Change of Basis

• Let $\mathcal{U} = {\hat{u}^{(1)}, ..., \hat{u}^{(d)}}$ be an orthonormal basis.

• The coordinates of \vec{x} w.r.t. \mathcal{U} are:

$$\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{U}} = \begin{pmatrix} \vec{x} \cdot \hat{u}^{(1)} \\ \vec{x} \cdot \hat{u}^{(2)} \\ \vdots \\ \vec{x} \cdot \hat{u}^{(d)} \end{pmatrix}$$

Recall: Linear Transformations

- A **transformation** $\vec{f}(\vec{x})$ is a function which takes a vector as input and returns a vector of the same dimensionality.
- A transformation \vec{f} is **linear** if

$$\vec{f}(\alpha \vec{u} + \beta \vec{v}) = \alpha \vec{f}(\vec{u}) + \beta \vec{f}(\vec{v})$$

Implications of Linearity

Suppose \vec{f} is a linear transformation. Then:

$$\vec{f}(\vec{x}) = \vec{f}(x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)})$$
$$= x_1 \vec{f}(\hat{e}^{(1)}) + x_2 \vec{f}(\hat{e}^{(2)})$$

I.e., *f* is totally determined by what it does to the basis vectors.

Eigenvectors

Let A be an n × n matrix. An eigenvector of A with eigenvalue λ is a nonzero vector v such that Av = λv.

Variance in a Direction

• Let \vec{u} be a unit vector.

►
$$z^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$$
 is the new feature for $\vec{x}^{(i)}$.

The variance of the new features is:

$$Var(z) = \frac{1}{n} \sum_{i=1}^{n} (z^{(i)} - \mu_z)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\vec{x}^{(i)} \cdot \vec{u} - \mu_z)^2$$

Note

► If the data are centered, then $\mu_z = 0$ and the variance of the new features is:

$$Var(z) = \frac{1}{n} \sum_{i=1}^{n} (z^{(i)})^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\vec{x}^{(i)} \cdot \vec{u})^2$$

Claim

$$\frac{1}{n}\sum_{i=1}^{n}\left(\vec{x}^{(i)}\cdot\vec{u}\right)^{2}=\vec{u}^{\mathsf{T}}C\vec{u}$$

Visualizing Covariance Matrices

C ≈ (

PCA: k Components

- ► Given data $\{\vec{x}^{(1)}, ..., \vec{x}^{(n)}\} \in \mathbb{R}^d$, number of components k.
- Compute covariance matrix C, top $k \le d$ eigenvectors $\vec{u}^{(1)}$, $\vec{u}^{(2)}$, ..., $\vec{u}^{(k)}$.
- For any vector $\vec{x} \in \mathbb{R}$, its new representation in \mathbb{R}^k is $\vec{z} = (z_1, z_2, ..., z_k)^T$, where:

$$Z_1 = \vec{x} \cdot \vec{u}^{(1)}$$
$$Z_2 = \vec{x} \cdot \vec{u}^{(2)}$$
$$\vdots$$
$$Z_k = \vec{x} \cdot \vec{u}^{(k)}$$

Reconstructions

▶ Given a "new" representation of \vec{x} , $\vec{z} = (z_1, ..., z_k) \in \mathbb{R}^k$

And top k eigenvectors, $\vec{u}^{(1)}, \dots, \vec{u}^{(k)}$

• The **reconstruction** of \vec{x} is

$$z_1 \vec{u}^{(1)} + z_2 \vec{u}^{(2)} + \dots + z_k \vec{u}^{(k)} = U \vec{z}$$

Reconstruction Error

- The reconstruction *approximates* the original point, \vec{x} .
- The reconstruction error for a single point, x:

 $\|\vec{x} - U\vec{z}\|^2$

Total reconstruction error:

$$\sum_{i=1}^n \|\vec{x}^{(i)} - U\vec{z}^{(i)}\|^2$$

The total variance is the sum of the eigenvalues of the covariance matrix.

Or, alternatively, sum of variances in each orthogonal basis direction.

normal basis diberson

Representation Learning

Lecture 15 Part 1

The Graph Laplacian

Spectral Embeddings: Problem

- Given: similarity graph with n nodes
- Compute: an embedding of the n points into R¹ so that similar objects are placed nearby
- Formally: find embedding vector \vec{f} minimizing

$$\text{Cost}(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2 = \vec{f}^{\mathsf{T}} L \vec{f}$$

subject to $\|\vec{f}\| = 1$ and $\vec{f} \perp (1, 1, ..., 1)^T$

Spectral Embeddings: Solution

- ► Form the **graph Laplacian** matrix, *L* = *D W*
- Choose f be an eigenvector of L with smallest eigenvalue > 0
- This is the embedding!

Embedding into \mathbb{R}^k

- This embeds nodes into \mathbb{R}^1 .
- What about embedding into \mathbb{R}^k ?
- Natural extension: find bottom k eigenvectors with eigenvalues > 0

New Coordinates

- ▶ With *k* eigenvectors $\vec{f}^{(1)}$, $\vec{f}^{(2)}$, ..., $\vec{f}^{(k)}$, each node is mapped to a point in \mathbb{R}^k .
- Consider node i.
 - First new coordinate is $\vec{f}_i^{(1)}$.
 - Second new coordinate is $\vec{f}_i^{(2)}$.
 - Third new coordinate is $\vec{f}_i^{(3)}$.

Laplacian Eigenmaps

This approach is part of the method of "Laplacian eigenmaps"

Introduced by Mikhail Belkin³ and Partha Niyogi

It is a type of spectral embedding

³Now at HDSI

A Practical Issue

► The Laplacian is often **normalized**:

$$L_{\rm norm} = D^{-1/2} L D^{-1/2}$$

where $D^{-1/2}$ is the diagonal matrix whose *i*th diagonal entry is $1/\sqrt{d_{ii}}$.

• Proceed by finding the eigenvectors of L_{norm} .

In Summary

- We can **embed** a similarity graph's nodes into R^k using the eigenvectors of the graph Laplacian
- Yet another instance where eigenvectors are solution to optimization problem
- Next time: using this for dimensionality reduction

Representation Learning

Lecture 15 Part 2

Nonlinear Dimensionality Reduction

Scenario

- You want to train a classifier on this data.
- It would be easier if we could "unroll" the spiral.
- Data seems to be one-dimensional, even though in two dimensions.
- Dimensionality reduction?

PCA?

- Does PCA work here?
- Try projecting onto one principal component.

No

PCA?

- PCA simply "rotates" the data.
- ▶ No amount of rotation will "unroll" the spiral.
- We need a fundamentally different approach that works for non-linear patterns.

Today

Non-linear dimensionality reduction via spectral embeddings.

Last Time: Spectral Embeddings

- Given: a similarity graph with n nodes, number of dimensions k.
- Embed: each node as a point in R^k such that similar nodes are mapped to nearby points
- Solution: bottom k non-constant eigenvectors of graph Laplacian

Idea

- Build a similarity graph from points.
- Points near the spiral should be similar.
- ► Embed the similarity graph into R¹

Today

- I) How do we build a graph from a set of points?
- 2) Dimensionality reduction with Laplacian eigenmaps

Representation Learning

Lecture 15 Part 3

From Points to Graphs

Dimensionality Reduction

- **Given**: *n* points in \mathbb{R}^d , number of dimensions $k \leq d$
- ▶ **Map**: each point \vec{x} to new representation $\vec{z} \in \mathbb{R}^k$

Idea

- Build a similarity graph from points in \mathbb{R}^2
- Use approach from last lecture to embed into \mathbb{R}^k
- But how do we represent a set of points as a similarity graph?

Why graphs?

Three Approaches

- 1) Epsilon neighbors graph
- > 2) *k*-Nearest neighbor graph
- 3) fully connected graph with similarity function

Epsilon Neighbors Graph

- lnput: vectors $\vec{x}^{(1)}, ..., \vec{x}^{(n)}, a$ number ε
- Create a graph with one node *i* per point x⁽ⁱ⁾
- ► Add edge between nodes *i* and *j* if $\|\vec{x}^{(i)} - \vec{x}^{(j)}\| \le \varepsilon$
- Result: unweighted graph

Exercise

What will the graph look like when ε is small? What about when it is large?

Note

- We've drawn these graphs by placing nodes at the same position as the point they represent
- But a graph's nodes can be drawn in any way

Epsilon Neighbors: Pseudocode

Picking ε

• If ε is too small, graph is underconnected

• If ε is too large, graph is overconnected

If you cannot visualize, just try and see

With scikit-learn

- Input: vectors $\vec{x}^{(1)}, \dots, \vec{x}^{(n)}, \dots$ a number k
- Create a graph with one node *i* per point x⁽ⁱ⁾
- Add edge between each node i and its k closest neighbors
- Result: unweighted graph

k-Neighbors: Pseudocode

```
# assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):
    for j in k_closest_neighbors(X, i):
        adj[i, j] = 1
```

Exercise

Is it possible for a *k*-neighbors graph to be disconected?

With scikit-learn

Fully Connected Graph

- Input: vectors $\vec{x}^{(1)}, ..., \vec{x}^{(n)}, a similarity function h$
- Create a graph with one node *i* per point x⁽ⁱ⁾
- Add edge between every pair of nodes. Assign weight of h(x⁽ⁱ⁾, x^(j))
- Result: weighted graph

- A common similarity function: Gaussian
- Must choose σ appropriately

$$h(\vec{x}, \vec{y}) = e^{-\|\vec{x}-\vec{y}\|^2/\sigma^2}$$

Fully Connected: Pseudocode

```
def h(x, y):
    dist = np.linalg.norm(x, v)
    return np.exp(-dist**2 / sigma**2)
# assume the data is in X
n = len(X)
w = np.ones like(X)
for i in range(n):
    for j in range(n):
        w[i, j] = h(X[i], X[j])
```

With SciPy

distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances**2 / sigma**2)

Representation Learning

Lecture 15 Part 4

Summary: Laplacian Eigenmaps

Problem: Graph Embedding

- **Given**: a similarity graph, target dimension *k*
- Goal: embed the nodes of the graph as points in R^k so that similar nodes are nearby
- (One) Solution: Embed using eigenvectors of the graph Laplacian

Problem: Non-linear Dimensionality Reduction

• **Given**: points in \mathbb{R}^d , target dimension k

Goal: embed the points in R^k so that points that were close in R^d are close after

Idea

Build a similarity graph from points in R^d
 epsilon neighbors, k-neighbors, or fully connected

Embed the similarity graph in R^k using eigenvectors of graph Laplacian

- Build a *k*-neighbors graph.
- Note: follows the 1-d shape of the data.

Example 1: Spectral Embedding

- Let W be the weight matrix (k-neighbor adjacency matrix)
- Compute L = D W
- Compute bottom k non-constant eigenvectors of L, use as embedding

▶ Embedding into \mathbb{R}^1

▶ Embedding into \mathbb{R}^2

- Construct fully-connected similarity graph with Gaussian similarity
- Embed with Laplacian eigenmaps

