pDsC /4o0&

Represaitaton [earmg

Lecture 16 Part 1

From Points to Graphs

Dimensionality Reduction

Given: n points in RY, number of dimensions
k<d

Map: each point X to new representation Z € R*

Idea
Build a similarity graph from points in R?
Use approach from last lecture to embed into R*

But how do we represent a set of points as a
similarity graph?

Three Approaches
1) Epsilon neighbors graph
2) R-Nearest neighbor graph

3) fully connected graph with similarity function

Epsilon Neighbors Graph

Input: vectors X, ..., X",
a number &

Create a graph with one
node i per point X)

Add edge between nodes i
and j if || X - X0| < ¢

Result: unweighted graph

k-Neighbors Graph

Input: vectors X, ..., X",
a number R

Create a graph with one
node i per point X)

Add edge between each
node i and its Rk closest
neighbors

Result: unweighted graph

k-Neighbors Graph

D ——

7

T
S
E‘. v fi\\ “ Y .
. Ay ~
//\VIH j{{k
. e T
<,

k-Neighbors Graph

k-Neighbors Graph

k-Neighbors Graph

Fully Connected Graph

Input: vectors X, ..., X",
a similarity function h

Create a graph with one
node i per point X)

Add edge between every
pair of nodes. Assign

weight of h(X0, X0))

Result: weighted graph

Gaussian Similarity
A common similarity function: Gaussian

Must choose o appropriately

h(X,y) = e 1%-VI?/0?

Fully Connected: Pseudocode

def h(x, y):
dist = np.linalg.norm(x, y)
return np.exp(-dist**2 / sigma*x2)

assume the data is in X
n = len(X)
w = np.ones_like(X)
for i in range(n):
for j in range(n):
wli, j1 = h(X[il, X[j1)

With SciPy

distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances**2 / sigmaxx2)

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

pDsC /4o0&

Represaitaton [earmg

Lecture 16 Part 2

Summary: Laplacian Eigenmaps

Problem: Graph Embedding

Given: a similarity graph, target dimension R

Goal: embed the nodes of the graph as points in
R* so that similar nodes are nearby

(One) Solution: Embed using eigenvectors of the
graph Laplacian

Problem: Non-linear Dimensionality
Reduction

Given: points in RY, target dimension k

Goal: embed the points in RF so that points that
were close in RY are close after

Idea

Build a similarity graph from points in R?
epsilon neighbors, k-neighbors, or fully connected

Embed the similarity graph in R® using
eigenvectors of graph Laplacian

Example 1: Spiral

o0 «® % - .
o
... & o® o0 eoy .'l.
o. l. .: ®
. 3 .‘,! .:o‘-n"_ ‘n=
MY A A S
l..] b d H .‘~
Y o D)
T s ° s 2 ¢ !
-. L] ﬂ. .=
AN W
:. - 'l °®
% 2 Vet L
% % [L4 o
[N ‘. °a i &
. e Yo% 00" ° r]
'~ .." L4 ‘
* o “%eece o o
. . ..’

Example 1: Spiral

Build a k-neighbors graph.
Note: follows the 1-d shape of the data.

_o—a8,

; N
. .
4
P %
v 4 /

Example 1: Spectral Embedding

Let W be the weight matrix (kR-neighbor
adjacency matrix)

ComputeL=D-W

Compute bottom k non-constant eigenvectors of
L, use as embedding

Example 1: Spiral

Embedding into R’

QR 11) ()6 I OB (DHOD B0 FOOOBON INSOIOHED

Example 1: Spiral

Embedding into R?

Example 1: Spiral

import sklearn.neighbors

import sklearn.manifold

W = sklearn.neighbors.kneighbors_graph(
X, n_neighbors=4

)

embedding = sklearn.manifold.spectral_embedding(
W, n_components=2
)

Example 2: Face Pose

Bew 50 I, s B o
4 B G 6% P g
_d T LT
P s B B s €0
o e B B P
B G B o B B
Kol G B o B B
gl 59 O B L B
ca P i RS B
P B B g € G

Example 2: Face Pose

Construct fully-connected similarity graph with
Gaussian similarity

Embed with Laplacian eigenmaps

Example 2: Face Pose

Example 2: Face Pose

