DSC 1408 Representation Learning

Lecture 16 Part 1

From Points to Graphs

Dimensionality Reduction

- **Given**: *n* points in \mathbb{R}^d , number of dimensions $k \le d$
- ▶ **Map**: each point \vec{x} to new representation $\vec{z} \in \mathbb{R}^k$

Idea

- ► Build a similarity graph from points in ℝ⁴
- ▶ Use approach from last lecture to embed into \mathbb{R}^k
- But how do we represent a set of points as a similarity graph?

Three Approaches

- ▶ 1) Epsilon neighbors graph
- 2) k-Nearest neighbor graph
- 3) fully connected graph with similarity function

Epsilon Neighbors Graph

- Input: vectors $\vec{x}^{(1)}, ..., \vec{x}^{(n)},$ a number ε
- Create a graph with one node i per point $\vec{x}^{(i)}$
- Add edge between nodes i and j if $\|\vec{x}^{(i)} \vec{x}^{(j)}\| \le \varepsilon$
- Result: unweighted graph

- Input: vectors $\vec{x}^{(1)}, ..., \vec{x}^{(n)},$ a number k
- Create a graph with one node i per point x

 (i)
- Add edge between each node i and its k closest neighbors
- Result: unweighted graph

Fully Connected Graph

- Input: vectors $\vec{x}^{(1)}, ..., \vec{x}^{(n)},$ a similarity function h
- Create a graph with one node i per point $\vec{x}^{(i)}$
- Add edge between every pair of nodes. Assign weight of $h(\vec{x}^{(i)}, \vec{x}^{(j)})$
- Result: weighted graph

- A common similarity function: Gaussian
- ightharpoonup Must choose σ appropriately

$$h(\vec{x}, \vec{y}) = e^{-\|\vec{x} - \vec{y}\|^2 / \sigma^2}$$

Fully Connected: Pseudocode

```
def h(x, y)
    dist = np.linalg.norm(x, y)
    return np.exp(-dist**2 / sigma**2)
# assume the data is in X
n = len(X) ((n,n))
w = np.ones tike(X)
for i in range(n):
    for j in range(n):
         w[i, j] = h(X[i], X[j])
```

With SciPy

```
distances = scipy.spatial distance_matrix(X, X)
w = np.exp(-distances**2 / sigma**2)
```


DSC 140B Representation Learning

Lecture 16 Part 2

Summary: Laplacian Eigenmaps

Problem: Graph Embedding

- ► **Given**: a similarity graph, target dimension *k*
- ▶ **Goal**: embed the nodes of the graph as points in \mathbb{R}^k so that similar nodes are nearby general intuition
- ► (One) Solution: Embed using eigenvectors of the graph Laplacian

Problem: Non-linear Dimensionality Reduction

- ▶ **Given**: points in \mathbb{R}^d , target dimension k
- ▶ **Goal**: embed the points in \mathbb{R}^k so that points that were close in \mathbb{R}^d are close after

Idea

- ightharpoonup Build a similarity graph from points in \mathbb{R}^d
 - epsilon neighbors, k-neighbors, or fully connected
- Embed the similarity graph in \mathbb{R}^k using eigenvectors of graph Laplacian

- ▶ Build a *k*-neighbors graph.
- Note: follows the 1-d shape of the data.

Example 1: Spectral Embedding

- Let We the weight matrix (k-neighbor adjacency matrix)
- ► Compute L = D W
- Compute bottom k non-constant eigenvectors of L, use as embedding

ightharpoonup Embedding into \mathbb{R}^1

ightharpoonup Embedding into \mathbb{R}^2

- Construct fully-connected similarity graph with Gaussian similarity
- Embed with Laplacian eigenmaps

