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Lecture 20 Part 1

Feature Maps



Recap

Linear prediction functions are limited.

Idea: transform the data to a new space where
prediction is “easier”.

To do so, we used basis functions.



Overview: Feature Mapping

Start with data in original space, RY.
Choose some basis functions, @,, @,, ..., 4

Map each data point to feature space RY:

X - ((P1 (X), (Pz()?)v e (pd’()?))t

Fit linear prediction function in new space:

H(X) = wy + w,4(X) + W, 0,(X)
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A Tale of Two Spaces



A Tale of Two Spaces
The original space: where the raw data lies.

The feature space: where the data lies after
feature mapping ¢

Remember: we fit a linear prediction function in
the feature space.



In feature space, what does the decision
boundary look like?

What does the prediction function surface
look like?
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Decision Boundary in Feature Space?
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2Fit by minimizing square loss



Prediction Surface in Feature Space




In the original space, what does the decision
boundary look like?

What does the prediction function surface
look like?

© Found Parking  ©
® No Parking

X, = temperature
[ °
°
°
>
ek
)
25
D
[ ] "'..
¢ -
P ®

x; = time of day




Decision Boundary in Original Space®
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3Fit by minimizing square loss



Prediction Surface in Original Space




Insight

H is a sum of basis functions, ¢, and @,.
H(X) = wo + Wy 4(X) + W,,(X)

The prediction surface is a sum of other surfaces.

Each basis function is a “building block”.



Visualizing the Basis Function ¢,

Wy +W, | X, -noon|




Visualizing the Basis Function ¢,
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Visualizing the Prediction Surface
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What's Wrong?

We've discovered how to learn non-linear
patterns using linear prediction functions.

Use non-linear basis functions to map to a feature
space.

Something should bug you, though...



pDsC /4o0&

Represaitaton [ earmg

Lecture 20 Part 3

Radial Basis Functions



Generic Basis Functions

The basis functions we used before were
engineered using domain knowledge.

They were specific to the problem at hand.
Very manual process!

Now: features that work for many problems.






Gaussian Basis Functions

A common .choice: Gaussian
basis functions:

@5 f,0) = VA1
fi is the center.

o controls the “width”




Gaussian Basis Function
If X is close to [i, @(X; i, 0) is large.
If X is far from [, @(X; l, o) is small.

Intuition: ¢ measures how “similar” X is to [i.

Assumes that “similar” objects have close feature
vectors.



New Representation

Pick number of new features, d’.

Pick centers for Gaussians ("), ..., i@, ..., it

Pick widths: g,,0,,...,04 (usually all the same)
Define ith basis function:

(%) = e VA0
I



New Representation

For any feature vector X € RY, map to vector
P(X) e RY.

@,: “similarity” of X to §("

®,: “similarity” of X to fi®

g “similarity” of X to fi®"

Train linear classifier in this new representation.
E.g., by minimizing expected square loss.



How many Gaussian basis functions would you use,
and where would you place them to create a new
representation for this data?
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Placement
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Feature Space
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Prediction Function

H(X) is a sum of Gaussians:

H(X) = Wy + Wy (X) + wyy(X) + ...

it 1252 i1 62
= Wy + W, e IX-p4l</0° w,e IX-p2l</0



What does the surface of the prediction function
look like?

Hint: what does the sum of 1-d Gaussians look like?




Prediction Function Surface

- Nx=ii. 12 /a2 _Nx=ii-Nn2/a52
H(X) = w, + w,e IX-g411%/0% w,e IX-[, 117/ 0



An Interpretation

Basis function ¢; makes a “bump” in surface of H
w; adjusts the “prominance” of this bump
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More Features

By increasing number of basis functions, we can
make more complex decision surfaces.




Another Example
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Prediction Surface




Decision Boundary




Radial Basis Functions
Gaussians are examples of radial basis functions.
Each basis function has a center, C.

Value depends only on distance from center:

p(x;€) = f(I1x - Cl)



Another Radial Basis Function

Multiquadric: @(X;C \/02 +||X-C|/o
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Radial Basis Function Networks



Recap
Choose basis functions, ¢, ..., @4

Transform data to new representation:
)-% = ((p‘l ()-%)r (pZ()-%)r seey (Pd’()-e))-r
Train a linear classifier in this new space:

H(X) = Wo + Wy 01 (X) + Wy, (X) + ... + Wy g (X)



The Model

The @ are basis functions.

H(X) = wy+w, @, (X)+w,p,(X)




Radial Basis Function Networks

If the basis functions are
radial basis functions, we
call this a radial basis
function (RBF) network.




Training

An RBF network has these parameters:
the parameters of each individual basis function:
fi; (the center)
possibly others (e.g., 0)
w;: the weights associated to each “new” feature

How do we choose the parameters?



First Idea

We can include all parameters in one big cost
function, optimize.

The cost function will generally be complicated,
non-convex and thus hard to optimize.



Another Idea

Break the process into two steps:

Find the parameters of the RBFs somehow.
Some optimization procedure, clustering, randomly, ...

Having fixed those parameters, optimize the w's.

Linear; easier to optimize.



Training




Training an RBF Network

Choose the form of the RBF, how many.
E.g., R Gaussian RBFs, ¢, ..., Q.

Pick the parameters of the RBFs somehow.

Create new data set by mapping
X 0 (04(X), -ee, 0p(X)T

Train a linear predictor H; on new data set
That is, in feature space.



Making Predictions

Given a point X, map it to feature space:
X = (01 (X), s 0p(X))

Evaluate the trained linear predictor Hy in
feature space
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Choosing RBF Locations



Recap

We map data to a new representation by first
choosing basis functions.

Radial Basis Functions (RBFs), such as Gaussians,
are a popular choice.

Requires choosing center for each basis function.



Prediction Function

Our prediction function H
Is a surface that is made
up of Gaussian “bumps”.

2\ _ _)‘(_*20-2 _)*(_*20.2
H(X) = WO +W1e " P"I" / +er " “2” /



Choosing Centers

Place the centers where
the value of the prediction
function should be
controlled.

Intuitively: place centers
where the data is.
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Approaches
Every data point as a center
Randomly choose centers

Clustering



Approach #1: Every Data Point as a
Center
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Dimensionality
We'll have n basis functions - one for each point.
That means we'll have n features.

Fach feature vector ¢(X) € R".

B(X) = (d1(X), §5(X), ..., B (X))



This causes problems.

First: more likely to
overfit.

Second: computationally

expensive

Problems
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Computational Cost

Suppose feature matrix X isn x d
n points in d dimensions

Time complexity of solving X"Xw = X"y is ©(nd?)
Usually d < n. But if d = n, this is ©(n3).

Not great! If n = 10,000, then takes > 10 minutes.



Approach #2: A Random Sample

Idea: randomly choose k data points as centers.
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Problem
May undersample/oversample a region.

More advanced sampling approaches exist.



Approach #3: Clustering
Group data points into clusters.
Cluster centers are good places for RBFs.

For example, use k-means clustering to pick R
centers.



