

Lecture 20 Part 1

Feature Maps

Recap

- Linear prediction functions are limited.
- Idea: transform the data to a new space where prediction is "easier".
- ▶ To do so, we used **basis functions**.

Overview: Feature Mapping

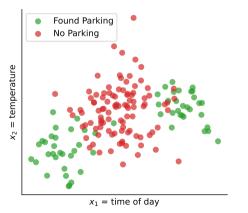
1. Start with data in original space, \mathbb{R}^d .

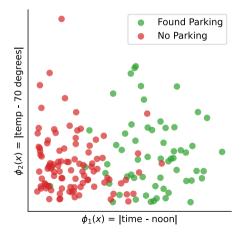
- 2. Choose some basis functions, $\varphi_1, \varphi_2, ..., \varphi_{d'}$
- 3. Map each data point to **feature space** $\mathbb{R}^{d'}$: $\vec{x} \mapsto (\varphi_1(\vec{x}), \varphi_2(\vec{x}), \dots, \varphi_{d'}(\vec{x}))^t$

4. Fit linear prediction function in new space:

$$H(\vec{x}) = w_0 + w_1 \varphi_1(\vec{x}) + w_2 \varphi_2(\vec{x})$$

Feature Space, Visualized





Representation Learning

Lecture 20 Part 2

A Tale of Two Spaces

A Tale of Two Spaces

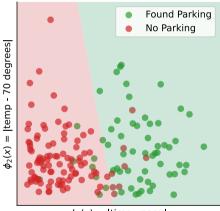
The original space: where the raw data lies.

- The feature space: where the data lies after feature mapping $\vec{\varphi}$
- Remember: we fit a linear prediction function in the **feature space**.

Exercise

- In feature space, what does the decision boundary look like?
- What does the prediction function surface look like?

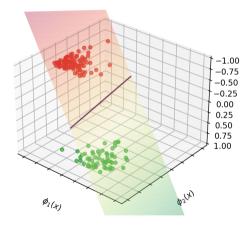
Decision Boundary in Feature Space²



 $\phi_1(x) = |$ time - noon|

²Fit by minimizing square loss

Prediction Surface in Feature Space



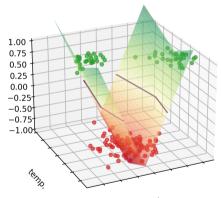
Exercise

- In the original space, what does the decision boundary look like?
- What does the prediction function surface look like?

Decision Boundary in Original Space³

³Fit by minimizing square loss

Prediction Surface in Original Space

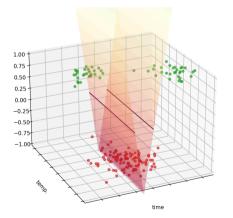


time

Insight

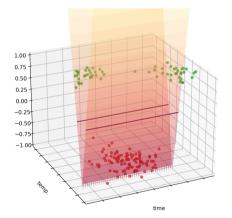
- ► *H* is a sum of basis functions, φ_1 and φ_2 . ► $H(\vec{x}) = w_0 + w_1 \varphi_1(\vec{x}) + w_2 \varphi_2(\vec{x})$
- The prediction surface is a sum of other surfaces.
- Each basis function is a "building block".

Visualizing the Basis Function φ_1

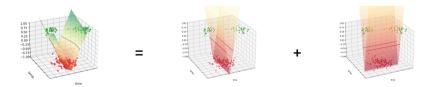


 $w_0 + w_1 | x_1 - noon |$

Visualizing the Basis Function φ_2



Visualizing the Prediction Surface



View: Function Approximation

 $x_1 = \text{time of day}$

Find a function that is ≈ 1 near green points and ≈ -1 near red points.

x₂ = temperature

What's Wrong?

- We've discovered how to learn non-linear patterns using linear prediction functions.
 Use non-linear basis functions to map to a feature space.
- Something should bug you, though...

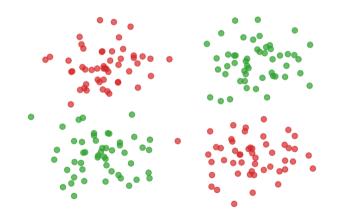
Lecture 20 Part 3

Radial Basis Functions

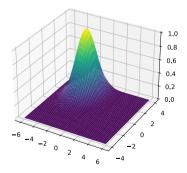
Generic Basis Functions

- The basis functions we used before were engineered using domain knowledge.
- They were specific to the problem at hand.
- Very manual process!
- **Now:** features that work for many problems.

Example



Gaussian Basis Functions



A common choice: Gaussian basis functions:

$$\varphi(\vec{x};\vec{\mu},\sigma)=e^{-\|\vec{x}-\vec{\mu}\|^2/\sigma^2}$$

 \vdash $\vec{\mu}$ is the center.

 \triangleright σ controls the "width"

Gaussian Basis Function

- If \vec{x} is close to $\vec{\mu}$, $\varphi(\vec{x}; \vec{\mu}, \sigma)$ is large.
- If \vec{x} is far from $\vec{\mu}$, $\varphi(\vec{x}; \vec{\mu}, \sigma)$ is small.
- Intuition: φ measures how "similar" x is to μ.
 Assumes that "similar" objects have close feature vectors.

New Representation

- ▶ Pick number of new features, *d*′.
- ▶ Pick centers for Gaussians $\vec{\mu}^{(1)}, ..., \vec{\mu}^{(2)}, ..., \vec{\mu}^{(d')}$
- ▶ Pick widths: $\sigma_1, \sigma_2, ..., \sigma_{d'}$ (usually all the same)
- Define *i*th basis function:

$$\varphi_i(\vec{x}) = e^{-\|\vec{x} - \vec{\mu}^{(i)}\|^2 / \sigma_i^2}$$

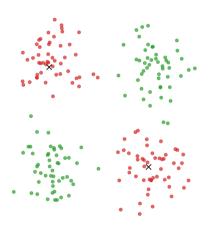
New Representation

- For any feature vector x ∈ ℝ^d, map to vector φ(x) ∈ ℝ^{d'}.
 φ₁: "similarity" of x to μ⁽¹⁾
 φ₂: "similarity" of x to μ⁽²⁾
 ...
 φ_{d'}: "similarity" of x to μ^(d')
- Train linear classifier in this new representation.
 E.g., by minimizing expected square loss.

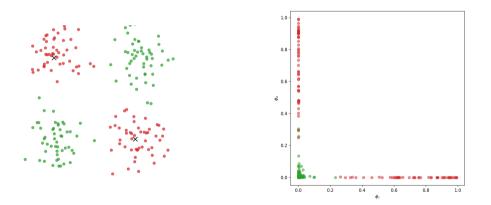
Exercise

How many Gaussian basis functions would you use, and where would you place them to create a new representation for this data?

Placement



Feature Space



Prediction Function

• $H(\vec{x})$ is a sum of Gaussians:

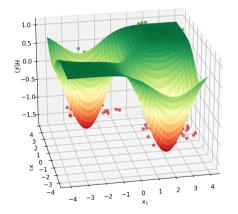
$$\begin{split} H(\vec{x}) &= w_0 + w_1 \varphi_1(\vec{x}) + w_2 \varphi_2(\vec{x}) + \dots \\ &= w_0 + w_1 e^{-\|\vec{x} - \vec{\mu}_1\|^2 / \sigma^2} + w_2 e^{-\|\vec{x} - \vec{\mu}_2\|^2 / \sigma^2} + \dots \end{split}$$

Exercise

What does the surface of the prediction function look like?

Hint: what does the sum of 1-d Gaussians look like?

Prediction Function Surface

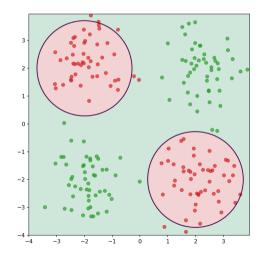


$$H(\vec{x}) = w_0 + w_1 e^{-\|\vec{x} - \vec{\mu}_1\|^2 / \sigma^2} + w_2 e^{-\|\vec{x} - \vec{\mu}_2\|^2 / \sigma^2}$$

An Interpretation

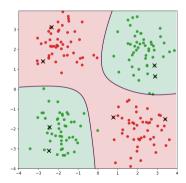
Basis function φ_i makes a "bump" in surface of H
 w_i adjusts the "prominance" of this bump

Decision Boundary

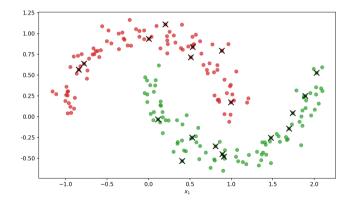


More Features

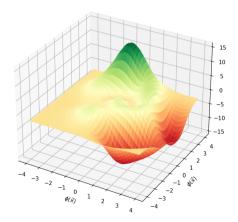
By increasing number of basis functions, we can make more complex decision surfaces.



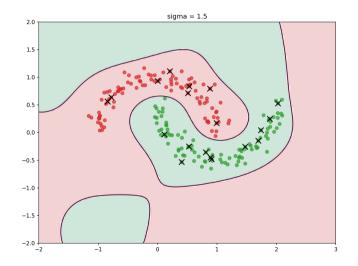
Another Example



Prediction Surface



Decision Boundary



Radial Basis Functions

- Gaussians are examples of radial basis functions.
- Each basis function has a **center**, *c*.
- Value depends only on distance from center:

$$\varphi(\vec{x};\vec{c})=f(\|\vec{x}-\vec{c}\|)$$

Another Radial Basis Function

Multiquadric:
$$\varphi(\vec{x}; \vec{c}) = \sqrt{\sigma^2 + \|\vec{x} - \vec{c}\|} / \sigma$$

Representation Learning

Lecture 20 Part 4

Radial Basis Function Networks

Recap

- 1. Choose basis functions, $\varphi_1, ..., \varphi_{d'}$
- 2. Transform data to new representation:

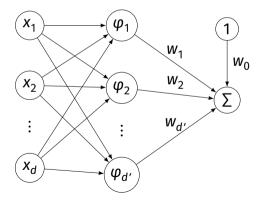
$$\vec{x} \mapsto (\varphi_1(\vec{x}), \varphi_2(\vec{x}), \dots, \varphi_{d'}(\vec{x}))^T$$

3. Train a linear classifier in this new space:

$$H(\vec{x}) = w_0 + w_1 \varphi_1(\vec{x}) + w_2 \varphi_2(\vec{x}) + \ldots + w_{d'} \varphi_{d'}(\vec{x})$$

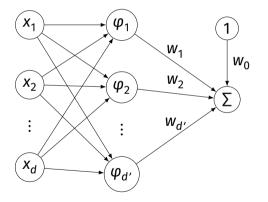
The Model

• The φ are **basis functions**.



$$H(\vec{x})=w_0+w_1\varphi_1(\vec{x})+w_2\varphi_2(\vec{x})$$

Radial Basis Function Networks



If the basis functions are radial basis functions, we call this a radial basis function (RBF) network.

Training

- An RBF network has these parameters:
 the parameters of each individual basis function:
 μ_i (the center)
 possibly others (e.g., σ)
 w_i: the weights associated to each "new" feature
- How do we choose the parameters?

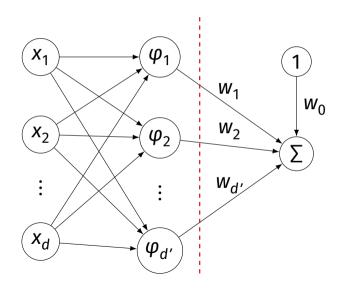
First Idea

- We can include all parameters in one big cost function, optimize.
- The cost function will generally be complicated, non-convex and thus hard to optimize.

Another Idea

- Break the process into two steps:
- Find the parameters of the RBFs somehow.
 Some optimization procedure, clustering, randomly, ...
- 2. Having fixed those parameters, optimize the w's.
- Linear; easier to optimize.

Training



Training an RBF Network

Choose the form of the RBF, how many.
 ► E.g., k Gaussian RBFs, φ₁,..., φ_k.

2. Pick the parameters of the RBFs somehow.

- 3. Create new data set by mapping $\vec{x} \mapsto (\varphi_1(\vec{x}), ..., \varphi_k(\vec{x}))^T$
- 4. Train a linear predictor H_f on new data set
 ▶ That is, in feature space.

Making Predictions

- 1. Given a point \vec{x} , map it to feature space: $\vec{x} \mapsto (\varphi_1(\vec{x}), ..., \varphi_k(\vec{x}))^T$
- 2. Evaluate the trained linear predictor H_f in feature space

Lecture 20 Part 5

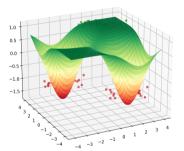
Choosing RBF Locations

Recap

- We map data to a new representation by first choosing **basis functions**.
- Radial Basis Functions (RBFs), such as Gaussians, are a popular choice.
- Requires choosing center for each basis function.

Prediction Function

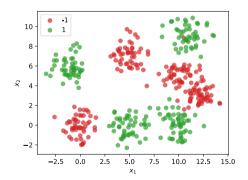
Our prediction function H is a surface that is made up of Gaussian "bumps".



$$H(\vec{x}) = w_0 + w_1 e^{-\|\vec{x} - \vec{\mu}_1\|^2 / \sigma^2} + w_2 e^{-\|\vec{x} - \vec{\mu}_2\|^2 / \sigma^2}$$

Choosing Centers

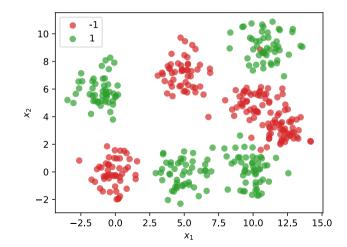
- Place the centers where the value of the prediction function should be controlled.
- Intuitively: place centers where the data is.



Approaches

- 1. Every data point as a center
- 2. Randomly choose centers
- 3. Clustering

Approach #1: Every Data Point as a Center



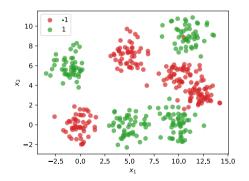
Dimensionality

- ▶ We'll have *n* basis functions one for each point.
- ▶ That means we'll have *n* features.
- ► Each feature vector $\vec{\phi}(\vec{x}) \in \mathbb{R}^n$.

$$\vec{\phi}(\vec{x}) = (\phi_1(\vec{x}), \phi_2(\vec{x}), \dots, \phi_n(\vec{x}))^T$$

Problems

- This causes problems.
- First: more likely to overfit.
- Second: computationally expensive



Computational Cost

Suppose feature matrix X is n × d
 n points in d dimensions

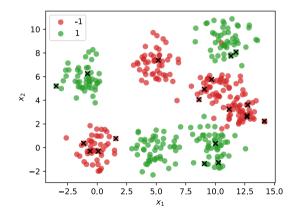
Time complexity of solving $X^T X \vec{w} = X^T \vec{y}$ is $\Theta(nd^2)$

• Usually $d \ll n$. But if d = n, this is $\Theta(n^3)$.

Not great! If $n \approx 10,000$, then takes > 10 minutes.

Approach #2: A Random Sample

Idea: randomly choose k data points as centers.



Problem

- May undersample/oversample a region.
- More advanced sampling approaches exist.

Approach #3: Clustering

- Group data points into clusters.
- Cluster centers are good places for RBFs.
- For example, use k-means clustering to pick k centers.