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Feature Maps



Recap▶ Linear prediction functions are limited.▶ Idea: transform the data to a new space where
prediction is “easier”.▶ To do so, we used basis functions.



Overview: Feature Mapping
1. Start with data in original space, ℝ𝑑.
2. Choose some basis functions, 𝜑1, 𝜑2, … , 𝜑𝑑′
3. Map each data point to feature space ℝ𝑑′:⃗𝑥 ↦ (𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥), … , 𝜑𝑑′( ⃗𝑥))𝑡
4. Fit linear prediction function in new space:𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥)



Feature Space, Visualized
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A Tale of Two Spaces



A Tale of Two Spaces▶ The original space: where the raw data lies.▶ The feature space: where the data lies after
feature mapping �⃗�▶ Remember: we fit a linear prediction function in
the feature space.



Exercise▶ In feature space, what does the decision
boundary look like?▶ What does the prediction function surface
look like?



Decision Boundary in Feature Space2

2Fit by minimizing square loss



Prediction Surface in Feature Space



Exercise▶ In the original space, what does the decision
boundary look like?▶ What does the prediction function surface
look like?



Decision Boundary in Original Space3

3Fit by minimizing square loss



Prediction Surface in Original Space



Insight▶ 𝐻 is a sum of basis functions, 𝜑1 and 𝜑2.▶ 𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥)▶ The prediction surface is a sum of other surfaces.▶ Each basis function is a “building block”.



Visualizing the Basis Function 𝜑1
▶ 𝑤0+𝑤1|𝑥1−noon|



Visualizing the Basis Function 𝜑2
▶ 𝑤0 + 𝑤2|𝑥2 − 72∘|



Visualizing the Prediction Surface

= +



View: Function Approximation

▶ Find a function that is ≈ 1
near green points and ≈ −1
near red points.



What’s Wrong?▶ We’ve discovered how to learn non-linear
patterns using linear prediction functions.▶ Use non-linear basis functions to map to a feature

space.▶ Something should bug you, though...
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Radial Basis Functions



Generic Basis Functions▶ The basis functions we used before were
engineered using domain knowledge.▶ They were specific to the problem at hand.▶ Very manual process!▶ Now: features that work for many problems.



Example



Gaussian Basis Functions

▶ A common choice: Gaussian
basis functions:𝜑( ⃗𝑥; �⃗�, 𝜎) = 𝑒−‖ ⃗𝑥−�⃗�‖2/𝜎2▶ �⃗� is the center.▶ 𝜎 controls the “width”



Gaussian Basis Function▶ If ⃗𝑥 is close to �⃗�, 𝜑( ⃗𝑥; �⃗�, 𝜎) is large.▶ If ⃗𝑥 is far from �⃗�, 𝜑( ⃗𝑥; �⃗�, 𝜎) is small.▶ Intuition: 𝜑 measures how “similar” ⃗𝑥 is to �⃗�.▶ Assumes that “similar” objects have close feature
vectors.



New Representation▶ Pick number of new features, 𝑑′.▶ Pick centers for Gaussians �⃗�(1), … , �⃗�(2), ..., �⃗�(𝑑′)▶ Pick widths: 𝜎1, 𝜎2, … , 𝜎𝑑′ (usually all the same)▶ Define 𝑖th basis function:𝜑𝑖( ⃗𝑥) = 𝑒−‖ ⃗𝑥−�⃗�(𝑖)‖2/𝜎2𝑖



New Representation▶ For any feature vector ⃗𝑥 ∈ ℝ𝑑, map to vector�⃗�( ⃗𝑥) ∈ ℝ𝑑′.▶ 𝜑1: “similarity” of ⃗𝑥 to �⃗�(1)▶ 𝜑2: “similarity” of ⃗𝑥 to �⃗�(2)▶ …▶ 𝜑𝑑′: “similarity” of ⃗𝑥 to �⃗�(𝑑′)▶ Train linear classifier in this new representation.▶ E.g., by minimizing expected square loss.



Exercise
Howmany Gaussian basis functions would you use,
and where would you place them to create a new
representation for this data?



Placement



Feature Space



Prediction Function▶ 𝐻( ⃗𝑥) is a sum of Gaussians:𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥) + …= 𝑤0 + 𝑤1𝑒−‖ ⃗𝑥−�⃗�1‖2/𝜎2 + 𝑤2𝑒−‖ ⃗𝑥−�⃗�2‖2/𝜎2 + …



Exercise
What does the surface of the prediction function
look like?

Hint: what does the sumof 1-d Gaussians look like?



Prediction Function Surface

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑒−‖ ⃗𝑥−�⃗�1‖2/𝜎2 + 𝑤2𝑒−‖ ⃗𝑥−�⃗�2‖2/𝜎2



An Interpretation▶ Basis function 𝜑𝑖 makes a “bump” in surface of 𝐻▶ 𝑤𝑖 adjusts the “prominance” of this bump



Decision Boundary



More Features▶ By increasing number of basis functions, we can
make more complex decision surfaces.



Another Example



Prediction Surface



Decision Boundary



Radial Basis Functions▶ Gaussians are examples of radial basis functions.▶ Each basis function has a center, ⃗𝑐.▶ Value depends only on distance from center:𝜑( ⃗𝑥; ⃗𝑐) = 𝑓(‖ ⃗𝑥 − ⃗𝑐‖)



Another Radial Basis Function▶ Multiquadric: 𝜑( ⃗𝑥; ⃗𝑐) = √𝜎2 + ‖ ⃗𝑥 − ⃗𝑐‖/𝜎
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Radial Basis Function Networks



Recap
1. Choose basis functions, 𝜑1, … , 𝜑𝑑′
2. Transform data to new representation:⃗𝑥 ↦ (𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥), … , 𝜑𝑑′( ⃗𝑥))𝑇
3. Train a linear classifier in this new space:𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥) + … + 𝑤𝑑′𝜑𝑑′( ⃗𝑥)



The Model▶ The 𝜑 are basis functions.𝑥1
𝑥2
⋮𝑥𝑑

𝜑1
𝜑2
⋮𝜑𝑑′

∑
1𝑤1𝑤2𝑤𝑑′
𝑤0 𝐻( ⃗𝑥) = 𝑤0+𝑤1𝜑1( ⃗𝑥)+𝑤2𝜑2( ⃗𝑥)



Radial Basis Function Networks

𝑥1
𝑥2
⋮𝑥𝑑

𝜑1
𝜑2
⋮𝜑𝑑′

∑
1𝑤1𝑤2𝑤𝑑′
𝑤0 If the basis functions are

radial basis functions, we
call this a radial basis
function (RBF) network.



Training▶ An RBF network has these parameters:▶ the parameters of each individual basis function:▶ �⃗�𝑖 (the center)▶ possibly others (e.g., 𝜎)▶ 𝑤𝑖: the weights associated to each “new” feature▶ How do we choose the parameters?



First Idea▶ We can include all parameters in one big cost
function, optimize.▶ The cost function will generally be complicated,
non-convex and thus hard to optimize.



Another Idea▶ Break the process into two steps:

1. Find the parameters of the RBFs somehow.▶ Some optimization procedure, clustering, randomly, ...

2. Having fixed those parameters, optimize the 𝑤’s.▶ Linear; easier to optimize.



Training

𝑥1
𝑥2
⋮𝑥𝑑

𝜑1
𝜑2
⋮𝜑𝑑′

∑
1𝑤1𝑤2𝑤𝑑′
𝑤0



Training an RBF Network
1. Choose the form of the RBF, how many.▶ E.g., 𝑘 Gaussian RBFs, 𝜑1, … , 𝜑𝑘.
2. Pick the parameters of the RBFs somehow.

3. Create new data set by mapping⃗𝑥 ↦ (𝜑1( ⃗𝑥), … , 𝜑𝑘( ⃗𝑥))𝑇
4. Train a linear predictor 𝐻𝑓 on new data set▶ That is, in feature space.



Making Predictions
1. Given a point ⃗𝑥, map it to feature space:⃗𝑥 ↦ (𝜑1( ⃗𝑥), … , 𝜑𝑘( ⃗𝑥))𝑇
2. Evaluate the trained linear predictor 𝐻𝑓 in
feature space
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Choosing RBF Locations



Recap▶ We map data to a new representation by first
choosing basis functions.▶ Radial Basis Functions (RBFs), such as Gaussians,
are a popular choice.▶ Requires choosing center for each basis function.



Prediction Function

▶ Our prediction function 𝐻
is a surface that is made
up of Gaussian “bumps”.

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑒−‖ ⃗𝑥−�⃗�1‖2/𝜎2 + 𝑤2𝑒−‖ ⃗𝑥−�⃗�2‖2/𝜎2



Choosing Centers

▶ Place the centers where
the value of the prediction
function should be
controlled.▶ Intuitively: place centers
where the data is.



Approaches
1. Every data point as a center

2. Randomly choose centers

3. Clustering



Approach #1: Every Data Point as a
Center



Dimensionality▶ We’ll have 𝑛 basis functions – one for each point.▶ That means we’ll have 𝑛 features.▶ Each feature vector �⃗�( ⃗𝑥) ∈ ℝ𝑛.�⃗�( ⃗𝑥) = (𝜙1( ⃗𝑥), 𝜙2( ⃗𝑥), … , 𝜙𝑛( ⃗𝑥))𝑇



Problems

▶ This causes problems.▶ First: more likely to
overfit.▶ Second: computationally
expensive



Computational Cost▶ Suppose feature matrix 𝑋 is 𝑛 × 𝑑▶ 𝑛 points in 𝑑 dimensions▶ Time complexity of solving 𝑋𝑇𝑋�⃗� = 𝑋𝑇 ⃗𝑦 is Θ(𝑛𝑑2)▶ Usually 𝑑 ≪ 𝑛. But if 𝑑 = 𝑛, this is Θ(𝑛3).▶ Not great! If 𝑛 ≈ 10, 000, then takes > 10 minutes.



Approach #2: A Random Sample▶ Idea: randomly choose 𝑘 data points as centers.



Problem▶ May undersample/oversample a region.▶ More advanced sampling approaches exist.



Approach #3: Clustering▶ Group data points into clusters.▶ Cluster centers are good places for RBFs.▶ For example, use 𝑘-means clustering to pick 𝑘
centers.


