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Lecture 20 Part 1

Feature Maps



Recap

Linear prediction functions are limited.

Idea: transform the data to a new space where
prediction is “easier”.

To do so, we used basis functions.



Overview: Feature Mapping

Start with data in original space, RY.

Choose some basis functions, ¢4, ©,, ..., Q4

Map each data point to feature space RY:

<
i =
) o ; >
X = ((p‘I(X)r (Pz(X);---;(Pd'(X))t

Fit Linear prediction function in new space:
linea

H(X) = Wy + W, (X) + W, ,(X)



temperature

X =

Feature Space, Visualized

@ Found Parking @
@® No Parking

x1 = time of day

$2(x) = [temp - 70 degrees]|

® Found Parking
@ No Parking

d1(x) = |\i\me - noon|
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A Tale of Two Spaces



A Tale of Two Spaces

The original space: where the raw data lies.

The feature space: where the data lies after
feature mapping @

Remember: we fit a linear prediction function in
the feature space.



In feature space, what does the decision
boundary look like?

What does the prediction function surface
look like?

@ Found Parking
@ No Parking

|temp - 70 degrees|

$2(x)

¢1(x) = |tir§noon|

\




Decision Boundary in Feature Space?

® Found Parking
® No Parking
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2Fit by minimizing square loss
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Prediction Surface in Feature Space




boundary look like?

look like?
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Decision Bf:undary in Original Space’

temperature

X2 =

x = time of/'ay )
3Fit by minimizing %gﬁare loss A /



Prediction Surface in Original Space
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Insight M

H is a sum of basis functions, ¢, and @,.
H(X) = wq + W, 0, (X) + W, p,(X)

—3

The prediction surface is a sum of other surfaces.
e~ ———

Each basis function is a “building block”.

—




Visualizing the Basis Function @,




Visualizing the Basis Function o,

Wq + W,
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Visualizing the Prediction Surface
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temperature

X2

| \ﬁ\ oty %())0 Y,

Find a function thatis = 1_
near green points and = -1
near red points.




What's Wrong?

We've discovered how to learn non-linear
patterns using linear prediction functions.

Use non-linear basis functions to map to a feature

space.

QLA Mt
Something should bug you, though...
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Radial Basis Functions



_Generic Basis Functions

The basis functions we used before were
engineered using domain knowledge.

They were specific to the problem at hand.
Very manual process!

Now: features that work for many problems.






Gaussian Basis Functions

A common choice: Gaussian
basis functions:

O(%; I, 0) £ e XAI/o"
[i is the center.
—

o controls the “width”
- ey




Gaussian Basis Function
If X is close to [, @(X; [, 0) is large.
If X is far from [, @(X; I, 0) is small.

Intuition: ¢ measures how “similar’@ to@

Assumes that “similar” objects have close feature
vectors.



New Representation
Pick number of new features, d’.
3(d’)

Pick centers for Gaussians "), ..., i®, ..., i

Pick widths: g,, 0,, ..., 04 (usually all the same)

Define ith basis function:

(%) = e VA2 10f
I
-



New Representation

For any feature vector X € RY, map to vector
p(X) e R,

7 (p,: “similarity” of X to fi("

©,: “similarity” of X to fi¥

4 “similarity” of X to fi@)

Train linear classifier in this new representation.
E.g., by minimizing expected square loss.



How many Gaussian basis functions would you use,
and where would you place them to create a new
representation for this data?
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Placement




Feature Space
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Prediction Function

H(X) is a sum of Gaussians:

H(X) = wg + Wq4(X) + Wy p,(X) + ...

M= 12/q2 N2 i N2/ A~2
= W0+W1e "X IJ’I" /G +W2e "X IJ2" /0



What does the surface of the prediction function
look like?

Hint: what does the sum of 1-d Gaussians look like?

ANAN




Prediction Function Surface

> Nl N2 /A2 Mol N2 ~2
H(X) = w, + W1€foy4ll l0° 4 w,e Ix-i, %70



An Interpretation

Basis function ¢; makes a “bump” in surface of H

w; adjusts the “prominance” of this bump
N



Decision Boundary




More Features sverfie

By increasing number of basis functions, we can
make more complex decision surfaces.
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Prediction Surface




Decision Boundary
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Radial Basis Functions
Gaussians are examples of radial basis functions.

Each basis function has a center, . /(4

Value depends only on distance from center:

w(X;C) = f(||x-C])
.



Another Radial Basis Function

Multiquadric: ¢(x \/02 +||X-C|l/o
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Radial Basis Function Networks



Recap

Choose basis functions, ¢4, ..., 9,4

Transform data to new representation:
)_2 = ((p1 ()?)r (p2()_€)r eeey ‘-pd’()?))T
Train a linear classifier in this new space:

H(X) = Wy + W1(p1()?) + Wz‘Pz()?) ..ot Wd'(Pd'()?)



The Model

The  are basis functions.




Radial Basis Function Networks

If the basis functions are
radial basis functions, we
call this a radial basis
function (RBF) network.




Training

An RBF network has these parameters:
the parameters of each individual basis function:
; (the center)
possibly others (e.g., 0)
w;: the weights associated to each “new” feature
=

How do we choose the parameters?



First Idea

We can include all parameters in one big cost @/Q/V\
function, optimize.

The cost function will generally be complicated,
non-convex and thus hard to optimize.



Another Idea

Break the process into two steps:
S

Find the parameters of the RBFs somehow. /0
Some optiWure, clustering, randomly, ...
S

N —

Having fixed those parameters, optimize th@.
: - =

Linear; easier to optimize.



Training




Training an RBF Network

Choose the form of the RBF, how many.

E.g, k Gaussian RBFs, @1, .., ;.

Pick the parameters of the RBFs somehow.
I Palaiiiztels VT HIE RBPES

Create new data set by mapping

X 0 (@1(X), s Pp(X))

 EE——

Train a linear predictor Hy on new data set
That is, in feature space.



Making Predictions

Given a point X, map it to feature space:
X = (©01(X), ., @R(X)

Evaluate the trained linear predictor Hy in
feature space
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Choosing RBF Locations /{i



Recap

We map data to a new representation by first
choosing basis functions.

Radial Basis Functions (RBFs), such as Gaussians,
are a popular choice.

Requires choosing center for each basis function.



Prediction Function

Our prediction function H
Is a surface that is made
up of Gaussian “bumps”.

3\ _ 1 %=ii 12/ o2 %= 112 /o2
H(X) =W, + w,e IX-gq 117/ +w,e Ix-px 117/



Choosing Centers

Place the centers where
the value of the prediction
function should be
controlled.

Intuitively: place centers
where the data Is.
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Approaches
Every data point as a center
Randomly choose centers

Clustering



Approach #1: Every Data Point as a
Center
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Dimensionality
We'll have n basis functions — one for each point.
That means we’ll have n features.

Fach feature vector ¢(X) € R".

() = (61(R), (%), .., 9, (X))




Problems

This causes problems.

First: more likely to
overfit.

Second: computationally
expensive
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Computational Cost

Suppose feature matrix X is n x d
n points in d dimensions 0{2 /]

Time complexity of solving X'Xw = X"y is ©(nd?)
Usually d < n. But if d = n, this is ©(n3).

Not great! If n = 10,000, then takes > 10 minutes.

e



Approach #2: A Random Sample

Idea: randomly choose k data points as centers.
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Problem

May undersample/oversample a region.

More advanced sampling approaches exist.




Approach #3: Clustering
Group data points into clusters.

Cluster centers are good places for RBFs.

For example, use R-means clustering to pick R
centers.



