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Lecture 19 Part 1

Least Squares Classifiers



Movie Ratings

Five of your friends rate a movie from 0-10:

x
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Task: Will you like the movie? (yes / no)



Classification

Linear prediction functions can be used in
classification, too.

H(X) = Wg + Wi Xq + WyXy + ... + WyXy

Same ERM paradigm also useful.



A Classifier from a Regressor

Binary classification can be thought of as

regression where the targets are 1 and -1
(or0and1,or..)

H(X) outputs a real number. Use the sign
function to turn it into -1, 1:

1 z>0
sign(z)=4-1 z<0
0 otherwise

Final prediction: sign(H(X))



Example: Mango Ripeness

Predict whether a mango is ripe given greenness
and hardness.

ldea: gather a set of labeled training data.
Inputs along with correct output (i.e., “the answer”).

Greenness Hardness | Ripe

0.7 0.9 1
0.2 0.5 -1
0.3 0.1 -1
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Decision Boundary

The decision boundary is the place where the
output of H(x) switches from “yes” to “no”.

IfH>0~ “yes”and H< 0 » “no”, the decision
boundary is where H = 0.

If H is a linear predictor and®
X € R', then the decision boundary is just a number.
X € R?, the boundary is a straight line.
X € RY the boundary is a d - 1 dimensional (hyper)
plane.

>when plotted in the original feature coordinate space!



Empirical Risk Minimization

Step 1: choose a hypothesis class
Let's assume we've chosen linear predictors

Step 2: choose a loss function

Step 3: minimize expected loss (empirical risk)



Can we use the square loss for classification?

(H(XD) - y;)?




Least Squares and Outliers
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Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

®Bishop, Pattern Recognition and Machine Learning



Square Loss for Classification

We can use the square loss for classification
The “least squares classifier”

However, the square loss penalizes being “too
correct”

Example: suppose the correct label is 1. What is
the square loss of predicting 10? -9?



Loss Functions

There are many different loss functions for
classification.

Each leads to a different classifier:
Logistic Regression
Support Vector Machine
Perceptron
etc.

But that's for another class... (DSC 140A)
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Linear Limitations



Linear Predictors

Last time, we saw linear prediction functions:

H(X; W) = Wy + Wi Xq + ... + WyXy
= Aug(X) - w



Linear Decision Functions
A linear prediction function H outputs a number.
What if classes are +1 and -1?

Can be turned into a decision function by taking:
sign(H(X))

Decision boundary is where H = 0
Where the sign switches from positive to negative.



Decision Boundaries

A linear decision function’s decision boundary is
linear.
A line, plane, hyperplane, etc.
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An Example: Parking Predictor

Task: Predict (yes / no): Is there parking
available at UCSD right now?

What training data to collect? What features?



Useful Features
Time of day?

Day’s high temperature?



Imagine a scatter plot of the training data with the
two features:

X, = time of day

X, = temperature

“yes” examples are green, “no” are red.

What does it look like?




temperature

X2 =

Parking Data
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x1 = time of day



X, = temperature

Uh oh
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X1 = time of day

A linear decision function
won’t work.

What do we do?
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Feature Maps



Representations

We represented the data with two features: time
and temperature

In this representation, the trend is nonlinear.
There is no good linear decision function
Learning is “difficult”.



Idea

Idea: We'll make a new representation by
creating new features from the old features.

The “right” representation makes the problem
easy again.

What new features should we create?



New Feature Representation

Linear prediction functions work well when

relationship is linear
When x is small we should predict -1
When x is large we should predict +1

But parking’s relationship with time is not linear:
When time is small we should predict +1
When time is medium we should predict -1
When time is large we should predict +1

"Remember: they are weighted votes.



How can we “transform” the time of day x, to
create a new feature x; satisfying:

When x; is small, we should predict -1
When x; is large, we should predict +1

What about the temperature, x,?




temperature

X2 =

® Found Parking @
® No Parking

x1 = time of day

Idea

Transform “time” to “absolute time
until/since Noon”

Transform “temp.” to “absolute
difference between temp. and 72"



Basis Functions

We will transform:
the time, x,, to |x; - Noon|
the temperature, x,, to |x, - 72|

Formally, we've designed non-linear basis
functions:

©y(Xq,X3) = | %5 - 727]

In general a basis function ¢ maps RY - R



Feature Mapping

Define @(X) = (¢,(X), 0,(X))". @ is a feature map
Input: vector in “old” representation
Output: vector in “new” representation

Example:

@((10a.m.,75)") = (2 hours, 3°)"

¢ maps raw data to a feature space.



temperature

X2 =

Feature Space, Visualized
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x1 = time of day

|temp - 70 degrees|
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¢1(x) = |time - noon|



Where does § map X", Xx?, and X2
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temperature

X2 =

Solution
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After the Mapping

The basis functions ., @, give us our “new”
features.

This gives us a new representation.

In this representation, learning (classification) is
easier.



Training

Map each training example X{) to feature space,
creating new training data:

02 pERD), 2= (D), ., F0 = HE)

Fit linear prediction function H in usual way:

HHZ) = wo + W2y + Wy2Zy + ..o + WyZy



Training Data in Feature Space
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Prediction

If we have Z in feature space, prediction is:

HH{Z) = Wo + W2y + Wy2Zy + ..o + WyZy



Prediction

But if we have X from original space, we must
“convert” X to feature space first:

H(X) = H{(((X))
= Hf( ((P1()_2), (Pz()_%), seey (pd()_z))T)
= Wy + Wy (X) + Wo5(X) + ... + Wyp,(X)



Overview: Feature Mapping

A basis function can involve any/all of the
original features:

©3(X) = X1 - X,

We can make more basis functions than original
features:

P(X) = (94(X), @,(X), ©3(X))T



Overview: Feature Mapping

Start with data in original space, RY.
Choose some basis functions, @,, @,, ..., 4

Map each data point to feature space RY:

X - ((P1 (X), (Pz()?)v e (pd’()?))t

Fit linear prediction function in new space:

H(X) = wy + w,4(X) + W, 0,(X)



H(X) = wy + W, 4(X) + W, @,(X)




Today’s Question

Q: How do we learn non-linear patterns using
linear prediction functions?

A: Use non-linear basis functions to map to a
feature space.
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Basis Functions and Regression



Example




Fitting Non-Linear Patterns

Fit function of the form

- 2 3 4
H(X) = Wy + Wy X + Wy X + W3 X~ + W, X

Linear function of w, non-linear function of x.



Another View

We have changed the representation of a point:

x = (x, x%, x3, x%)

Basis functions:

2

@1(x) =X @x00) =x* @3(x) = x> @, (x) = x*
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A Tale of Two Spaces



A Tale of Two Spaces
The original space: where the raw data lies.

The feature space: where the data lies after
feature mapping ¢

Remember: we fit a linear prediction function in
the feature space.



In feature space, what does the decision
boundary look like?

What does the prediction function surface
look like?
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Decision Boundary in Feature Space?

|temp - 70 degrees|

$2(x)
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¢1(x) = |[time - noon|

2Fit by minimizing square loss



Prediction Surface in Feature Space




In the original space, what does the decision
boundary look like?

What does the prediction function surface
look like?
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Decision Boundary in Original Space®
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x1 = time of day

3Fit by minimizing square loss



Prediction Surface in Original Space




Insight

H is a sum of basis functions, ¢, and @,.
H(X) = wo + Wy 4(X) + W,,(X)

The prediction surface is a sum of other surfaces.

Each basis function is a “building block”.



Visualizing the Basis Function ¢,

Wy +W, | X, -noon|




Visualizing the Basis Function ¢,

WO + W2|X2 _72°|




Visualizing the Prediction Surface
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temperature

X2 =

View: Function Approximation

® Found Parking
@ No Parking

® s
[ ] (J
o skt .00 8 Find a function that is = 1
oa P 0008 & 000’ near green points and = -1
° 3 :.,.. °%%" o near red points.
R 1 L5 SR
) .0' ~ ° o
*.. o0 )
[ . ¢
e o ®
7

x; = time of day



What's Wrong?

We've discovered how to learn non-linear
patterns using linear prediction functions.

Use non-linear basis functions to map to a feature
space.

Something should bug you, though...



