
Lecture 19| Part 1

Least Squares Classifiers

 



Movie Ratings▶ Five of your friends rate a movie from 0-10:▶ 𝑥1: 9▶ 𝑥2: 3▶ 𝑥3: 7▶ 𝑥4: 2▶ 𝑥5: 8▶ Task: Will you like the movie? (yes / no)



Classification▶ Linear prediction functions can be used in
classification, too.𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑▶ Same ERM paradigm also useful.



A Classifier from a Regressor▶ Binary classification can be thought of as
regression where the targets are 1 and -1▶ (or 0 and 1, or ...)▶ 𝐻( ⃗𝑥) outputs a real number. Use the sign
function to turn it into −1, 1:sign(𝑧) = {1 𝑧 > 0−1 𝑧 < 00 otherwise▶ Final prediction: sign(𝐻( ⃗𝑥))



Example: Mango Ripeness▶ Predict whether a mango is ripe given greenness
and hardness.▶ Idea: gather a set of labeled training data.▶ Inputs along with correct output (i.e., “the answer”).

Greenness Hardness Ripe

0.7 0.9 1
0.2 0.5 -1
0.3 0.1 -1⋮ ⋮ ⋮







Decision Boundary▶ The decision boundary is the place where the
output of 𝐻(𝑥) switches from “yes” to “no”.▶ If 𝐻 > 0 ↦ “yes” and 𝐻 < 0 ↦ “no”, the decision

boundary is where 𝐻 = 0.▶ If 𝐻 is a linear predictor and5▶ ⃗𝑥 ∈ 𝑅1, then the decision boundary is just a number.▶ ⃗𝑥 ∈ ℝ2, the boundary is a straight line.▶ ⃗𝑥 ∈ ℝ𝑑, the boundary is a 𝑑 − 1 dimensional (hyper)
plane.

5when plotted in the original feature coordinate space!



Empirical Risk Minimization▶ Step 1: choose a hypothesis class▶ Let’s assume we’ve chosen linear predictors▶ Step 2: choose a loss function▶ Step 3: minimize expected loss (empirical risk)



Exercise
Can we use the square loss for classification?(𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖)2



Least Squares and Outliers

6

6Bishop, Pattern Recognition and Machine Learning



Square Loss for Classification▶ We can use the square loss for classification▶ The “least squares classifier”▶ However, the square loss penalizes being “too
correct”▶ Example: suppose the correct label is 1. What is
the square loss of predicting 10? -9?



Loss Functions▶ There are many different loss functions for
classification.▶ Each leads to a different classifier:▶ Logistic Regression▶ Support Vector Machine▶ Perceptron▶ etc.▶ But that’s for another class... (DSC 140A)
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Linear Limitations



Linear Predictors▶ Last time, we saw linear prediction functions:𝐻( ⃗𝑥; �⃗�) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑= Aug( ⃗𝑥) ⋅ �⃗�



Linear Decision Functions▶ A linear prediction function 𝐻 outputs a number.▶ What if classes are +1 and -1?▶ Can be turned into a decision function by taking:sign(𝐻( ⃗𝑥))▶ Decision boundary is where 𝐻 = 0▶ Where the sign switches from positive to negative.



Decision Boundaries▶ A linear decision function’s decision boundary is
linear.▶ A line, plane, hyperplane, etc.



An Example: Parking Predictor▶ Task: Predict (yes / no): Is there parking
available at UCSD right now?▶ What training data to collect? What features?



Useful Features▶ Time of day?▶ Day’s high temperature?▶ ...



Exercise
Imagine a scatter plot of the training data with the
two features:▶ 𝑥1 = time of day▶ 𝑥2 = temperature
“yes” examples are green, “no” are red.

What does it look like?



Parking Data



Uh oh

▶ A linear decision function
won’t work.▶ What do we do?
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Feature Maps



Representations▶ We represented the data with two features: time
and temperature▶ In this representation, the trend is nonlinear.▶ There is no good linear decision function▶ Learning is “difficult”.



Idea▶ Idea: We’ll make a new representation by
creating new features from the old features.▶ The “right” representation makes the problem
easy again.▶ What new features should we create?



New Feature Representation▶ Linear prediction functions1 work well when
relationship is linear▶ When 𝑥 is small we should predict -1▶ When 𝑥 is large we should predict +1▶ But parking’s relationship with time is not linear:▶ When time is small we should predict +1▶ When time is medium we should predict -1▶ When time is large we should predict +1

1Remember: they are weighted votes.



Exercise
How can we “transform” the time of day 𝑥1 to
create a new feature 𝑥′1 satisfying:▶ When 𝑥′1 is small, we should predict -1▶ When 𝑥′1 is large, we should predict +1
What about the temperature, 𝑥2?



Idea

▶ Transform “time” to “absolute time
until/since Noon”▶ Transform “temp.” to “absolute
difference between temp. and 72∘”



Basis Functions▶ We will transform:▶ the time, 𝑥1, to |𝑥1 − Noon|▶ the temperature, 𝑥2, to |𝑥2 − 72∘|▶ Formally, we’ve designed non-linear basis
functions: 𝜑1(𝑥1, 𝑥2) = |𝑥1 − Noon|𝜑2(𝑥1, 𝑥2) = |𝑥2 − 72∘|▶ In general a basis function 𝜑 maps ℝ𝑑 → ℝ



Feature Mapping▶ Define �⃗�( ⃗𝑥) = (𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥))𝑇. �⃗� is a feature map▶ Input: vector in “old” representation▶ Output: vector in “new” representation▶ Example:�⃗�((10a.m., 75∘)𝑇) = (2 hours, 3∘)𝑇▶ �⃗� maps raw data to a feature space.



Feature Space, Visualized



Exercise

Where does �⃗� map ⃗𝑥(1), ⃗𝑥(2), and ⃗𝑥(3)?



Solution



After the Mapping▶ The basis functions 𝜑1, 𝜑2 give us our “new”
features.▶ This gives us a new representation.▶ In this representation, learning (classification) is
easier.



Training▶ Map each training example ⃗𝑥(𝑖) to feature space,
creating new training data:⃗𝑧(1) = �⃗�( ⃗𝑥(1)), ⃗𝑧(2) = �⃗�( ⃗𝑥(2)), … , ⃗𝑧(𝑛) = �⃗�( ⃗𝑥(𝑛))▶ Fit linear prediction function 𝐻 in usual way:𝐻𝑓( ⃗𝑧) = 𝑤0 + 𝑤1𝑧1 + 𝑤2𝑧2 + … + 𝑤𝑑𝑧𝑑



Training Data in Feature Space
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Prediction▶ If we have ⃗𝑧 in feature space, prediction is:𝐻𝑓( ⃗𝑧) = 𝑤0 + 𝑤1𝑧1 + 𝑤2𝑧2 + … + 𝑤𝑑𝑧𝑑



Prediction▶ But if we have ⃗𝑥 from original space, we must
“convert” ⃗𝑥 to feature space first:𝐻( ⃗𝑥) = 𝐻𝑓(�⃗�( ⃗𝑥))= 𝐻𝑓( (𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥), … , 𝜑𝑑( ⃗𝑥))𝑇 )= 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥) + … + 𝑤𝑑𝜑𝑑( ⃗𝑥)



Overview: Feature Mapping▶ A basis function can involve any/all of the
original features: 𝜑3( ⃗𝑥) = 𝑥1 ⋅ 𝑥2▶ We can make more basis functions than original
features: �⃗�( ⃗𝑥) = ( 𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥), 𝜑3( ⃗𝑥) )𝑇



Overview: Feature Mapping
1. Start with data in original space, ℝ𝑑.
2. Choose some basis functions, 𝜑1, 𝜑2, … , 𝜑𝑑′
3. Map each data point to feature space ℝ𝑑′:⃗𝑥 ↦ (𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥), … , 𝜑𝑑′( ⃗𝑥))𝑡
4. Fit linear prediction function in new space:𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥)



𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥)
𝑥1
𝑥2
⋮𝑥𝑑

𝜑1
𝜑2
⋮𝜑𝑑′

∑
1𝑤1𝑤2𝑤𝑑′
𝑤0



Today’s Question▶ Q: How do we learn non-linear patterns using
linear prediction functions?▶ A: Use non-linear basis functions to map to a
feature space.
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Basis Functions and Regression



Example



Fitting Non-Linear Patterns▶ Fit function of the form𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4▶ Linear function of �⃗�, non-linear function of 𝑥.



Another View▶ We have changed the representation of a point:𝑥 ↦ (𝑥, 𝑥2, 𝑥3, 𝑥4)▶ Basis functions:𝜑1(𝑥) = 𝑥 𝜑2(𝑥) = 𝑥2 𝜑3(𝑥) = 𝑥3 𝜑4(𝑥) = 𝑥4
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A Tale of Two Spaces



A Tale of Two Spaces▶ The original space: where the raw data lies.▶ The feature space: where the data lies after
feature mapping �⃗�▶ Remember: we fit a linear prediction function in
the feature space.



Exercise▶ In feature space, what does the decision
boundary look like?▶ What does the prediction function surface
look like?



Decision Boundary in Feature Space2

2Fit by minimizing square loss



Prediction Surface in Feature Space



Exercise▶ In the original space, what does the decision
boundary look like?▶ What does the prediction function surface
look like?



Decision Boundary in Original Space3

3Fit by minimizing square loss



Prediction Surface in Original Space



Insight▶ 𝐻 is a sum of basis functions, 𝜑1 and 𝜑2.▶ 𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥)▶ The prediction surface is a sum of other surfaces.▶ Each basis function is a “building block”.



Visualizing the Basis Function 𝜑1
▶ 𝑤0+𝑤1|𝑥1−noon|



Visualizing the Basis Function 𝜑2
▶ 𝑤0 + 𝑤2|𝑥2 − 72∘|



Visualizing the Prediction Surface

= +



View: Function Approximation

▶ Find a function that is ≈ 1
near green points and ≈ −1
near red points.



What’s Wrong?▶ We’ve discovered how to learn non-linear
patterns using linear prediction functions.▶ Use non-linear basis functions to map to a feature

space.▶ Something should bug you, though...


