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Lecture 16 Part 1

From Points to Graphs



Dimensionality Reduction

Given: n points in RY, number of dimensions
kR<d

Map: each point X to new representation Z € R¥



Idea
Build a similarity graph from points in Rd
Use approach from last lecture to embed into R"

But how do we represent a set of points as a
similarity graph?



Three Approaches
1) Epsilon neighbors graph
2) R-Nearest neighbor graph

3) fully connected graph with similarity function



Epsilon Neighbors Graph

Input: vectors X, ..., X",
a number 3

Create a graph with one
node i per point X!

Add edge between nodes i
and j if | X0 -X0| < ¢
w

Result: unweighted graph



k-Neighbors Graph

Input: vectors XV, ..., X,
a number kR

Create a graph with one
node i per point X\

Add edge between each
node i and its R closest
neighbors

Result: unweighted graph
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k-Neighbors Graph




k-Neighbors Graph




k-Neighbors Graph




Fully Connected Graph

Input: vectors X(,..., X",

a similarity function h
M

Create a graph with one
node i per point X\

Add edge between every

pair of nodes. Assign
weight of h(X®", X1))
ST

Result: weighted graph



Gaussian Similarity
A common similarity function: Gaussian
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Fully Connected: Pseudocode

def M?Sﬂm
dist = np.linalg.norm(x, vy)

return np.exp(-dist+*2 /4§i52%§i3)

# assume the data is in X
n = len(X) ((n, n)
W = np.ones )
for i in range(n):
for j in range(n):

wli, j] =vh£§£ilL;§£iJ)



With SciPy

Wmatrix(x, X)
w o= .exp(—gMes**z / sigmax=*2)




Gaussian Similarity



Gaussian Similarity
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Lecture 16 Part 2

Summary: Laplacian Eigenmaps



Problem: Graph Embedding

Given: a similarity graph, target dimension R

Goal: embed the node aph as points in
Rk so that/similar nodes are nearb jmgmp/ T
(One) Solution: Embed using eigenvectors of the

graph Laplacian
e QFLUOUD
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Problem: Non-linear Dimensionality
Reduction

Given: points in RY, target dimension k

Goal: embed the points in R* so that points that
were close in R? are close after



Idea

Build a similarity graph from points in R?
epsilon neighbors, k-neighbors, or fully connected

Embed the similarity graph in R using
eigenvectors of graph Laplacian
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Example 1: Spiral

Build a k-neighbors graph.
Note: follows the 1-d shape of the data.
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Example 1: Spectral Embedding

7O ]
Le@wwzeighl matrix (R-neighbor
adjacency matrix) W (
ComputeL=D-W

25

Compute bottom kR(non-constant eigenvectors of

L, use as embedding




Example 1: Spiral

Embedding into R' -



Example 1: Spiral

Embedding into R?




Example 1: Spiral

import sklearn.neighbors

import sklearn.manifold

J& = sklearn.neighbors.kneighbors_graph(
X, n_neighbors=4

)

embedding = sklearn.manifold.spectral_embedding(

W, n_components=2
) =
) /) =D-n




Example 2: Face Pose
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Example 2: Face Pose

Construct fully-connected similarity graph with
Gaussian similarity

Embed with Laplacian eigenmaps



Example 2: Face Pose
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