Change of Basis

Let ¢/ = {a, ..., (9} be an orthonormal basis.

The coordinates of X w.r.t. I/ are:
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Recall: Linear Transformations

A transformation f(X) is a function which takes a
vector as input and returns a vector of the same

dimensionality.

A transformation fis linear if

f(aii + BV) = af () + BF(V)



Implications of Linearity

Suppose fis a linear transformation. Then:

f(%) = f(x, 8 + x,&?)
= x, (1) + x,f(€?)

le., fis totally determined by what it does to the
basis vectors.



Eigenvectors

Let A be an n x n matrix. An eigenvector of A with
eigenvalue A is a nonzero vector v such that
AV = Av.



Variance in a Direction
Let U be a unit vector.
20 = 30) . {1 is the new feature for X,

The variance of the new features is:
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Note

If the data are centered, then p, = 0 and the
variance of the new features is:
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Visualizing Covariance Matrices
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PCA: kR Components
Given data {X(", .., XM} € RY number of components k.

Compute covariance matrix C, top k < d eigenvectors (",
(2 ij(R)
@, .. ah.

For any vector X € R, its new representation in R* is
7 =(z4,2,-.-2,)", Where:

—y.00
z,=X%-aM
- yv.n2
z,=X-0@
- 3.k
z,=Xx-a®



Reconstructions

Given a “new” representation of X, Z = (z,, ..., Z,) € R¥

And top k eigenvectors, (), ..., ik

The reconstruction of X is

2,00 + 2,0@ + .+ 2,0 = UZ



Reconstruction Error

The reconstruction approximates
the original point, X.

g
The reconstruction error for a wt
single point, Xx:

| X - UZ||? °

Total reconstruction error:

n
> %0 -uzop
i=1

Strzen size
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Total Variance

The total variance is the sum of the eigenvalues

of the covariance matrix.

Or, alternatively, sum of variances in each
orthogonal basis direction.
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The Graph Laplacian



Spectral Embeddings: Problem

Given: similarity graph with n nodes

Compute: an embedding of the n points into R’
so that similar objects are placed nearby

Formally: find embedding vector f minimizing

Cost(f) = i

i=1j

wi(f; - £)? = fTLf

n
=1

subjectto ||f|| =1and f L (1,1,...,1)



Spectral Embeddings: Solution

Form the graph Laplacian matrix, L =D - W

Choose fbe an eigenvector of L with smallest
eigenvalue > 0

This is the embedding!



Embedding into R*
This embeds nodes into R'.
What about embedding into R*?

Natural extension: find bottom k eigenvectors
with eigenvalues > 0



New Coordinates

With k eigenvectors f0), f@, .., f® each node is
mapped to a point in R*.

Consider node i. A
First new coordinate is f{".

Second new coordinate is f.
Third new coordinate is f°.



Laplacian Eigenmaps

This approach is part of the method of
“Laplacian eigenmaps”

Introduced by Mikhail Belkin® and Partha Niyogi

It is a type of spectral embedding

3Now at HDSI



A Practical Issue

The Laplacian is often normalized:

Lyorm = D71/2LD71/2

norm

where D™'/2 is the diagonal matrix whose ith
diagonal entry is ‘I/JdT,-.

Proceed by finding the eigenvectors of L,



In Summary

We can embed a similarity graph’s nodes into R"
using the eigenvectors of the graph Laplacian

Yet another instance where eigenvectors are
solution to optimization problem

Next time: using this for dimensionality
reduction
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Nonlinear Dimensionality Reduction



Scenario

You want to train a
classifier on this data.

It would be easier if we
could “unroll” the spiral.

Data seems to be
one-dimensional, even

though in two dimensions.

Dimensionality reduction?



PCA?
Does PCA work here?

Try projecting onto one principal component.
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PCA?
PCA simply “rotates” the data.

No amount of rotation will “unroll” the spiral.

We need a fundamentally different approach
that works for non-linear patterns.



Today

Non-linear dimensionality reduction via
spectral embeddings.



Last Time: Spectral Embeddings

Given: a similarity graph with n nodes, number
of dimensions k.

Embed: each node as a point in R* such that
similar nodes are mapped to nearby points

Solution: bottom kR non-constant eigenvectors of
graph Laplacian



Build a similarity graph
from points.

Points near the spiral
should be similar.

Embed the similarity
graph into R’

Idea



Today
1) How do we build a graph from a set of points?

2) Dimensionality reduction with Laplacian
eigenmaps
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From Points to Graphs



Dimensionality Reduction

Given: n points in RY, number of dimensions
k<d

Map: each point X to new representation Z € R*



Idea
Build a similarity graph from points in R?
Use approach from last lecture to embed into R*

But how do we represent a set of points as a
similarity graph?



Why graphs?
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Three Approaches
1) Epsilon neighbors graph
2) R-Nearest neighbor graph

3) fully connected graph with similarity function



Epsilon Neighbors Graph

Input: vectors X, ..., X",
a number &

Create a graph with one
node i per point X)

Add edge between nodes i
and j if || X - X0| < ¢

Result: unweighted graph



What will the graph look like when € is small? What
about when it is large?




Epsilon Neighbors Graph

P&



Epsilon Neighbors Graph




Epsilon Neighbors Graph
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lon Neighbors Graph

Epsi




Note

We've drawn these graphs by placing nodes at
the same position as the point they represent

But a graph’s nodes can be drawn in any way



Epsilon Neighbors: Pseudocode

# assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):
for j in range(n):
if distance(X[il, X[j]) <= epsilon:
adj[i, 3] = 1



Picking ¢
If € is too small, graph is underconnected
If € is too large, graph is overconnected

If you cannot visualize, just try and see



With scikit-learn

import sklearn.neighbors

adj = sklearn.neighbors.radius_neighbors_graph(
X,
radius=...



k-Neighbors Graph

Input: vectors X, ..., X",
a number R

Create a graph with one
node i per point X)

Add edge between each
node i and its Rk closest
neighbors

Result: unweighted graph



k-Neighbors: Pseudocode

# assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):
for j in k_closest_neighbors(X, i):
adjli, jl = 1



Is it possible for a k-neighbors graph to be dis-
conected?




k-Neighbors Graph
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k-Neighbors Graph




k-Neighbors Graph




k-Neighbors Graph




With scikit-learn

import sklearn.neighbors

adj = sklearn.neighbors.kneighbors_graph(
X,
n_neighbors=...



Fully Connected Graph

Input: vectors X, ..., X",
a similarity function h

Create a graph with one
node i per point X)

Add edge between every
pair of nodes. Assign

weight of h(X0, X0))

Result: weighted graph



Gaussian Similarity
A common similarity function: Gaussian

Must choose o appropriately

h(X,y) = e 1%-VI?/0?



Fully Connected: Pseudocode

def h(x, y):
dist = np.linalg.norm(x, y)
return np.exp(-dist**2 / sigma*x2)

# assume the data is in X
n = len(X)
w = np.ones_like(X)
for i in range(n):
for j in range(n):
wli, j1 = h(X[il, X[j1)



With SciPy

distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances**2 / sigmaxx2)



Gaussian Similarity



Gaussian Similarity




Gaussian Similarity




Gaussian Similarity
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Summary: Laplacian Eigenmaps



Problem: Graph Embedding

Given: a similarity graph, target dimension R

Goal: embed the nodes of the graph as points in
R* so that similar nodes are nearby

(One) Solution: Embed using eigenvectors of the
graph Laplacian



Problem: Non-linear Dimensionality
Reduction

Given: points in RY, target dimension k

Goal: embed the points in RF so that points that
were close in RY are close after



Idea

Build a similarity graph from points in R?
epsilon neighbors, k-neighbors, or fully connected

Embed the similarity graph in R® using
eigenvectors of graph Laplacian



Example 1: Spiral
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Example 1: Spiral

Build a k-neighbors graph.
Note: follows the 1-d shape of the data.
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Example 1: Spectral Embedding

Let W be the weight matrix (kR-neighbor
adjacency matrix)

ComputeL=D-W

Compute bottom k non-constant eigenvectors of
L, use as embedding



Example 1: Spiral

Embedding into R’
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Example 1: Spiral

Embedding into R?



Example 1: Spiral

import sklearn.neighbors

import sklearn.manifold

W = sklearn.neighbors.kneighbors_graph(
X, n_neighbors=4

)

embedding = sklearn.manifold.spectral_embedding(
W, n_components=2
)



Example 2: Face Pose
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Example 2: Face Pose

Construct fully-connected similarity graph with
Gaussian similarity

Embed with Laplacian eigenmaps



Example 2: Face Pose




Example 2: Face Pose




