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Introduction (Cont’d)



Now: Predict Happiness

▶ Given an image, predict happiness on a
1-10 scale.▶ This is a regression problem.▶ Can we use least squares regression?



pixel 1

pixel 2

⋮
pixel 𝑘

prediction
function prediction



Handcrafted Representations▶ Idea: build a feature extractor to detect:▶ The shape of the eyebrows.▶ Angle of the corners of the mouth.▶ Are teeth visible?▶ Use these as high-level features instead.
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Problem▶ Extractors (may) make good representations.▶ But building a feature extractor is hard.▶ Can we learn a good representation?
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DSC 140B▶ We’ll see how to learn good representations.▶ Good representations help us when:
1. making predictions;
2. doing EDA (better visualizations).



Claim▶ Many of the famous recent advancements in
AI/ML are due to representation learning.



Representations and Structure▶ Real world data has structure.▶ But “seeing” the structure requires the right
representation.



Example: Pose Estimation

Problem: Classify, is person looking left, right, up,
down, netural?



Example: Pose Estimation▶ As a “bag of pixels” each image is a vector inℝ10,000.▶ Later: we’ll see how to reduce dimensionality
while preserving “closeness”.







Main Idea
By learning a better representation, the classifica-
tion problem can become easy; sometimes trivial.



Example: word2vec▶ How do we represent a word?▶ Google’s word2vec learned a representation of
words as points in 300 dimensional space.▶ Two points close ⟺ words have similar
meanings.



Example: word2vec▶ Fun fact: we can now add and subtract words.▶ They’re represented as vectors.▶ Surprising results:⃗𝑣Paris − ⃗𝑣France + ⃗𝑣China ≈ ⃗𝑣Beijing



Example: word2vec 2

2“Efficient Estimation of Word Representations in Vector Space” by
Mikolov, et al.



Example: Neural Networks▶ word2vec is an example of a neural network
model.▶ Deep neural networks have been very successful
on certain tasks.▶ They learn a good representation.



Main Idea
Building a good model requires picking a good
feature representation.

We can pick features by hand.

Or we can learn a good feature representation
from data.

DSC 140B is about learning these representations.



Roadmap▶ Dimensionality Reduction▶ Manifold learning▶ Neural Networks▶ Autoencoders▶ Deep Learning



Practice vs. Theory▶ Goal of this class: understand the fundamentals
of representation learning.▶ Both practical and theoretical.▶ Think: more DSC 40A than DSC 80, but a bit of
both.



Tools of the Trade▶ We’ll see some of the popular Python tools for
feature learning.▶ numpy▶ keras▶ sklearn▶ ...
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Why Linear Algebra?



Recall



Recall

0.10 0.05 0.00 0.05 0.10

0.15

0.10

0.05

0.00

0.05

0.10



Dimensionality Reduction▶ This is an example of dimensionality reduction:▶ Input: vectors in ℝ10,000.▶ Output: vectors in ℝ2.▶ The method which produced this result is called
Laplacian Eigenmaps.▶ How does it work?



A Preview of Laplacian Eigenmaps
To reduce dimensionality from 𝑑 to 𝑑′:
1. Create an undirected similarity graph 𝐺▶ Each vector in ℝ𝑑 becomes a node in the graph.▶ Make edge (𝑢, 𝑣) if 𝑢 and 𝑣 are “close”
2. Form the graph Laplacian matrix, 𝐿:▶ Let 𝐴 be the adjacency matrix, 𝐷 be the degree matrix.▶ Define the graph Laplacian matrix, 𝐿 = 𝐷 − 𝐴.
3. Compute 𝑑′ eigenvectors of 𝐿.▶ Each eigenvector gives one new feature.



Why eigenvectors?▶ We will cover Laplacian Eigenmaps in much
greater detail.▶ For now: why do eigenvectors appear here?▶ What are eigenvectors?▶ How are they useful?▶ Why is linear algebra important in ML?
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Coordinate Vectors



Coordinate Vectors▶ We can write a vector ⃗𝑥 ∈ ℝ𝑑 as a coordinate
vector: ⃗𝑥 = (𝑥1𝑥2⋮𝑥𝑑)



Example

⃗𝑥 = ( 2−3)⃗𝑦 = (02)



Standard Basis▶ Writing a vector in coordinate form requires
choosing a basis.▶ The “default” is the standard basis: ̂𝑒(1), … , ̂𝑒(𝑑).



Standard Basis▶ When we write ⃗𝑥 = (𝑥1, … , 𝑥𝑑)𝑇, we mean that⃗𝑥 = 𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2) + …𝑥𝑑 ̂𝑒(𝑑).
Example: ⃗𝑥 = (3, −2)𝑇



Standard Basis Coordinates▶ In coordinate form:

̂𝑒(𝑖) = ⎛⎜⎜⎜⎜⎝
00⋮1⋮00
⎞⎟⎟⎟⎟⎠

where the 1 appears in the 𝑖th place.



Exercise

Let ⃗𝑥 = (3, 7, 2, −5)𝑇. What is ⃗𝑥 ⋅ ̂𝑒(4)?



Recall: the Dot Product▶ The dot product of 𝑢⃗ and ⃗𝑣 is defined as:𝑢⃗ ⋅ ⃗𝑣 = ‖𝑢⃗‖‖ ⃗𝑣‖ cos 𝜃
where 𝜃 is the angle between 𝑢⃗ and ⃗𝑣.▶ 𝑢⃗ ⋅ ⃗𝑣 = 0 if and only if 𝑢⃗ and ⃗𝑣 are orthogonal



Dot Product (Coordinate Form)▶ In terms of coordinate vectors:𝑢⃗ ⋅ ⃗𝑣 = 𝑢⃗𝑇 ⃗𝑣= (𝑢1 𝑢2 ⋯ 𝑢𝑑) (𝑣1𝑣2⋯𝑣𝑑)=▶ This definition assumes the standard basis.



Example

( 372−5) ⋅ (
0001) =



What does ChatGPT say?



Other Bases▶ The standard basis is not the only basis.▶ Sometimes more convenient to use another.



Example



Orthonormal Bases▶ Orthonormal bases are particularly nice.▶ A set of vectors 𝑢̂(1), … , 𝑢̂(𝑑) forms an orthonomal
basis U for 𝑅𝑑 if:▶ They are mutually orthogonal: 𝑢̂(𝑖) ⋅ 𝑢̂(𝑗) = 0.▶ They are all unit vectors: ‖𝑢̂(𝑖)‖ = 1.



Example

𝑢̂(1) = 1√2 (11) 𝑢̂(2) = 1√2 (−11 )



Coordinate Vectors▶ A vector’s coordinates depend on the basis used.▶ If we are using the basis U = {𝑢̂(1), 𝑢̂(2)}, then⃗𝑥 = (𝑥1, 𝑥2)𝑇 means ⃗𝑥 = 𝑥1𝑢̂(1) + 𝑥2𝑢̂(2).▶ We will write [ ⃗𝑥]U = (𝑥1, … , 𝑥𝑑)𝑇 to denote that the
coordinates are with respect to the basis U .



Exercise

Let 𝑢̂(1) = 1√2 (1, 1)𝑇 and 𝑢̂(2) = 1√2 (−1, 1)𝑇. Suppose[ ⃗𝑥]U = (3, −4)𝑇. What is ⃗𝑥 ⋅ 𝑢̂(1)?



What did ChatGPT say?



Exercise

Consider ⃗𝑥 = (2, 2)𝑇 and let 𝑢̂(1) = 1√2 (1, 1)𝑇 and 𝑢̂(2) =1√2 (−1, 1)𝑇. What is [ ⃗𝑥]U?



Change of Basis▶ How do we compute the coordinates of a vector
in a new basis, U?▶ Some trigonometry is involved.▶ Key Fact: 𝑎⃗ ⋅ 𝑏⃗ = ‖𝑎⃗‖‖𝑏⃗‖ cos 𝜃



Change of Basis

(𝑎1, 𝑎2)
⃗𝑥

𝑎1
𝑎2

▶ Suppose we know⃗𝑥 = (𝑎1, 𝑎2)𝑇 w.r.t. standard
basis.▶ Then ⃗𝑥 = 𝑎1 ̂𝑒(1) + 𝑎2 ̂𝑒(2)



Change of Basis

(𝑎1, 𝑎2)
⃗𝑥
𝑢̂(1)𝑢̂(2) 𝑏1

𝑏2
𝜃1𝜃2

▶ Want to write:⃗𝑥 = 𝑏1𝑢̂(1) + 𝑏2𝑢̂(2)▶ Need to find 𝑏1 and 𝑏2.



Change of Basis

(𝑎1, 𝑎2)
⃗𝑥

𝑎1
𝑎2

𝑢̂(1)𝑢̂(2) 𝑏1
𝑏2

𝜃1𝜃2

▶ Exercise: Solve for 𝑏1,
writing the answer as a
dot product.▶ Hint: cos 𝜃 =
adjacent/hypotenuse



Change of Basis▶ Let U = {𝑢̂(1), … , 𝑢̂(𝑑)} be an orthonormal basis.▶ The coordinates of ⃗𝑥 w.r.t. U are:

[ ⃗𝑥]U = ( ⃗𝑥 ⋅ 𝑢̂(1)⃗𝑥 ⋅ 𝑢̂(2)⋮⃗𝑥 ⋅ 𝑢̂(𝑑))



Exercise

Suppose ⃗𝑥 = (2, 1)𝑇 and let 𝑢̂(1) = 1√2 (1, 1)𝑇 and 𝑢̂(2) =1√2 (−1, 1)𝑇. What is [ ⃗𝑥]U?



Exercise
Let ⃗𝑥 = (−1, 4)𝑇 and suppose:𝑢̂(1) ⋅ ̂𝑒(1) = 3 𝑢̂(2) ⋅ ̂𝑒(1) = −1𝑢̂(1) ⋅ ̂𝑒(2) = −2 𝑢̂(2) ⋅ ̂𝑒(2) = 5
What is [ ⃗𝑥]U?


