psC /140&

Represaitaton [earm@

Lecture 16 Part 1

From Points to Graphs

Dimensionality Reduction

Given: n points in RY, number of dimensions
kR<d

Map: each point X to new representation Z € R¥

Idea
Build a similarity graph from points in Rd
Use approach from last lecture to embed into R"

But how do we represent a set of points as a
similarity graph?

Three Approaches
1) Epsilon neighbors graph
2) R-Nearest neighbor graph

3) fully connected graph with similarity function

Epsilon Neighbors Graph

Input: vectors X, ..., X",
a number 3

Create a graph with one
node i per point X!

Add edge between nodes i
and j if | X0 -X0| < ¢
w

Result: unweighted graph

k-Neighbors Graph

Input: vectors XV, ..., X,
a number kR

Create a graph with one
node i per point X\

Add edge between each
node i and its R closest
neighbors

Result: unweighted graph

k=2

k-Neighbors Graph

\ e
e ‘.{
@gﬁj'}» f\:\j} ; Y\
. R j =
N i

k-Neighbors Graph

k-Neighbors Graph

k-Neighbors Graph

Fully Connected Graph

Input: vectors X(,..., X",

a similarity function h
M

Create a graph with one
node i per point X\

Add edge between every

pair of nodes. Assign
weight of h(X®", X1))
ST

Result: weighted graph

Gaussian Similarity
A common similarity function: Gaussian

[
Must choose@ppropriately .

h(%,) - eJ@/oi/éA
(ﬂ —

- \
| —,
% & - bl

Fully Connected: Pseudocode

def M?Sﬂm
dist = np.linalg.norm(x, vy)

return np.exp(-dist+*2 /4§i52%§i3)

assume the data is in X
n = len(X) ((n, n)
W = np.ones)
for i in range(n):
for j in range(n):

wli, j] =vh£§£ilL;§£iJ)

With SciPy

Wmatrix(x, X)
w o= .exp(—gMes**z / sigmax=*2)

Gaussian Similarity

Gaussian Similarity

ilarity

imi

Gaussian S

ilarity

imi

Gaussian S

pDsC /1408

Represaitaton [earm@

Lecture 16 Part 2

Summary: Laplacian Eigenmaps

Problem: Graph Embedding

Given: a similarity graph, target dimension R

Goal: embed the node aph as points in
Rk so that/similar nodes are nearb jmgmp/ T
(One) Solution: Embed using eigenvectors of the

graph Laplacian
e QFLUOUD

methed-

Problem: Non-linear Dimensionality
Reduction

Given: points in RY, target dimension k

Goal: embed the points in R* so that points that
were close in R? are close after

Idea

Build a similarity graph from points in R?
epsilon neighbors, k-neighbors, or fully connected

Embed the similarity graph in R using
eigenvectors of graph Laplacian

|

Ira

° e ~,
D Ooo‘o %
(Vg *) Y
® \\oo .ooo - "
) & o s e T

Example 1
"

Example 1: Spiral

Build a k-neighbors graph.
Note: follows the 1-d shape of the data.

=9
s e
'S
y A A
A 2 e Q
;- b
J N
&
y \
P
[» y I
y)\ /
- ;
. o
8,
" | . b4
\ L
A\ b

Example 1: Spectral Embedding

7O]
Le@wwzeighl matrix (R-neighbor
adjacency matrix) W (
ComputeL=D-W

25

Compute bottom kR(non-constant eigenvectors of

L, use as embedding

Example 1: Spiral

Embedding into R' -

Example 1: Spiral

Embedding into R?

Example 1: Spiral

import sklearn.neighbors

import sklearn.manifold

J& = sklearn.neighbors.kneighbors_graph(
X, n_neighbors=4

)

embedding = sklearn.manifold.spectral_embedding(

W, n_components=2
) =
) /) =D-n

Example 2: Face Pose

B A s ca B
CaBe o Be P
> B Gy B9 P
P [B0 B s €0
NN N
B G B s B B
KO G B > B B
pa 50 A B o B
. dTld TS
P B BN 6 € B

Example 2: Face Pose

Construct fully-connected similarity graph with
Gaussian similarity

Embed with Laplacian eigenmaps

Example 2: Face Pose

Example 2: Face Pose

