Representation Learning

Lecture 16 Part 1

From Points to Graphs

Dimensionality Reduction

- **Given**: *n* points in \mathbb{R}^d , number of dimensions $k \leq d$
- ▶ **Map**: each point \vec{x} to new representation $\vec{z} \in \mathbb{R}^k$

Idea

- Build a similarity graph from points in \mathbb{R}^2
- Use approach from last lecture to embed into \mathbb{R}^k
- But how do we represent a set of points as a similarity graph?

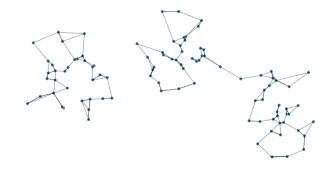
Three Approaches

- 1) Epsilon neighbors graph
- > 2) *k*-Nearest neighbor graph
- 3) fully connected graph with similarity function

Epsilon Neighbors Graph

- lnput: vectors $\vec{x}^{(1)}, ..., \vec{x}^{(n)}, a$ number ε
- Create a graph with one node *i* per point x⁽ⁱ⁾
- ► Add edge between nodes *i* and *j* if $\|\vec{x}^{(i)} - \vec{x}^{(j)}\| \le \varepsilon$
- Result: unweighted graph

- Input: vectors $\vec{x}^{(1)}, \dots, \vec{x}^{(n)}, \dots$ a number k
- Create a graph with one node *i* per point x⁽ⁱ⁾
- Add edge between each node i and its k closest neighbors
- Result: unweighted graph



Fully Connected Graph

- Input: vectors $\vec{x}^{(1)}, ..., \vec{x}^{(n)}, a similarity function h$
- Create a graph with one node *i* per point x⁽ⁱ⁾
- Add edge between every pair of nodes. Assign weight of h(x⁽ⁱ⁾, x^(j))
- Result: weighted graph

- A common similarity function: Gaussian
- Must choose σ appropriately

$$h(\vec{x}, \vec{y}) = e^{-\|\vec{x}-\vec{y}\|^2/\sigma^2}$$

Fully Connected: Pseudocode

```
def h(x, y):
    dist = np.linalg.norm(x, v)
    return np.exp(-dist**2 / sigma**2)
# assume the data is in X
n = len(X)
w = np.ones like(X)
for i in range(n):
    for j in range(n):
        w[i, j] = h(X[i], X[j])
```

With SciPy

distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances**2 / sigma**2)

Representation Learning

Lecture 16 Part 2

Summary: Laplacian Eigenmaps

Problem: Graph Embedding

- **Given**: a similarity graph, target dimension *k*
- Goal: embed the nodes of the graph as points in R^k so that similar nodes are nearby
- (One) Solution: Embed using eigenvectors of the graph Laplacian

Problem: Non-linear Dimensionality Reduction

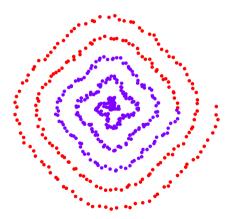
• **Given**: points in \mathbb{R}^d , target dimension k

Goal: embed the points in R^k so that points that were close in R^d are close after

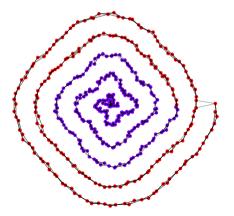
Idea

Build a similarity graph from points in R^d
 epsilon neighbors, k-neighbors, or fully connected

Embed the similarity graph in R^k using eigenvectors of graph Laplacian



- Build a *k*-neighbors graph.
- Note: follows the 1-d shape of the data.



Example 1: Spectral Embedding

- Let W be the weight matrix (k-neighbor adjacency matrix)
- Compute L = D W
- Compute bottom k non-constant eigenvectors of L, use as embedding

▶ Embedding into \mathbb{R}^1

▶ Embedding into \mathbb{R}^2

- Construct fully-connected similarity graph with Gaussian similarity
- Embed with Laplacian eigenmaps

