Change of Basis

- Let $\mathcal{U}=\left\{\hat{u}^{(1)}, \ldots, \hat{u}^{(d)}\right\}$ be an orthonormal basis.
- The coordinates of \vec{x} w.r.t. \mathcal{U} are:

$$
[\vec{x}]_{\mathcal{U}}=\left(\begin{array}{c}
\vec{x} \cdot \hat{u}^{(1)} \\
\vec{x} \cdot \hat{u}^{(2)} \\
\vdots \\
\vec{x} \cdot \hat{u}^{(d)}
\end{array}\right)
$$

$$
\hat{u}^{(1)}=3 \hat{e}^{(u)}-2 \hat{e}^{7(0)}=\binom{3}{-2} \quad \hat{u}^{(2)}=\binom{-1}{5}
$$

Exercise
Let $\vec{x}=(-1,4)^{\top}$ and suppose:

$$
\left\{\begin{array} { l l }
{ \hat { u } ^ { (1) } \cdot \hat { e } ^ { (1) } = 3 } \\
{ \hat { u } ^ { (1) } \cdot \hat { e } ^ { (2) } = - 2 }
\end{array} \quad \left\{\begin{array}{rl}
\hat{u}^{(2)} \cdot \hat{e}^{(1)}=-1 \\
\hat{u}^{(2)} \cdot \hat{e}^{(2)}=5
\end{array}\right.\right.
$$

What is $[\vec{x}]_{\mathcal{U}}$?

not orlthomarnon

$$
\text { Ca } \begin{aligned}
& {[\vec{x}]_{u}=\binom{\alpha}{\beta}} \\
& \vec{x}=\alpha \hat{u}^{(1)}+\beta \tilde{u}^{(2)}
\end{aligned} \quad\binom{-1}{4}=\alpha\binom{3}{-2}+\beta\binom{-1}{5}
$$

Recall: Linear Transformations

- A transformation $\vec{f}(\vec{x})$ is a function which takes a vector as input and returns a vector of the same dimensionality.
- A transformation \vec{f} is linear if

$$
\vec{f}(\alpha \vec{u}+\beta \vec{v})=\alpha \vec{f}(\vec{u})+\beta \vec{f}(\vec{v})
$$

Implications of Linearity

- Suppose \vec{f} is a linear transformation. Then:

$$
\begin{aligned}
\vec{f}(\vec{x}) & =\vec{f}\left(x_{1} \hat{e}^{(1)}+x_{2} \hat{e}^{(2)}\right) \\
& =x_{1} \vec{f}\left(\hat{e}^{(1)}\right)+x_{2} \vec{f}\left(\hat{e}^{(2)}\right)
\end{aligned}
$$

\checkmark I.e., \vec{f} is totally determined by what it does to the basis vectors.

Eigenvectors

Let A be an $n \times n$ matrix. An eigenvector of A with eigenvalue λ is a nonzero vector \vec{v} such that $A \vec{v}=\lambda \vec{v}$.

Variance in a Direction

- Let \vec{u} be a unit vector.
$z^{(i)}=\vec{x}^{(i)} \cdot \vec{u}$ is the new feature for $\vec{x}^{(i)}$.
- The variance of the new features is:

$$
\begin{aligned}
\operatorname{Var}(z) & =\frac{1}{n} \sum_{i=1}^{n}\left(z^{(i)}-\mu_{z}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\vec{x}^{(i)} \cdot \vec{u}-\mu_{z}\right)^{2}
\end{aligned}
$$

Note

- If the data are centered, then $\mu_{z}=0$ and the variance of the new features is:

$$
\begin{aligned}
\operatorname{Var}(z) & =\frac{1}{n} \sum_{i=1}^{n}\left(z^{(i)}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\vec{x}^{(i)} \cdot \vec{u}\right)^{2}
\end{aligned}
$$

Claim

$$
\frac{1}{n} \sum_{i=1}^{n}\left(\vec{x}^{(i)} \cdot \vec{u}\right)^{2}=\vec{u}^{\top} C \vec{u}
$$

Visualizing Covariance Matrices

$$
c \approx(1)
$$

PCA: k Components

\triangleright Given data $\left\{\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}\right\} \in \mathbb{R}^{d}$, number of components k.

- Compute covariance matrix C, top $k \leq d$ eigenvectors $\vec{u}^{(1)}$, $\vec{u}^{(2)}, \ldots, \vec{u}^{(k)}$.
- For any vector $\vec{x} \in \mathbb{R}$, its new representation in \mathbb{R}^{k} is $\vec{z}=\left(z_{1}, z_{2}, \ldots z_{k}\right)^{\top}$, where:

$$
\begin{aligned}
& z_{1}=\vec{x} \cdot \vec{u}^{(1)} \\
& z_{2}=\vec{x} \cdot \vec{u}^{(2)} \\
& \vdots \\
& z_{k}=\vec{x} \cdot \vec{u}^{(k)}
\end{aligned}
$$

Reconstructions

\Rightarrow Given a "new" representation of $\vec{x}, \vec{z}=\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{R}^{k}$

- And top k eigenvectors, $\vec{u}^{(1)}, \ldots, \vec{u}^{(k)}$
- The reconstruction of \vec{x} is

$$
z_{1} \vec{u}^{(1)}+z_{2} \vec{u}^{(2)}+\ldots+z_{k} \vec{u}^{(k)}=U \vec{z}
$$

Reconstruction Error

- The reconstruction approximates the original point, \vec{x}.
- The reconstruction error for a single point, \vec{x} :

$$
\|\vec{x}-U \vec{z}\|^{2}
$$

- Total reconstruction error:

$$
\sum_{i=1}^{n}\left\|\vec{x}^{(i)}-U \vec{z}^{(i)}\right\|^{2}
$$

- The total variance is the sum of the eigenvalues of the covariance matrix.
- Or, alternatively, sum of variances in each orthogonal basis direction.

$$
\text { DST } 140 B
$$

Representation Learning The Graph Laplacian

Spectral Embeddings: Problem

- Given: similarity graph with n nodes
- Compute: an embedding of the n points into \mathbb{R}^{1} so that similar objects are placed nearby
- Formally: find embedding vector \vec{f} minimizing

$$
\operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}=\vec{f}^{\top} L \vec{f}
$$

subject to $\|\vec{f}\|=1$ and $\vec{f} \perp(1,1, \ldots, 1)^{\top}$

Spectral Embeddings: Solution

- Form the graph Laplacian matrix, $L=D-W$
- Choose \vec{f} be an eigenvector of L with smallest eigenvalue > 0
- This is the embedding!

Embedding into \mathbb{R}^{k}

- This embeds nodes into \mathbb{R}^{1}.
- What about embedding into \mathbb{R}^{k} ?
- Natural extension: find bottom k eigenvectors with eigenvalues > 0

New Coordinates

- With k eigenvectors $\vec{f}^{(1)}, \vec{f}^{(2)}, \ldots, \vec{f}^{(k)}$, each node is mapped to a point in \mathbb{R}^{k}.
- Consider node i.
\checkmark First new coordinate is $\vec{f}_{i}^{(1)}$.
- Second new coordinate is $\vec{f}_{i}^{(2)}$.
- Third new coordinate is $\vec{f}_{i}^{(3)}$.
-

Laplacian Eigenmaps

- This approach is part of the method of "Laplacian eigenmaps"
- Introduced by Mikhail Belkin ${ }^{3}$ and Partha Niyogi
- It is a type of spectral embedding

A Practical Issue

- The Laplacian is often normalized:

$$
L_{\text {norm }}=D^{-1 / 2} L D^{-1 / 2}
$$

where $D^{-1 / 2}$ is the diagonal matrix whose ith diagonal entry is $1 / \sqrt{d_{i j}}$.

- Proceed by finding the eigenvectors of $L_{\text {norm }}$.

In Summary

- We can embed a similarity graph's nodes into \mathbb{R}^{k} using the eigenvectors of the graph Laplacian
- Yet another instance where eigenvectors are solution to optimization problem
- Next time: using this for dimensionality reduction

DEC $140 B$ Representation Learning Lecture 15 Part 2
Nonlinear Dimensionality Reduction

Scenario

- You want to train a classifier on this data.
- It would be easier if we could "unroll" the spiral.
- Data seems to be one-dimensional, even though in two dimensions.
- Dimensionality reduction?

PCA?

Does PCA work here?

- Try projecting onto one principal component.

No

PCA?

- PCA simply "rotates" the data.
- No amount of rotation will "unroll" the spiral.
- We need a fundamentally different approach that works for non-linear patterns.

Today

Non-linear dimensionality reduction via spectral embeddings.

Last Time: Spectral Embeddings

- Given: a similarity graph with n nodes, number of dimensions k.
- Embed: each node as a point in \mathbb{R}^{k} such that similar nodes are mapped to nearby points
- Solution: bottom k non-constant eigenvectors of graph Laplacian

Idea

- Build a similarity graph from points.
- Points near the spiral should be similar.
- Embed the similarity graph into \mathbb{R}^{1}

Today

1) How do we build a graph from a set of points?
2) Dimensionality reduction with Laplacian eigenmaps

DEC $140 B$ Representation Learning From Points to Graphs

Dimensionality Reduction

- Given: n points in \mathbb{R}^{d}, number of dimensions $k \leq d$

Map: each point \vec{x} to new representation $\vec{z} \in \mathbb{R}^{k}$

Idea

- Build a similarity graph from points in \mathbb{R}^{2}
- Use approach from last lecture to embed into \mathbb{R}^{k}
- But how do we represent a set of points as a similarity graph?

Why graphs?

Three Approaches

- 1) Epsilon neighbors graph
> 2) k-Nearest neighbor graph
- 3) fully connected graph with similarity function

Epsilon Neighbors Graph

- Input: vectors $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$, a number ε
- Create a graph with one node i per point $\vec{x}^{(i)}$
- Add edge between nodes i and j if $\left\|\vec{x}^{(i)}-\vec{x}^{(j)}\right\| \leq \varepsilon$
- Result: unweighted graph

Exercise

What will the graph look like when ε is small? What about when it is large?

Epsilon Neighbors Graph

Epsilon Neighbors Graph

Epsilon Neighbors Graph

Epsilon Neighbors Graph

Note

- We've drawn these graphs by placing nodes at the same position as the point they represent
- But a graph's nodes can be drawn in any way

Epsilon Neighbors: Pseudocode

```
# assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):
    for j in range(n):
    if distance(X[i], X[j]) <= epsilon:
    adj[i, j] = 1
```


Picking ε

- If ε is too small, graph is underconnected
- If ε is too large, graph is overconnected
- If you cannot visualize, just try and see

With scikit-learn

import sklearn.neighbors
adj = sklearn.neighbors.radius_neighbors_graph(X, radius=...
)

k-Neighbors Graph

- Input: vectors $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$, a number k
- Create a graph with one node i per point $\vec{x}^{(i)}$
- Add edge between each node i and its k closest neighbors
- Result: unweighted graph

k-Neighbors: Pseudocode

```
# assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):
    for j in k_closest_neighbors(X, i):
    adj[i, j] = 1
```


Exercise

Is it possible for a k-neighbors graph to be disconected?

k-Neighbors Graph

k-Neighbors Graph

k-Neighbors Graph

k-Neighbors Graph

With scikit-learn

import sklearn.neighbors
adj = sklearn.neighbors.kneighbors_graph(X,
n_neighbors=...
)

Fully Connected Graph

- Input: vectors $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$, a similarity function h
- Create a graph with one node i per point $\vec{x}^{(i)}$
- Add edge between every pair of nodes. Assign weight of $h\left(\vec{x}^{(i)}, \vec{x}^{(j)}\right)$
- Result: weighted graph

Gaussian Similarity

- A common similarity function: Gaussian
- Must choose σ appropriately

$$
h(\vec{x}, \vec{y})=e^{-\|\vec{x}-\vec{y}\|^{2} / \sigma^{2}}
$$

Fully Connected: Pseudocode

```
def h(x, y):
    dist = np.linalg.norm(x, y)
    return np.exp(-dist**2 / sigma**2)
# assume the data is in X
n = len(X)
w = np.ones_like(X)
for i in range(n):
    for j in range(n):
        w[i, j] = h(X[i], X[j])
```


With SciPy

distances = scipy.spatial.distance_matrix(X, X) w = np.exp(-distances**2 / sigma**2)

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

DST $140 B$ Representation Learning	Lecture 15	Part 4
Summary: Laplacian Eigenmaps		

Problem: Graph Embedding

- Given: a similarity graph, target dimension k
- Goal: embed the nodes of the graph as points in \mathbb{R}^{k} so that similar nodes are nearby
- (One) Solution: Embed using eigenvectors of the graph Laplacian

Problem: Non-linear Dimensionality Reduction

- Given: points in \mathbb{R}^{d}, target dimension k
- Goal: embed the points in \mathbb{R}^{k} so that points that were close in \mathbb{R}^{d} are close after

Idea

- Build a similarity graph from points in \mathbb{R}^{d}
- epsilon neighbors, k-neighbors, or fully connected

Embed the similarity graph in \mathbb{R}^{k} using eigenvectors of graph Laplacian

Example 1: Spiral

Example 1: Spiral

- Build a k-neighbors graph.
- Note: follows the 1 -d shape of the data.

Example 1: Spectral Embedding

- Let W be the weight matrix (k-neighbor adjacency matrix)
- Compute $L=D-W$
- Compute bottom k non-constant eigenvectors of L, use as embedding

Example 1: Spiral

Embedding into \mathbb{R}^{1}

Example 1: Spiral

Embedding into \mathbb{R}^{2}

Example 1: Spiral

```
import sklearn.neighbors
import sklearn.manifold
W = sklearn.neighbors.kneighbors_graph(
    X, n_neighbors=4
)
embedding = sklearn.manifold.spectral_embedding(
    W, n_components=2
)
```


Example 2: Face Pose

Example 2: Face Pose

- Construct fully-connected similarity graph with Gaussian similarity
- Embed with Laplacian eigenmaps

Example 2: Face Pose

Example 2: Face Pose

