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Prediction
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Step 2: choose a loss function

1 Step 3: @ expectéd loss (empirical risk)
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Hypothesis Classes

A hypothesis class # is a set of possible
prediction functions.

By choosing a hypothesis class, we are saying
something about what the prediction function
should look like.

Examples:
H := linear functions
H := functions of the form sin(w, x; + ... Xc Xs)
H := decision trees of depth 10
H := neural networks with one layer



Hypothesis Class Complexity

The more complex the hypothesis class, the

greater the danger of overfitting.
Think: polynomials of degree 10 versus 2.

Occam’s Razor: assume H is simple.




psC /140&

Represaitaton [ earmg

Lecture 18 Part 2

Least Squares Regression



Linear Prediction Functions
rp sy

H(X) =\WO H W Xq + WX + WaXg + WX, + W;\

(N

This is a linear prediction function.

Wy, Wy, ..., Ws are the parameters jor weights.

W = (W, ..., ws)" is a parameter vector.




Linear Predictors

X1




Class of Linear Functions

There are infinitely many functions of the form

H(X) = Wg + Wy Xq + Wy X, + W3X3 + W, X, + WeXe

Each one is completely determined by@
Sometimes write H(X; W)

Example: W = (8,3,1,5,-2,-7)" specifies

H(X; W) = 8 + 3X, + 1X, + 5X3 - 2X, - 7Xs

—




M
%) NN g >
W ORI
“Parameterization” PR 2
/\ 7

A very useful trick.

Searching all linear functions = searching over
i € R o
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In General

If there are d features, there are d + 1 parameters:
6.8

H(X) =@ WqXq + WXy + oo ¥ WyXy

d
= Wp + Z W; X;
Z’ i=1 |
plos &/W/J g



Linear Prediction and the Dot
Product

The augmented feature vector Aug(x) is the
vector obtained by adding a 1 to the front of x:




Simplification
With augmentation, we can write as dot product:

H(X) = Wk Waxy + WoXs + .. + WoXg

= Aug(X) - w
1
v A
1
- w >
W = .1 Aug(X) = |




Geometric Meaning

It can be very useful to think geometrically when
reasoning about prediction algorithms.



Example

A linear prediction function for salary.
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(I—Ll(;)= $50,06O + (experience) x $8,000
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Surface

The surface of a prediction function H is the T
surface made by plotting H(X) for all X. :

If H.is a linear prediction function, and* ~ /
X & R', then H(x) is a straight line. V4

X € R?, R? the surface is a plane.
X € [Rd the surface is a d-dimensional hyperplane

“when plotted in the original feature coordinate space!



Empirical Risk Minimization (ERM)

Step 1: choose a hypothesis class
Let's assume we've chosen linear predictors

Step 2: choose a loss function

Step 3: minimize expected loss (empirical risk)



Step #2: Choose a loss function

Suppose we assume prediction function is linear.

o
There are still infinitely-many possibilities. 7V

We’'ll pick one that works well on training data.

What doe@mean?



Example: Movie Ratings

)3
Movie | X; X, X3 X, Xs |You
H1 8 5 9 2 1| 6
@;%“7#2 3 5 8 2 8
#H3 1T 5 2 3 3|09
H4 o 5 3 8 2] 7




Quantifying Quality

Consider a training example (X1,
Notation: X?) is the “ith training example”
7(}') is the “jth entry of the ith training example”
T

———

The “right answer” i@
Our prediction function outputs Héf((")) )

We measure the difference using a loss function.
—_ )




Loss Function

A loss function quantifies how wrong a single

prediction is. |

L(prediction for example i, correct answer for example i)



Empirical Risk

A goo@is good on average over entire data set.

The(expected loss (or W() is one way
of measuring this:

ROHY = LS L0 v
(H) =~ > LHED), y,)
=1

R(H; D) T\ logs femesen.

Note: depends on H and the data!




Loss Functions for Regression

We want H(X") = y..

e;an: ence

équare loss: (H(X")) - y.)2 >qu> ;L% " Vg



Mean Squared Error
WS

1 s 5

Reof =52M

This is the[_empﬂcalri/sg for the square loss.

\

{ |

Goal: find H minimizing MSE.

—_
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Step #3: Minimize MSE

We want to find an H minimizing this:
— e

1<,
Req(H) = = D (H(XV) - y;)?
It helps to use linea umption:



Calculus

We want to find w that minimizes the average
square loss:

Rsq (W) = % 2 (W - Aug(X1)) - y.)? b KSZQ@
0N}

I

Take the gradient, setto §,solve. |y [V

Solution: the Normal Equations, w = (X!X) "Xy



Design Matrix

X is the design matrix X:

Aug(x(!
X

)
x - | Aug( (2’):

Aug(x")




Note

There was a closed-form solution!

This is a direct consequence of using the mean

squared error.

Not true if we use, e.g., the mean absolute error.
g S



Why linear?
Easy to work with mathematically.
Harder to overfit./ W(LW{%

But still quite powerful.
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Movie Ratings

Five of your friends rate a movie from 0-10:

X
L*.).
00N N WO

(9
e : s
Task: Will you like the movie: ecs// ny)



Classification

Linear prediction functions can be used in
classification, too.

@g H(X) = Wy + Wy Xq + WXy + ..o + WyXy

e

Same ERM paradigm also useful.



A Classifier from a Regressor

Binary classification can be thought of as

regression where the targets are 1 1and -1
(or0and1,or..) VQS %0

A \nvonr® o

J:I(z)o;utpu\irea&mber Use the S|gn
function to turn it into -1, 1:
\/\}n

1, z>0
sign(z)=4-1 z<0
: 0 otherwise
- \

Final prediction



Example: Mango Ripeness

Predict whether a mango is ripe given greenness
and hardness.

Idea: gather a set of labeled training data.
Inputs along with correct output (i.e., “the answer”).

Greenness Hardness | Ripe

0.7 0.9 1
0.2 0.5 -1
0.3 0.1 -1
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Decision Boundary

The decision boundary is the place where the
output of H(x) switches from “yes” to “no”.

IfH>0m~ “yes”and H <0 » “no”, the decision
boundary is where H = 0.

If His a linear predictor and®
X € R", then the decision boundary is just a number.
X € R?, the boundary is a straight line.
X € RY the boundary is a d - 1 dimensional (hyper)
plane.

>when plotted in the original feature coordinate space!



Empirical Risk Minimization

Step 1: choose a hypothesis class
Let's assume we've chosen linear predictors

Step 2: choose a loss function

Step 3: minimize expected loss (empirical risk)



Can we use the square loss for classification?

(HXD) - y,)?




Least Squares and Outliers

-6
-8 -8
-4 -2 0 2 4 6 8 -4 -2 0 2 4 6 8

Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

®Bishop, Pattern Recognition and Machine Learning



Square Loss for Classification

We can use the square loss for classification
The “least squares classifier”

However, the square loss penalizes being “too
correct”

Example: suppose the correct label is 1. What is
the square loss of predicting 10? -9?



Loss Functions

There are many different loss functions for
classification.

Each leads to a different classifier:
Logistic Regression
Support Vector Machine
Perceptron
etc.

But that's for another class... (DSC 140A)



pDsC /1408

Represaitaton [ earm?

Lecture 18 Part 4

Linear Limitations



Linear Predictors

Last time, we saw linear prediction functions:

H(X; W) = Wg + Wy Xq + ... + WyXy
= Aug(X) - w



Linear Decision Functions
A linear prediction function H outputs a number.
What if classes are +1 and -1?

Can be turned into a decision function by taking:
sign(H(x))

Decision boundary is where H=10
Where the sign switches from positive to negative.



Decision Boundaries

A linear decision function’s decision boundary is
linear.
A line, plane, hyperplane, etc.
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An Example: Parking Predictor

Task: Predict (yes / no): Is there parking
available at UCSD right now?

What training data to collect? What features?



Useful Features

Time of day?

Day’s high temperature?



Imagine a scatter plot of the training data with the
two features:

X, = time of day

X, = temperature

“yes” examples are green, “no” are red.

What does it look like?




temperature

Xy =

Parking Data
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x1 = time of day



temperature

Xy =

@ Found Parking @
® No Parking
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Uh oh

x1 = time of day

A linear decision function
won’'t work.

What do we do?



