
Lecture 16| Part 1

From Points to Graphs

Dimensionality Reduction▶ Given: 𝑛 points in ℝ𝑑, number of dimensions𝑘 ≤ 𝑑▶ Map: each point ⃗𝑥 to new representation ⃗𝑧 ∈ ℝ𝑘

Idea▶ Build a similarity graph from points in ℝ2▶ Use approach from last lecture to embed into ℝ𝑘▶ But how do we represent a set of points as a
similarity graph?

Three Approaches▶ 1) Epsilon neighbors graph▶ 2) 𝑘-Nearest neighbor graph▶ 3) fully connected graph with similarity function

Epsilon Neighbors Graph▶ Input: vectors ⃗𝑥(1), … , ⃗𝑥(𝑛),
a number 𝜀▶ Create a graph with one
node 𝑖 per point ⃗𝑥(𝑖)▶ Add edge between nodes 𝑖
and 𝑗 if ‖ ⃗𝑥(𝑖) − ⃗𝑥(𝑗)‖ ≤ 𝜀▶ Result: unweighted graph

k-Neighbors Graph▶ Input: vectors ⃗𝑥(1), … , ⃗𝑥(𝑛),
a number 𝑘▶ Create a graph with one
node 𝑖 per point ⃗𝑥(𝑖)▶ Add edge between each
node 𝑖 and its 𝑘 closest
neighbors▶ Result: unweighted graph

k-Neighbors Graph

k-Neighbors Graph

k-Neighbors Graph

k-Neighbors Graph

Fully Connected Graph▶ Input: vectors ⃗𝑥(1), … , ⃗𝑥(𝑛),
a similarity function ℎ▶ Create a graph with one
node 𝑖 per point ⃗𝑥(𝑖)▶ Add edge between every
pair of nodes. Assign
weight of ℎ(⃗𝑥(𝑖), ⃗𝑥(𝑗))▶ Result: weighted graph

Gaussian Similarity▶ A common similarity function: Gaussian▶ Must choose 𝜎 appropriatelyℎ(⃗𝑥, ⃗𝑦) = 𝑒−‖ ⃗𝑥− ⃗𝑦‖2/𝜎2

Fully Connected: Pseudocode
def h(x, y):

dist = np.linalg.norm(x, y)
return np.exp(-dist**2 / sigma**2)

assume the data is in X
n = len(X)
w = np.ones_like(X)
for i in range(n):

for j in range(n):
w[i, j] = h(X[i], X[j])

With SciPy
distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances**2 / sigma**2)

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

Lecture 16| Part 2

Summary: Laplacian Eigenmaps

Problem: Graph Embedding▶ Given: a similarity graph, target dimension 𝑘▶ Goal: embed the nodes of the graph as points inℝ𝑘 so that similar nodes are nearby▶ (One) Solution: Embed using eigenvectors of the
graph Laplacian

Problem: Non-linear Dimensionality
Reduction▶ Given: points in ℝ𝑑, target dimension 𝑘▶ Goal: embed the points in ℝ𝑘 so that points that

were close in ℝ𝑑 are close after

Idea▶ Build a similarity graph from points in ℝ𝑑▶ epsilon neighbors, 𝑘-neighbors, or fully connected▶ Embed the similarity graph in ℝ𝑘 using
eigenvectors of graph Laplacian

Example 1: Spiral

Example 1: Spiral▶ Build a 𝑘-neighbors graph.▶ Note: follows the 1-d shape of the data.

Example 1: Spectral Embedding▶ Let 𝑊 be the weight matrix (𝑘-neighbor
adjacency matrix)▶ Compute 𝐿 = 𝐷 − 𝑊▶ Compute bottom 𝑘 non-constant eigenvectors of𝐿, use as embedding

Example 1: Spiral▶ Embedding into ℝ1

Example 1: Spiral▶ Embedding into ℝ2

Example 1: Spiral
import sklearn.neighbors
import sklearn.manifold
W = sklearn.neighbors.kneighbors_graph(

X, n_neighbors=4
)
embedding = sklearn.manifold.spectral_embedding(

W, n_components=2
)

Example 2: Face Pose

Example 2: Face Pose▶ Construct fully-connected similarity graph with
Gaussian similarity▶ Embed with Laplacian eigenmaps

Example 2: Face Pose

Example 2: Face Pose

