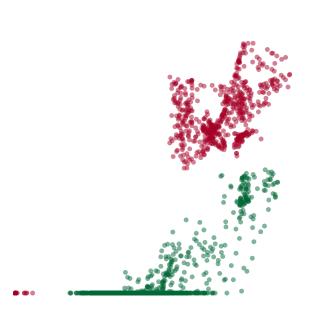


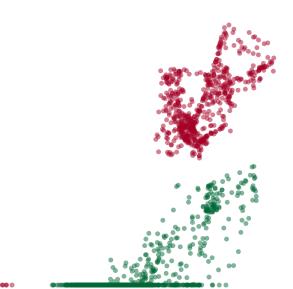


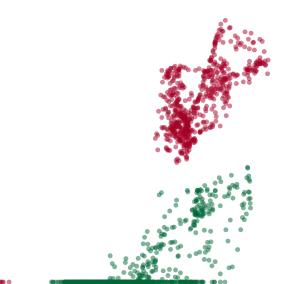


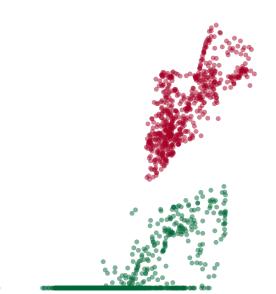


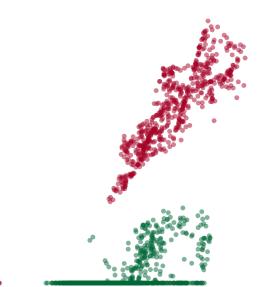


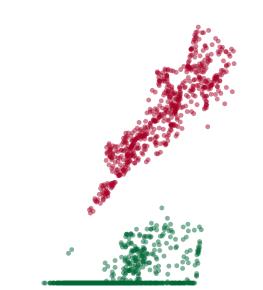




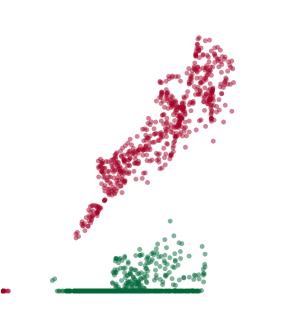


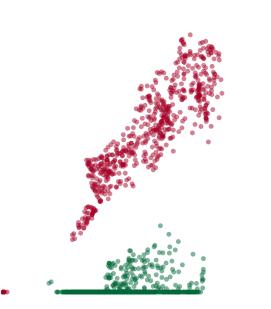


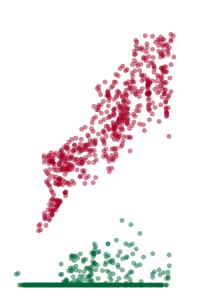


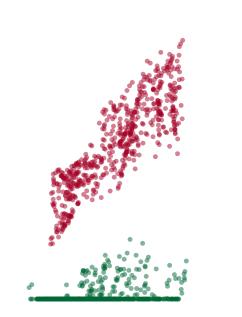












Deep Learning

The NN has learned a new representation in which the data is easily classified.

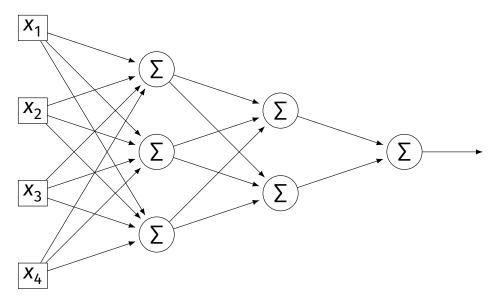
DSC 140B Representation Learning

Lecture 21 Part 3

Training Neural Networks

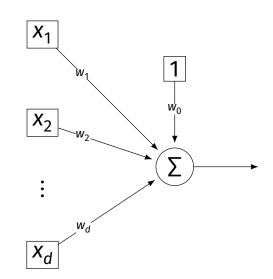
Training

How do we learn the weights of a (deep) neural network?



Remember...

How did we learn the weights in linear least squares regression?



Empirical Risk Minimization

0. Collect a training set, $\{(\vec{x}^{(i)}, y_i)\}$

- 1. Pick the form of the prediction function, *H*.
- 2. Pick a loss function.
- 3. Minimize the empirical risk w.r.t. that loss.

Remember: Linear Least Squares

0. Pick the form of the prediction function, *H*. • E.g., linear: $H(\vec{x}; \vec{w}) = w_0 + w_1 x_1 + ... + w_d x_d = Aug(\vec{x}) \cdot \vec{w}$

Pick a loss function. E.g., the square loss.

2. Minimize the empirical risk w.r.t. that loss:

$$R_{\rm sq}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (H(\vec{x}^{(i)}) - y_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i)^2$$

Minimizing Risk

- ► To minimize risk, we often use **vector calculus**.
 - Either set $\nabla_{\vec{w}} R(\vec{w}) = 0$ and solve...
 - Or use gradient descent: walk in opposite direction of $\nabla_{\vec{w}} R(\vec{w})$.
- ► Recall, $\nabla_{\vec{w}} R(\vec{w}) = (\partial R / \partial w_0, \partial R / \partial w_1, ..., \partial R / \partial w_d)^T$

In General

- ► Let ℓ be the loss function, let $H(\vec{x}; \vec{w})$ be the prediction function.
- ► The empirical risk:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Using the chain rule:

$$\nabla_{\vec{w}} R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ell}{\partial H} \nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})$$

Gradient of *H*

► To minimize risk, we want to compute $\nabla_{\vec{w}} R$.

► To compute $\nabla_{\vec{w}} R$, we want to compute $\nabla_{\vec{w}} H$.

► This will depend on the form of *H*.

Example: Linear Model

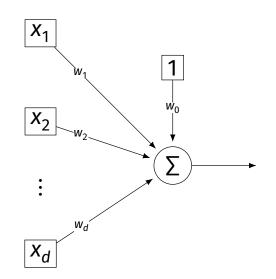
Suppose H is a linear prediction function:

$$H(\vec{x}; \vec{w}) = W_0 + W_1 X_1 + \dots + W_d X_d$$

▶ What is $\nabla_{\vec{w}} H$ with respect to \vec{w} ?

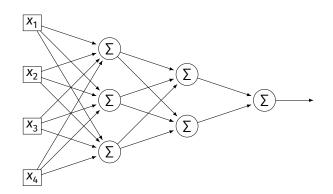
Example: Linear Model

► Consider $\partial H / \partial w_1$:



Example: Neural Networks

- Suppose H is a neural network (with nonlinear activations).
- What is ∇H?It's more complicated...



Parameter Vectors

It is often useful to pack all of the network's weights into a parameter vector, w.

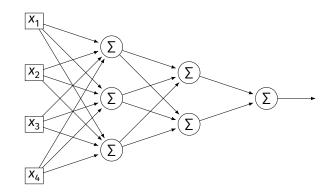
Order is arbitrary:

$$\vec{w} = (W_{11}^{(1)}, W_{12}^{(1)}, \dots, b_1^{(1)}, b_2^{(1)}, W_{11}^{(2)}, W_{12}^{(2)}, \dots, b_1^{(2)}, b_2^{(2)}, \dots)^T$$

- ► The network is a function $H(\vec{x}; \vec{w})$.
- Goal of learning: find the "best" \vec{w} .

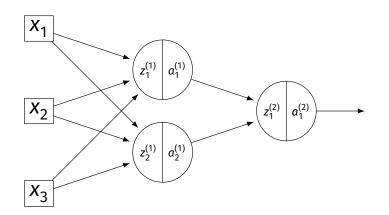
Gradient of Neural Network

- $\triangleright \nabla_{\vec{w}} H$ is a vector-valued function.
- Plugging a data point, \vec{x} , and a parameter vector, \vec{w} , into $\nabla_{\vec{w}}H$ "evaluates the gradient", results in a vector, same size as \vec{w} .



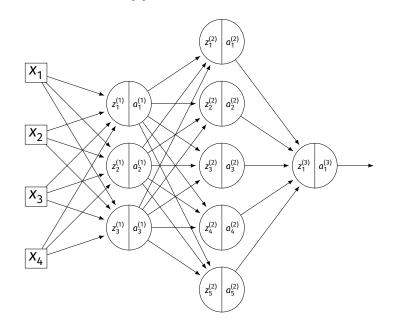
Exercise

Suppose $W_{11}^{(1)} = -2, W_{21}^{(1)} = -5, W_{31}^{(1)} = 2$ and $\vec{x} = (3, 2, -2)^T$ and all biases are 0. ReLU activations are used. What is $\partial H / \partial W_{11}^{(1)}(\vec{x}, \vec{w})$?



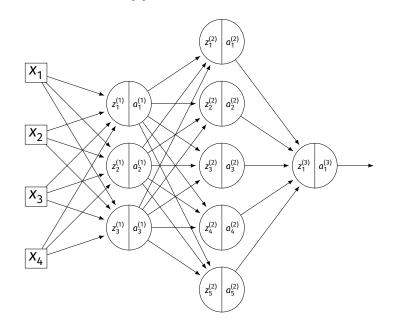
Example

► Consider $\partial H / \partial W_{11}^{(3)}$:



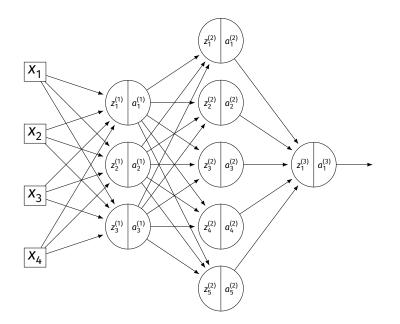
Example

► Consider $\partial H / \partial W_{11}^{(2)}$:



Example

► Consider $\partial H / \partial W_{11}^{(1)}$:



A Better Way

- Computing the gradient is straightforward...
- But can involve a lot of repeated work.
- Backpropagation is an algorithm for efficiently computing the gradient of a neural network.