
Change of Basis▶ Let U = {�̂�(1), … , �̂�(𝑑)} be an orthonormal basis.▶ The coordinates of ⃗𝑥 w.r.t. U are:

[⃗𝑥]U = (⃗𝑥 ⋅ �̂�(1)⃗𝑥 ⋅ �̂�(2)⋮⃗𝑥 ⋅ �̂�(𝑑))

Exercise
Let ⃗𝑥 = (−1, 4)𝑇 and suppose:�̂�(1) ⋅ ̂𝑒(1) = 3 �̂�(2) ⋅ ̂𝑒(1) = −1�̂�(1) ⋅ ̂𝑒(2) = −2 �̂�(2) ⋅ ̂𝑒(2) = 5
What is [⃗𝑥]U?

Recall: Linear Transformations▶ A transformation ⃗𝑓(⃗𝑥) is a function which takes a
vector as input and returns a vector of the same
dimensionality.▶ A transformation ⃗𝑓 is linear if⃗𝑓(𝛼�⃗� + 𝛽 ⃗𝑣) = 𝛼 ⃗𝑓(�⃗�) + 𝛽 ⃗𝑓(⃗𝑣)

Implications of Linearity▶ Suppose ⃗𝑓 is a linear transformation. Then:⃗𝑓(⃗𝑥) = ⃗𝑓(𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2))= 𝑥1 ⃗𝑓(̂𝑒(1)) + 𝑥2 ⃗𝑓(̂𝑒(2))▶ I.e., ⃗𝑓 is totally determined by what it does to the
basis vectors.

Eigenvectors▶ Let 𝐴 be an 𝑛 × 𝑛 matrix. An eigenvector of 𝐴 with
eigenvalue 𝜆 is a nonzero vector ⃗𝑣 such that𝐴 ⃗𝑣 = 𝜆 ⃗𝑣.

Variance in a Direction▶ Let �⃗� be a unit vector.▶ 𝑧(𝑖) = ⃗𝑥(𝑖) ⋅ �⃗� is the new feature for ⃗𝑥(𝑖).▶ The variance of the new features is:Var(𝑧) = 1𝑛 𝑛∑𝑖=1 (𝑧(𝑖) − 𝜇𝑧)2= 1𝑛 𝑛∑𝑖=1 (⃗𝑥(𝑖) ⋅ �⃗� − 𝜇𝑧)2

Note▶ If the data are centered, then 𝜇𝑧 = 0 and the
variance of the new features is:Var(𝑧) = 1𝑛 𝑛∑𝑖=1 (𝑧(𝑖))2= 1𝑛 𝑛∑𝑖=1 (⃗𝑥(𝑖) ⋅ �⃗�)2

Claim

1𝑛 𝑛∑𝑖=1 (⃗𝑥(𝑖) ⋅ �⃗�)2 = �⃗�𝑇𝐶�⃗�

Visualizing Covariance Matrices

𝐶 ≈ ()

PCA: 𝑘 Components▶ Given data { ⃗𝑥(1), ..., ⃗𝑥(𝑛)} ∈ ℝ𝑑, number of components 𝑘.▶ Compute covariance matrix 𝐶, top 𝑘 ≤ 𝑑 eigenvectors �⃗�(1),�⃗�(2), …, �⃗�(𝑘).▶ For any vector ⃗𝑥 ∈ ℝ, its new representation in ℝ𝑘 is⃗𝑧 = (𝑧1, 𝑧2, … 𝑧𝑘)𝑇, where: 𝑧1 = ⃗𝑥 ⋅ �⃗�(1)𝑧2 = ⃗𝑥 ⋅ �⃗�(2)⋮𝑧𝑘 = ⃗𝑥 ⋅ �⃗�(𝑘)

Reconstructions▶ Given a “new” representation of ⃗𝑥, ⃗𝑧 = (𝑧1, … , 𝑧𝑘) ∈ ℝ𝑘▶ And top 𝑘 eigenvectors, �⃗�(1), … , �⃗�(𝑘)▶ The reconstruction of ⃗𝑥 is𝑧1�⃗�(1) + 𝑧2�⃗�(2) + … + 𝑧𝑘�⃗�(𝑘) = 𝑈 ⃗𝑧

Reconstruction Error▶ The reconstruction approximates
the original point, ⃗𝑥.▶ The reconstruction error for a
single point, ⃗𝑥:‖ ⃗𝑥 − 𝑈 ⃗𝑧‖2▶ Total reconstruction error:𝑛∑𝑖=1 ‖ ⃗𝑥(𝑖) − 𝑈 ⃗𝑧(𝑖)‖2

Total Variance▶ The total variance is the sum of the eigenvalues
of the covariance matrix.▶ Or, alternatively, sum of variances in each
orthogonal basis direction.

Lecture 15| Part 1

The Graph Laplacian

Spectral Embeddings: Problem▶ Given: similarity graph with 𝑛 nodes▶ Compute: an embedding of the 𝑛 points into ℝ1
so that similar objects are placed nearby▶ Formally: find embedding vector ⃗𝑓 minimizingCost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2 = ⃗𝑓𝑇𝐿 ⃗𝑓
subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇

Spectral Embeddings: Solution▶ Form the graph Laplacian matrix, 𝐿 = 𝐷 − 𝑊▶ Choose ⃗𝑓 be an eigenvector of 𝐿 with smallest
eigenvalue > 0▶ This is the embedding!

Embedding into ℝ𝑘▶ This embeds nodes into ℝ1.▶ What about embedding into ℝ𝑘?▶ Natural extension: find bottom 𝑘 eigenvectors
with eigenvalues > 0

New Coordinates▶ With 𝑘 eigenvectors ⃗𝑓 (1), ⃗𝑓 (2), … , ⃗𝑓 (𝑘), each node is
mapped to a point in ℝ𝑘.▶ Consider node 𝑖.▶ First new coordinate is ⃗𝑓 (1)𝑖 .▶ Second new coordinate is ⃗𝑓 (2)𝑖 .▶ Third new coordinate is ⃗𝑓 (3)𝑖 .▶ ⋮

Laplacian Eigenmaps▶ This approach is part of the method of
“Laplacian eigenmaps”▶ Introduced by Mikhail Belkin3 and Partha Niyogi▶ It is a type of spectral embedding

3Now at HDSI

A Practical Issue▶ The Laplacian is often normalized:𝐿norm = 𝐷−1/2𝐿𝐷−1/2
where 𝐷−1/2 is the diagonal matrix whose 𝑖th
diagonal entry is 1/√𝑑𝑖𝑖.▶ Proceed by finding the eigenvectors of 𝐿norm.

In Summary▶ We can embed a similarity graph’s nodes into ℝ𝑘
using the eigenvectors of the graph Laplacian▶ Yet another instance where eigenvectors are
solution to optimization problem▶ Next time: using this for dimensionality
reduction

Lecture 15| Part 2

Nonlinear Dimensionality Reduction

Scenario▶ You want to train a
classifier on this data.▶ It would be easier if we
could “unroll” the spiral.▶ Data seems to be
one-dimensional, even
though in two dimensions.▶ Dimensionality reduction?

PCA?▶ Does PCA work here?▶ Try projecting onto one principal component.

No

PCA?▶ PCA simply “rotates” the data.▶ No amount of rotation will “unroll” the spiral.▶ We need a fundamentally different approach
that works for non-linear patterns.

Today▶ Non-linear dimensionality reduction via
spectral embeddings.

Last Time: Spectral Embeddings▶ Given: a similarity graph with 𝑛 nodes, number
of dimensions 𝑘.▶ Embed: each node as a point in ℝ𝑘 such that
similar nodes are mapped to nearby points▶ Solution: bottom 𝑘 non-constant eigenvectors of
graph Laplacian

Idea

▶ Build a similarity graph
from points.▶ Points near the spiral
should be similar.▶ Embed the similarity
graph into ℝ1

Today▶ 1) How do we build a graph from a set of points?▶ 2) Dimensionality reduction with Laplacian
eigenmaps

Lecture 15| Part 3

From Points to Graphs

Dimensionality Reduction▶ Given: 𝑛 points in ℝ𝑑, number of dimensions𝑘 ≤ 𝑑▶ Map: each point ⃗𝑥 to new representation ⃗𝑧 ∈ ℝ𝑘

Idea▶ Build a similarity graph from points in ℝ2▶ Use approach from last lecture to embed into ℝ𝑘▶ But how do we represent a set of points as a
similarity graph?

Why graphs?

Three Approaches▶ 1) Epsilon neighbors graph▶ 2) 𝑘-Nearest neighbor graph▶ 3) fully connected graph with similarity function

Epsilon Neighbors Graph▶ Input: vectors ⃗𝑥(1), … , ⃗𝑥(𝑛),
a number 𝜀▶ Create a graph with one
node 𝑖 per point ⃗𝑥(𝑖)▶ Add edge between nodes 𝑖
and 𝑗 if ‖ ⃗𝑥(𝑖) − ⃗𝑥(𝑗)‖ ≤ 𝜀▶ Result: unweighted graph

Exercise
What will the graph look like when 𝜀 is small? What
about when it is large?

Epsilon Neighbors Graph

Epsilon Neighbors Graph

Epsilon Neighbors Graph

Epsilon Neighbors Graph

Note▶ We’ve drawn these graphs by placing nodes at
the same position as the point they represent▶ But a graph’s nodes can be drawn in any way

Epsilon Neighbors: Pseudocode
assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):

for j in range(n):
if distance(X[i], X[j]) <= epsilon:

adj[i, j] = 1

Picking 𝜀▶ If 𝜀 is too small, graph is underconnected▶ If 𝜀 is too large, graph is overconnected▶ If you cannot visualize, just try and see

With scikit-learn
import sklearn.neighbors
adj = sklearn.neighbors.radius_neighbors_graph(

X,
radius=...

)

k-Neighbors Graph▶ Input: vectors ⃗𝑥(1), … , ⃗𝑥(𝑛),
a number 𝑘▶ Create a graph with one
node 𝑖 per point ⃗𝑥(𝑖)▶ Add edge between each
node 𝑖 and its 𝑘 closest
neighbors▶ Result: unweighted graph

k-Neighbors: Pseudocode
assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):

for j in k_closest_neighbors(X, i):
adj[i, j] = 1

Exercise
Is it possible for a 𝑘-neighbors graph to be dis-
conected?

k-Neighbors Graph

k-Neighbors Graph

k-Neighbors Graph

k-Neighbors Graph

With scikit-learn
import sklearn.neighbors
adj = sklearn.neighbors.kneighbors_graph(

X,
n_neighbors=...

)

Fully Connected Graph▶ Input: vectors ⃗𝑥(1), … , ⃗𝑥(𝑛),
a similarity function ℎ▶ Create a graph with one
node 𝑖 per point ⃗𝑥(𝑖)▶ Add edge between every
pair of nodes. Assign
weight of ℎ(⃗𝑥(𝑖), ⃗𝑥(𝑗))▶ Result: weighted graph

Gaussian Similarity▶ A common similarity function: Gaussian▶ Must choose 𝜎 appropriatelyℎ(⃗𝑥, ⃗𝑦) = 𝑒−‖ ⃗𝑥− ⃗𝑦‖2/𝜎2

Fully Connected: Pseudocode
def h(x, y):

dist = np.linalg.norm(x, y)
return np.exp(-dist**2 / sigma**2)

assume the data is in X
n = len(X)
w = np.ones_like(X)
for i in range(n):

for j in range(n):
w[i, j] = h(X[i], X[j])

With SciPy
distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances**2 / sigma**2)

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

Lecture 15| Part 4

Summary: Laplacian Eigenmaps

Problem: Graph Embedding▶ Given: a similarity graph, target dimension 𝑘▶ Goal: embed the nodes of the graph as points inℝ𝑘 so that similar nodes are nearby▶ (One) Solution: Embed using eigenvectors of the
graph Laplacian

Problem: Non-linear Dimensionality
Reduction▶ Given: points in ℝ𝑑, target dimension 𝑘▶ Goal: embed the points in ℝ𝑘 so that points that

were close in ℝ𝑑 are close after

Idea▶ Build a similarity graph from points in ℝ𝑑▶ epsilon neighbors, 𝑘-neighbors, or fully connected▶ Embed the similarity graph in ℝ𝑘 using
eigenvectors of graph Laplacian

Example 1: Spiral

Example 1: Spiral▶ Build a 𝑘-neighbors graph.▶ Note: follows the 1-d shape of the data.

Example 1: Spectral Embedding▶ Let 𝑊 be the weight matrix (𝑘-neighbor
adjacency matrix)▶ Compute 𝐿 = 𝐷 − 𝑊▶ Compute bottom 𝑘 non-constant eigenvectors of𝐿, use as embedding

Example 1: Spiral▶ Embedding into ℝ1

Example 1: Spiral▶ Embedding into ℝ2

Example 1: Spiral
import sklearn.neighbors
import sklearn.manifold
W = sklearn.neighbors.kneighbors_graph(

X, n_neighbors=4
)
embedding = sklearn.manifold.spectral_embedding(

W, n_components=2
)

Example 2: Face Pose

Example 2: Face Pose▶ Construct fully-connected similarity graph with
Gaussian similarity▶ Embed with Laplacian eigenmaps

Example 2: Face Pose

Example 2: Face Pose

