DST $140 B$ Representation Learning From Points to Graph

Dimensionality Reduction

- Given: n points in \mathbb{R}^{d}, number of dimensions $k \leq d$

Map: each point \vec{x} to new representation $\vec{z} \in \mathbb{R}^{k}$

Idea

- Build a similarity graph from points in \mathbb{R}^{d}
- Use approach from last lecture to embed into \mathbb{R}^{k}
- But how do we represent a set of points as a similarity graph?

Three Approaches

- 1) Epsilon neighbors graph
- 2) k-Nearest neighbor graph
- 3) fully connected graph with similarity function

Epsilon Neighbors Graph

- Input: vectors $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$, a number ε
- Create a graph with one node i per point $\vec{x}^{(i)}$
- Add edge between nodes i and j if $\left\|\vec{x}^{(i)}-\vec{x}^{(j)}\right\| \leq \varepsilon$
- Result: unweighted graph

k-Neighbors Graph

- Input: vectors $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$, a number k
- Create a graph with one node i per point $\vec{\chi}^{(i)}$
- Add edge between each node i and its k closest neighbors
> Result: unweighted graph

k-Neighbors Graph

$$
k=2
$$

k-Neighbors Graph

k-Neighbors Graph

k-Neighbors Graph

Fully Connected Graph

- Input: vectors $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$, a similarity function h
- Create a graph with one node i per point $\vec{\chi}^{(i)}$
- Add edge between every pair of nodes. Assign
weight of $h\left(\vec{x}^{(i)}, \vec{x}^{(j)}\right)$
- Result: weighted graph

Gaussian Similarity

- A common similarity function: Gaussian
- Must choose oappropriately

$$
h(\vec{x}, \vec{y})=e^{-\overrightarrow{\| x}-\vec{x}\| \|^{2}} / \sigma^{2}
$$

$$
\vec{x} \in \mathbb{R}^{d}
$$

Fully Connected: Pseudocode

```
def h(x,y):\ {
    dist = np.linalg.norm(x, y)
    return np.exp(-dist**2 / sigma**2)
# assume the data is in X
n = len(X)
w = np.ones (
for i in range(n):
    for j in range(n):
        w[i, j] = h(X[i], X[j])
```


With SciPy

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

SC $140 B$ Representation Learning Lecture 16 Part 2
Summary: Laplacian Eigenmaps

Problem: Graph Embedding

- Given: a similarity graph, target dimension k
- Goal: embed the nodes of the graph as points in \mathbb{R}^{k} so that similar nodes are nearby \longrightarrow general intwisis.
(One) Solution: Embed using eigenvectors of the graph Laplacian

Problem: Non-linear Dimensionality Reduction

- Given: points in \mathbb{R}^{d}, target dimension k
- Goal: embed the points in \mathbb{R}^{k} so that points that were close in \mathbb{R}^{d} are close after

Idea

- Build a similarity graph from points in \mathbb{R}^{d}
- epsilon neighbors, k-neighbors, or fully connected
- Embed the similarity graph in \mathbb{R}^{k} using eigenvectors of graph Laplacian

Example 1: Spiral

Example 1: Spiral

- Build a k-neighbors graph.
- Note: follows the 1-d shape of the data.

Example 1: Spectral Embedding

- Let Wbe the weight matrix (k-neighbor adjacency matrix)

- Compute $L=D-W$
- Compute bottom k non-constant eigenvectors of L, use as embedding

Example 1: Spiral

Embedding into \mathbb{R}^{1}

Example 1: Spiral

Embedding into \mathbb{R}^{2}

Example 1: Spiral

```
import sklearn.neighbors
import sklearn.manifold
W = sklearn.neighbors.kneighbors_graph(
    X, n_neighbors=4
)
embedding = sklearn.manifold.spectral_embedding(
    W, n_components=2
    L=D-W
```


Example 2: Face Pose

Example 2: Face Pose

Construct fully-connected similarity graph with Gaussian similarity

- Embed with Laplacian eigenmaps

Example 2: Face Pose

Example 2: Face Pose

