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Now: Predict Happiness

Given an image, predict happiness on a
1-10 scale.

This is a regression problem.

Can we use least squares regression?
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Handcrafted Representations

Idea: build a feature extractor to detect:

The shape of the eyebrows.
Angle of the corners of the mouth.
Are teeth visible?

Use these as high-level features instead.
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Problem

Extractors (may) make good representations.
W

But building a feature extractor is hard. £
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DSC 140B

We'll see how to learn good representations.

Good representations help us when:
making predictions;
doing EDA (better visualizations).
1g EDA (better visualizatior



Claim

Many of the famous recent advancements in
Al/ML are due to representation learning.
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Representations and Structure

Real world data has structure.

But “seeing” the structure requires the right
representation.
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Example: Pose Estimation

As a “bag of pixels” each image is a vector in

Later: we'll see how to reduce dimensionality
while preserving “closeness”.
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Main Idea

By learning a better representation, the classifica-
tion problem can become easy; sometimes trivial.




Example: wordavec

How do we represent a word?

Google's word2vec learnedﬂgpreﬂ]tation of
words as points in 300 dimensional space.

Two points close <= words have similar
meanings.



Example: word2vec

Fun fact: we can now add and subtract words.
They're represented as vectors.

Surprising results:

Vparis = Vrrance * Vchina ® VBeijing
—_— S




Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-

Example: word2vec °

gram model trained on 783M words with 300 dimensionality).

__Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee

big - bigger
Miami - Florida
Einstein - scientist
Sarkozy - France
copper - Cu
Berlusconi - Silvio
Microsoft - Windows

small: larger
Baltimore: Maryland
Messi: midfielder
Berlusconi: Italy
zinc: Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo
Germany: bratwurst

cold: colder
Dallas: Texas
Mozart: violinist
Merkel: Germany
gold: Au
Putin: Medvedev
IBM: Linux

IBM: McNealy

France: tapas

quick: quicker
Kona: Hawaii
Picasso: painter
Koizumi: Japan
uranium: plutonium
Obama: Barack
Apple: iPhone
Apple: Jobs
USA: pizza
T

< —
Microsoft - Ballme;
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2“Efficient Estimation of Word Representations in Vector Space” by

Mikolov, et al.
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Example: Neural Networks

\

word2vec is an example of a neural network
model.

Deep neural networks have been very successful

on certain tasks.
[ LI\

They learn a good representation.



Building a good model requires picking a good
feature representation.

We can pick features by hand.

Or we can learn a good feature representation
from data.

DSC 140B is about learning these representations.




Roadmap

Dimensionality Reduction

Manifold learning

Neural Networks

Autoencoders

Deep Learning OZ‘%“‘(M
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Practice vs. Theory

Goal of this class: understand the fundamentals
of representation learning.

Both practical and theoretical.

Think: more DSC 40A than DSC 80, but a bit of
both.




Tools of the Trade

We'll see some of the popular Python tools for
feature learning.
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Why Linear Algebra?
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Dimensionality Reduction

This is an example of dimensionality reduction:
Input: vectors in R1%000,
Output: vectors in R2.

The method which produced this result is called

Laplacian Eigenmaps. _

How does it work?



A Preview of Laplacian Eigenmaps

L
To reduce dimensionality from d to d":

Create an undirected similarity graph G

Fach vector in RY becomes a node in the-graph.

Make edge (u,v) if u and v are “close”

———

Form the graph Laplacian 0L
Let A be the adjacency matrix, D be the degree matrix.
L Define the graph Laplacian matrix, L = D - A.
‘ SNy 2% 4
A e A

: h -
Compute df eigenvectors of L. V g
Each eigenvector gives one new feature. NL



Why eigenvectors?

e

We will cover Laplacian Eigenmaps in muc@tg\%\w W
greater detail.

For now: why do eigenvectors appear here?
What gcgeLgeweeieeles?
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Coordinate Vectors



Coordinate Vectors

We can write a vector X € RY as a coordinate
vector:
X1

, | x
X=|"2



Example




Standard Basis

Writing a vector in coordinate form requires
choosing a basis.

The “default” is the standard basis: e\, ..., &),




Standard Basis

When we write X = (X4, ..., X4)", we mean that
X = X8 + x,6@) + | x &),

Example: X = (3,-2)"




Standard Basis Coordinates

In coordinate form:

where the 1 appears in the ith place.



Let X = (3,7,2,-5)". What is X - é4)?




Recall;: the Dot Product

The dot product of t and v is defined as:

lG V]l cos 6

u-v
where 0 is the angle between U and v.

t-v=0ifand onlyif i and v are orthogonal



Dot Product (Coordinate Form)

In terms of coordinate vectors:

g-v=0"v
Vi
=(uy Uy = ug) v2
Vd

This definition assumes the standard basis.



Example

Hit}



What does ChatGPT say?

| will ask you a simple vector math question. Respond with the answer, and nothing else.
Do not provide an explanation. Your answer should be a number.

Let $\vec x = (3,7,2,-5)"T$. What is $\vec x \cdot \hat e_{4}$?




Other Bases

The standard basis is not the only basis.

Sometimes more convenient to use another.
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Orthonormal Bases

Orthonormal bases are particularly nice.

A set of vectors ", ..., (% forms an orthonomal

basis ¢/ for RY if: o
They are mutually orthogonal: 4 - g% = 0.
They are all unit vectors: |a®] = 1.



Example




Coordinate Vectors

A vector’s coordinates depend on the basis used.

If we are using the basis ¢/ = {G\"), 5}, then
X = (X;,X,)T means X = x, 0" + x, 0.

We will write [X],, = (X4, ..., X4)" to denote that the
coordinates are with respect to the basis Y.



G = L T 72 = 1 (_ T
Let U ﬁ(1'1) and u ﬁ( 1,1)". Suppose
[X],, = (3,-4)". What is X - G(?




What did ChatGPT say?

2

Let $\bu{1} = \frac{1}{\sart2}(1,1)~T$ and $\bu{2} = \frac{1}{\sart2}(-1,1)*T$. Suppose &
$[\vec x]_\mathcal{U} = (3, -4)"T$. What is $\vec x \cdot \bu{1}$?

-0.5. (Note: This answer assumes that $[\vec x]_\mathcal{U}$ represents the coordinate
vector of $\vec x$ with respect to the basis $\mathcal{U}$, and that $\bu{1}$ and
$\bu{2}$ are orthonormal basis vectors.) The dot product between $\vec x$ and $\bu{1}$
represents the projection of $\vec x$ onto the direction of $\bu{1}$. In this case, $\bu{1}$
is a unit vector, so the dot product gives the signed length of the projection of $\vec x$
onto the direction of $\bu{1}$. The result of -0.5 indicates that the projection of $\vec x$
onto the direction of $\bu{1}$ is in the opposite direction of $\bu{1}$, and the magnitude
of the projection is 0.5 times the length of $\bu{1}$. Note that the negative sign indicates
that the projection is in the opposite direction of $\bu{1}$. The dot product can be used to
determine the alignment or misalignment of vectors, and is a useful tool in various
applications, such as in physics, engineering, and computer graphics. It is important to
understand how to compute and interpret dot products in the context of vector
projections and geometric relationships between vectors. Therefore, the result of -0.5
indicates that $\vec x$ is projected onto the opposite direction of $\bu{1}$ with a
magnitude of 0.5 times the length of $\bu{1}$. Keep practicing vector math problems to
further strengthen your understanding of dot products and their applications!
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Change of Basis

How do we compute the coordinates of a vector
In @ new basis, U/?

Some trigonometry is involved.

Key Fact: G- b = ||@||||b|| cos©



(aq,a,)

X
N

Change of Basis

Suppose we know
X =(a,,a,)" w.rt. standard
basis.

Then X = a,é" + a,é®




Change of Basis

Want to write:
X = b10“) + bZEIQ)

‘_,‘b{"' Need to find b, and b,.




Change of Basis

Exercise: Solve for b,,
writing the answer as a
dot product.

Hint: cos 0 =
adjacent/hypotenuse



Change of Basis

Let i/ = {0, ..., 319} be an orthonormal basis.

The coordinates of X w.rt. I/ are:

xi XU
<
~

[)?]u =

X1
-
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Let X = (-1,4)" and suppose:

G . s0 = 3 4@ . 60 = _1
G .62 = _9 0®.60 -5

What is [X],,?




