DSC 1408 Representation Learning

Lecture 02 | Part 1

Logistics

http://zhiting.ucsd.edu/teaching/dsc140bwinter2024

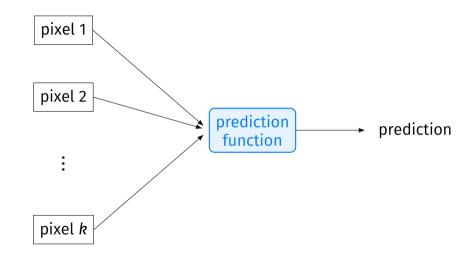
DSC 1408 Representation Learning

Lecture 02 | Part 2

Introduction (Cont'd)

Now: Predict Happiness

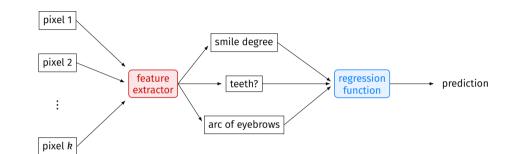
- Given an image, predict happiness on a 1-10 scale.
- This is a regression problem.
- Can we use least squares regression?



Handcrafted Representations

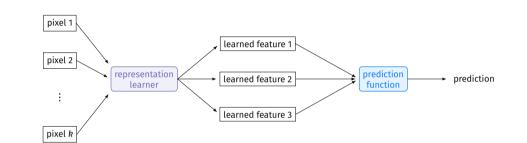
- Idea: build a feature extractor to detect:
 - The shape of the eyebrows.
 - Angle of the corners of the mouth.
 - Are teeth visible?

Use these as high-level features instead.



Problem

- Extractors (may) make good representations.
- But building a feature extractor is hard.
- Can we **learn** a good representation?



DSC 140B

- We'll see how to learn good representations.
- Good representations help us when:
 - making predictions;
 - 2. doing EDA (better visualizations).

Claim

Many of the famous recent advancements in AI/ML are due to representation learning.

Representations and Structure

- Real world data has structure.
- But "seeing" the structure requires the right representation.

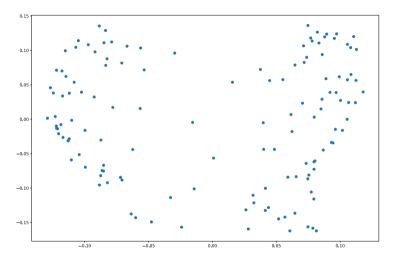
Example: Pose Estimation

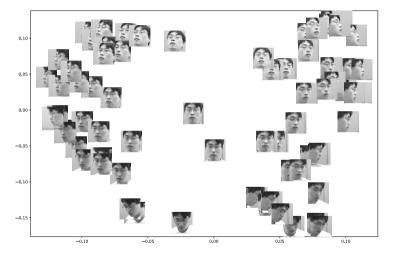
Problem: Classify, is person looking left, right, up, down, netural?

Example: Pose Estimation

As a "bag of pixels" each image is a vector in $\mathbb{R}^{10,000}$.

Later: we'll see how to reduce dimensionality while preserving "closeness".





Main Idea

By learning a better representation, the classification problem can become easy; sometimes trivial.

Example: word2vec

- How do we represent a word?
- Google's word2vec learned a representation of words as points in 300 dimensional space.

Example: word2vec

- Fun fact: we can now add and subtract words.
 - They're represented as vectors.
- Surprising results:

$$\vec{\mathbf{v}}_{\mathsf{Paris}} - \vec{\mathbf{v}}_{\mathsf{France}} + \vec{\mathbf{v}}_{\mathsf{China}} \approx \vec{\mathbf{v}}_{\mathsf{Beijing}}$$

Example: word2vec ²

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

²"Efficient Estimation of Word Representations in Vector Space" by Mikolov, et al.

Example: Neural Networks

- word2vec is an example of a neural network model.
- Deep neural networks have been very successful on certain tasks.

They learn a good representation.

Main Idea

Building a good model requires picking a good **feature representation**.

We can pick features by hand.

Or we can **learn** a good feature representation from data.

DSC 140B is about learning these representations.

Roadmap

- Dimensionality Reduction
- Manifold learning
- Neural Networks
- Autoencoders
- Deep Learning

Practice vs. Theory

- Goal of this class: understand the fundamentals of representation learning.
- Both practical and theoretical.
- Think: more DSC 40A than DSC 80, but a bit of both.

Tools of the Trade

- We'll see some of the popular Python tools for feature learning.
 - numpy
 - keras
 - ▶ sklearn
 - **▶** ...

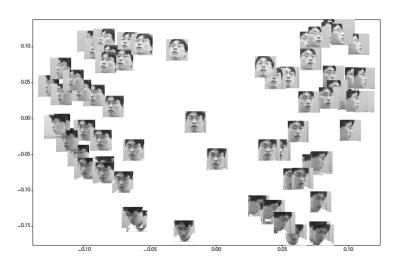
DSC 1408 Representation Learning

Lecture 02 | Part 3

Why Linear Algebra?

Recall

Recall



Dimensionality Reduction

- This is an example of dimensionality reduction:
 - ► Input: vectors in $\mathbb{R}^{10,000}$.
 - ▶ Output: vectors in \mathbb{R}^2 .
- The method which produced this result is called Laplacian Eigenmaps.
- How does it work?

A Preview of Laplacian Eigenmaps

To reduce dimensionality from d to d':

- 1. Create an undirected similarity graph G
 - ightharpoonup Each vector in \mathbb{R}^d becomes a node in the graph.
 - ightharpoonup Make edge (u, v) if u and v are "close"
- 2. Form the graph Laplacian matrix, L:
 - Let A be the adjacency matrix, D be the degree matrix.
 - ▶ Define the graph Laplacian matrix, L = D A.
- 3. Compute d' eigenvectors of L.
 - Each eigenvector gives one new feature.

Why eigenvectors?

- We will cover Laplacian Eigenmaps in much greater detail.
- For now: why do eigenvectors appear here?
 - What are eigenvectors?
 - How are they useful?
 - Why is linear algebra important in ML?

DSC 1408 Representation Learning

Lecture 02 | Part 4

Coordinate Vectors

Coordinate Vectors

We can write a vector $\vec{x} \in \mathbb{R}^d$ as a coordinate vector:

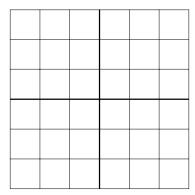
$$\vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix}$$

Example

\vec{X}	=	$\begin{pmatrix} 2 \\ -3 \end{pmatrix}$
ÿ	=	$\begin{pmatrix} 0 \\ 2 \end{pmatrix}$

Standard Basis

- Writing a vector in coordinate form requires choosing a basis.
- ► The "default" is the **standard basis**: $\hat{e}^{(1)},...,\hat{e}^{(d)}$.



Standard Basis

When we write $\vec{x} = (x_1, ..., x_d)^T$, we mean that $\vec{x} = x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)} + ... x_d \hat{e}^{(d)}$.

Example: $\vec{x} = (3, -2)^T$

Standard Basis Coordinates

► In coordinate form:

$$\hat{\varrho}^{(i)} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$

where the 1 appears in the *i*th place.

Let $\vec{x} = (3, 7, 2, -5)^T$. What is $\vec{x} \cdot \hat{e}^{(4)}$?

Recall: the Dot Product

► The **dot product** of \vec{u} and \vec{v} is defined as:

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$

where θ is the angle between \vec{u} and \vec{v} .

 $\vec{u} \cdot \vec{v} = 0$ if and only if \vec{u} and \vec{v} are orthogonal

Dot Product (Coordinate Form)

► In terms of coordinate vectors:

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v}$$

$$= \begin{pmatrix} u_1 & u_2 & \cdots & u_d \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \cdots \\ v_d \end{pmatrix}$$

$$= \begin{pmatrix} v_1 & v_2 & \cdots & v_d \end{pmatrix} \begin{pmatrix} v_1 & v_2 & \cdots & v_d \\ v_1 & v_2 & \cdots & v_d \end{pmatrix}$$

This definition assumes the standard basis.

Example

$$\begin{pmatrix} 3 \\ 7 \\ 2 \\ -5 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} =$$

What does ChatGPT say?

I will ask you a simple vector math question. Respond with the answer, and nothing else.

Do not provide an explanation. Your answer should be a number.

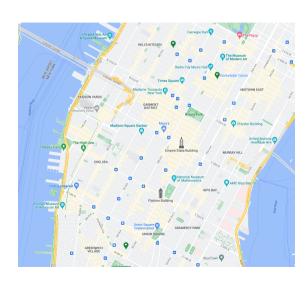
Let $\ x = (3,7,2,-5)^T$. What is $\ x \in x \cdot (4)$?

-5

Other Bases

- The standard basis is not the only basis.
- Sometimes more convenient to use another.

Example



Orthonormal Bases

- Orthonormal bases are particularly nice.
- A set of vectors $\hat{u}^{(1)}$, ..., $\hat{u}^{(d)}$ forms an **orthonomal** basis \mathcal{U} for R^d if:
 - They are mutually orthogonal: $\hat{u}^{(i)} \cdot \hat{u}^{(j)} = 0$.
 - They are all unit vectors: $\|\hat{u}^{(i)}\| = 1$.

Example

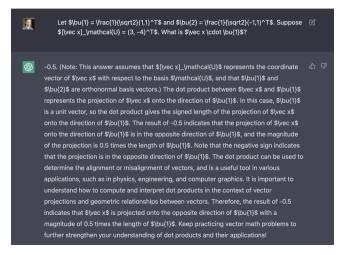
Coordinate Vectors

- A vector's coordinates depend on the basis used.
- If we are using the basis $\mathcal{U} = \{\hat{u}^{(1)}, \hat{u}^{(2)}\}\$, then $\vec{x} = (x_1, x_2)^T$ means $\vec{x} = x_1 \hat{u}^{(1)} + x_2 \hat{u}^{(2)}$.
- We will write $[\vec{x}]_{\mathcal{U}} = (x_1, ..., x_d)^T$ to denote that the coordinates are with respect to the basis \mathcal{U} .

Let
$$\hat{u}^{(1)} = \frac{1}{\sqrt{2}} (1, 1)^T$$
 and $\hat{u}^{(2)} = \frac{1}{\sqrt{2}} (-1, 1)^T$. Suppose

Let
$$\hat{u}^{(1)} = \frac{1}{\sqrt{2}} (1,1)^T$$
 and $\hat{u}^{(2)} = \frac{1}{\sqrt{2}} (-1,1)^T$. Suppose $[\vec{x}]_{\mathcal{U}} = (3,-4)^T$. What is $\vec{x} \cdot \hat{u}^{(1)}$?

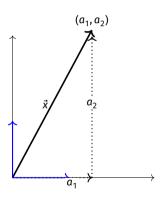
What did ChatGPT say?



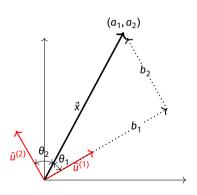
Consider
$$\vec{v} = (2, 2)^T$$
 and let $\hat{u}^{(1)} = \frac{1}{2}(1, 1)^T$ and $\hat{u}^{(1)} = \frac{1}{2}(1, 1)^T$

Consider
$$\vec{x} = (2,2)^T$$
 and let $\hat{u}^{(1)} = \frac{1}{\sqrt{2}}(1,1)^T$ and $\hat{u}^{(2)} = \frac{1}{\sqrt{2}}(-1,1)^T$. What is $[\vec{x}]_{\mathcal{U}}$?

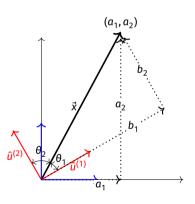
- ► How do we compute the coordinates of a vector in a new basis, U?
- Some trigonometry is involved.
- **Key Fact**: $\vec{a} \cdot \vec{b} = ||\vec{a}|| ||\vec{b}|| \cos \theta$



- Suppose we know $\vec{x} = (a_1, a_2)^T$ w.r.t. standard basis.
- Then $\vec{x} = a_1 \hat{e}^{(1)} + a_2 \hat{e}^{(2)}$



- Want to write: $\vec{x} = b_1 \hat{u}^{(1)} + b_2 \hat{u}^{(2)}$
- Need to find b_1 and b_2 .



- Exercise: Solve for b_1 , writing the answer as a dot product.
- Hint: cos θ = adjacent/hypotenuse

- Let $\mathcal{U} = {\hat{u}^{(1)}, ..., \hat{u}^{(d)}}$ be an orthonormal basis.
- ▶ The coordinates of \vec{x} w.r.t. \mathcal{U} are:

$$[\vec{x}]_{\mathcal{U}} = \begin{pmatrix} \vec{x} \cdot \hat{u}^{(1)} \\ \vec{x} \cdot \hat{u}^{(2)} \\ \vdots \\ \vec{x} \cdot \hat{u}^{(d)} \end{pmatrix}$$

Suppose
$$\vec{x} = (2, 1)^T$$
 and let $\hat{u}^{(1)} = \frac{1}{2} (1, 1)^T$ and $\hat{u}^{(2)} = \frac{1}{2} (1, 1)^T$

Suppose
$$\vec{x} = (2, 1)^T$$
 and let $\hat{u}^{(1)} = \frac{1}{\sqrt{2}}(1, 1)^T$ and $\hat{u}^{(2)} = \frac{1}{\sqrt{2}}(-1, 1)^T$. What is $[\vec{x}]_{\mathcal{U}}$?

What is $[\vec{x}]_{i,i}$?

Let
$$\vec{x} = (-1, 4)^T$$
 and suppose:

Let
$$\dot{x} = (-1, 4)'$$
 and suppose

 $\hat{u}^{(1)} \cdot \hat{e}^{(2)} = -2$

$$\hat{u}^{(1)} \cdot \hat{e}^{(1)} = 3$$
 $\hat{u}^{(2)} \cdot \hat{e}^{(1)} = -1$

$$\hat{\boldsymbol{\mu}}^{(2)} \cdot \hat{\boldsymbol{\rho}}^{(2)} =$$

$$\hat{u}^{(2)}\cdot\hat{e}^{(2)}=5$$

$$u^{(2)} \cdot e^{(2)} = 5$$

$$\hat{u}^{(2)}\cdot\hat{e}^{(2)}=5$$

$$\cdot \hat{e}^{(1)} = -1$$