
Lecture 16| Part 1

From Points to Graphs



Dimensionality Reduction▶ Given: 𝑛 points in ℝ𝑑, number of dimensions𝑘 ≤ 𝑑▶ Map: each point ⃗𝑥 to new representation ⃗𝑧 ∈ ℝ𝑘



Idea▶ Build a similarity graph from points in ℝ2▶ Use approach from last lecture to embed into ℝ𝑘▶ But how do we represent a set of points as a
similarity graph?



Three Approaches▶ 1) Epsilon neighbors graph▶ 2) 𝑘-Nearest neighbor graph▶ 3) fully connected graph with similarity function



Epsilon Neighbors Graph▶ Input: vectors ⃗𝑥(1), … , ⃗𝑥(𝑛),
a number 𝜀▶ Create a graph with one
node 𝑖 per point ⃗𝑥(𝑖)▶ Add edge between nodes 𝑖
and 𝑗 if ‖ ⃗𝑥(𝑖) − ⃗𝑥(𝑗)‖ ≤ 𝜀▶ Result: unweighted graph



k-Neighbors Graph▶ Input: vectors ⃗𝑥(1), … , ⃗𝑥(𝑛),
a number 𝑘▶ Create a graph with one
node 𝑖 per point ⃗𝑥(𝑖)▶ Add edge between each
node 𝑖 and its 𝑘 closest
neighbors▶ Result: unweighted graph
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Fully Connected Graph▶ Input: vectors ⃗𝑥(1), … , ⃗𝑥(𝑛),
a similarity function ℎ▶ Create a graph with one
node 𝑖 per point ⃗𝑥(𝑖)▶ Add edge between every
pair of nodes. Assign
weight of ℎ( ⃗𝑥(𝑖), ⃗𝑥(𝑗))▶ Result: weighted graph



Gaussian Similarity▶ A common similarity function: Gaussian▶ Must choose 𝜎 appropriatelyℎ( ⃗𝑥, ⃗𝑦) = 𝑒−‖ ⃗𝑥− ⃗𝑦‖2/𝜎2



Fully Connected: Pseudocode
def h(x, y):

dist = np.linalg.norm(x, y)
return np.exp(-dist**2 / sigma**2)

# assume the data is in X
n = len(X)
w = np.ones_like(X)
for i in range(n):

for j in range(n):
w[i, j] = h(X[i], X[j])



With SciPy
distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances**2 / sigma**2)
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Lecture 16| Part 2

Summary: Laplacian Eigenmaps



Problem: Graph Embedding▶ Given: a similarity graph, target dimension 𝑘▶ Goal: embed the nodes of the graph as points inℝ𝑘 so that similar nodes are nearby▶ (One) Solution: Embed using eigenvectors of the
graph Laplacian



Problem: Non-linear Dimensionality
Reduction▶ Given: points in ℝ𝑑, target dimension 𝑘▶ Goal: embed the points in ℝ𝑘 so that points that

were close in ℝ𝑑 are close after



Idea▶ Build a similarity graph from points in ℝ𝑑▶ epsilon neighbors, 𝑘-neighbors, or fully connected▶ Embed the similarity graph in ℝ𝑘 using
eigenvectors of graph Laplacian



Example 1: Spiral



Example 1: Spiral▶ Build a 𝑘-neighbors graph.▶ Note: follows the 1-d shape of the data.



Example 1: Spectral Embedding▶ Let 𝑊 be the weight matrix (𝑘-neighbor
adjacency matrix)▶ Compute 𝐿 = 𝐷 − 𝑊▶ Compute bottom 𝑘 non-constant eigenvectors of𝐿, use as embedding



Example 1: Spiral▶ Embedding into ℝ1



Example 1: Spiral▶ Embedding into ℝ2



Example 1: Spiral
import sklearn.neighbors
import sklearn.manifold
W = sklearn.neighbors.kneighbors_graph(

X, n_neighbors=4
)
embedding = sklearn.manifold.spectral_embedding(

W, n_components=2
)



Example 2: Face Pose



Example 2: Face Pose▶ Construct fully-connected similarity graph with
Gaussian similarity▶ Embed with Laplacian eigenmaps
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