Change of Basis




_ ) b n) (-]
5y w0
s :
i
PN o
T~ =0

Let X = (-1,4)" and suppose:

G .M =3 G@ .M = _1
4. 5@) = _o l-,](Z) 6@ = 5 A

What is [x]u nat OV%””‘W

P2 o (el




Recall: Linear Transformations

A transformation f(X) is a function which takes a
vector as input and returns a vector of the same
dimensionality.

A transformation £ is linear if

f(aii + BV) = af (i) + BF(V)

L S N —



Implications of Linearity

Suppose fis a linear transformation. Then:

fX1 1)"Xz ?))

= X, f( )+X2f(e ))

e, fisto ined at it does to the
basis vectors.




Eigenvectors

Let A be an n x n matrix. An eigenvector of A with

eigenvalue A is a nonzero vector v such that
AV = AV.



Variance in a Direction

vﬁ/\_—\

Let U be a unit vector.
—

Z\0) = (). i is the new feature for X,
-

The variance of the new features is:

n
" =1 :/\& %@})
LS (505 ) At
n £ z
—_ =~



Note

If the data are centered, then y, = 0 and the
variance of the new features is:

Var(z) =







Visualizing Covariance Matrices

{h @




PCA: kR Components
Given data {x, ..., X"} € I@: number of components k.

Compute covariance matrix C, top k < d eigenvectors t",
g, .., uk, T

\

For any vector X € R, its new representation in R is
Z=(z,,2,,...2,)", where:



Reconstructions

Given a “new” representation of X, Z = (z,, ..., z,) € RF
— (H_/T

And top k eigenvectors, i, ..., u®

/\_/_

The reconstruction of X is

2,0M + 2,0@) + .+ 2,0®) = UZ
M



Reconstruction Error

The reconstruction approximates
the original point, X.

. i/
The reconstruction error for a vt

single point, X:

1% - UZ||? = ﬂ

20

Total reconstruction error:

4

n
> IX0 - vz
i=1

Screen  sSige



\ A @&D k\
o A > JY( ﬂf“): /jcu%d@ DN
Total Variance

The total variance is the sum of the eigenvalues

of the covariance matrix.

Or, alternatively, sum of variances in each
orthogonal basis direction.

N ot V‘@M( loépg[‘; Mlﬁ@\é&fy\/\



psC /140&

Represaitaton [ earm@

Lecture 15 Part 1

The Graph Laplacian



Spectral Embeddings: Problem

Given: similarity graph with n nodes

Compute: an embedding of the n points into R’
so that similar objects are placed nearby

Formally: find embedding vector fminimizing




Spectral Embeddings: Solution

Form the graph Laplacian matrix, L =D - W

Choose@e an eigenvector of L with smallest
eigenvalue >0
?

This is the embedding!



Embedding into R*
This embeds nodes into R,
What about embedding into R*?

Natural extension: find bottom k eigenvectors
with eigenvalues > 0



New Coordinates

With R elgenvectorsf
mapped to a point in R*.

4(0
@ | ff
Consider node |.

First new coordinate ié f,.“).; I,
Second new coordinate is f .|
Third new coordinate is f2. |




Laplacian Eigenmaps

This approach is part of the method of
“Laplacian eigenmaps”

Introduced by Mikhail Belkin® and Partha Niyogi

It is a type of spectral embedding

3Now at HDSI



, | = Q/ \W
j. ;z z A Practical Issue

The Laplacian is often normalized:

_D1/2LD 1/2 ’\D

Lnorm o &=g=./

wher the diagonal matrix whose ith

dlagonal entry IS 1/\/7

_——
Proceed by finding the eigenvectors o



In Summary

We can embed a similarity.graph’s nodes in’gc@
using the eigenvectors of the graph Laplacian

Yet another instance where eigenvectors are
solution to optimization problem

Next time: using this for dimensionality
reduction



psC /140&

Represaitaton [ earm@

Lecture 15 Part 2

Nonlinear Dimensionality Reduction



Scenario

You want to train a
classifier on this data.

It would be easier if we

could “unroll” the spiral. a

Data seems to be

one-dimensional, even "o

though in two dimensions.

Dimensionality reduction?



PCA?
Does PCA work here?

Try projecting onto one principal component.




No



PCA?
PCA simply “rotates” the data.

No amount of rotation will “unroll” the spiral.

We need a fundamentally different approach
that works for non-linear patterns.



Today

Non-linear dimensionality reduction via
spectral embeddings.



Last Time: Spectral Embeddings
Given: a similarity graph-with-n-nedes, number

of dimensions R.

Embed: each node as a point in R* such that
similar nodes are mapped to nearby points

Solution: bottom kR non-constant eigenvectors of
graph Laplacian



Idea

Build a_similarity graph

from points.

Points near the spiral

Embed the similarity
graph into R’



Today
1) How do we build a graph from a set of points?

2) Dimensionality reduction with Laplacian
eigenmaps



psC /140&

Represaitaton [ earm@

Lecture 15 Part 3

From Points to Graphs



Dimensionality Reduction

Given: n points in RY, number of dimensions
kR<d
k<

Map: each point X to new representation Z € R*

—_—



Idea 0{

=L
Build a similarity graph from points i@

b=

Use approach from last lecture to embed into R"

But how do we represent a set of points as a
similarity graph?






Three Approaches
1) Epsilon neighbors graph
2) R-Nearest neighbor graph

3) fully connected graph with similarity function



Epsilon Neighbors Graph
1 0

Input: vectors...,)?(”),
a number €

Create a graph with one
node i per point X!

Add edge between nodes i
and j if | X0 -X0| < ¢

6ML~$ZWM e /?‘_/\/_\“/g
Result: unweighted graph



What will the graph look like when € is small? What
about when it is large? 5;’30

g Jvmz ﬁM/)é




Epsilon Neighbors Graph



Epsilon Neighbors Graph




Epsilon Neighbors Graph

AN
N =7 2N
> .
\b;‘\\"\’ N

47 A\ RS
\;,:;\iﬁ"

M




lon Neighbors Graph

Epsi




Note

We've drawn these graphs by placing nodes at

the same position as ’%Ije point they represent

iy

But a graph’s nodes can be drawn in any way



Epsilon Neighbors: Pseudocode

# assume the data is in X xx
Q = len(X)
ﬁp\z3¥es=£ikfﬁxi’ np. zergs (n, n)
%N -2eres (0. )

in range(n)

j1) <= epsilon:



Picking ¢
If € Is too small, graph is underconnected
If € Is too large, graph is overconnected

If you cannot visualize, just try and see



With scikit-learn

import sklearn.neighbors ¢~
adj = sklearn.neighbors.radius_neighbors_graph(
V\’\/—/\_—\—\/—/—\a
X,
radius=...

» X

€y«

\
)



k-Neighbors Graph

Input: vectars XV, ..., XM,

a numb jQZV
Create a graph with one
node i per point X\ =

.
. .

. @
o® ® .
® . - *

Add edge between each
node i and its R closest
neighbors

Result: unweighted graph



k-Neighbors: Pseudocode

# assume the data is in X

n = len(X) ZL&WOS’E(M,j)
adj = np.

for 1 in range n):

for jJ in k_ closest _neighbors(X, i):
adjli, ]




Is it possible for a kR-neighbors graph to be dis-
conected?




k-Neighbors Graph

s
e e . - ]
T, unEE
I}" S f\k// . k’f'k.\
S i



k-Neighbors Graph




k-Neighbors Graph




k-Neighbors Graph




With scikit-learn

import sklearn.neighbors

adj = sklearn.neighbors.kneighbors_graph(
X, 90 Y0 Y e S P
n_neighbors=...

) <




Fully Connected Graph

Input: vectors X, ..., X",
a similarity function h

Create a graph with one
node i per point X\

Add edge between every
pair of nodes. Assign

weight of h(X®", X1))

Result: weighted graph



Gaussian Similarity
A common similarity function: Gaussian

Must choose o appropriately

h(%, §) = e I¥-71%/0?



Fully Connected: Pseudocode

def h(x, vy):
dist = np.linalg.norm(x, vy)
return np.exp(-dist**2 / sigma*=*2)

# assume the data is 1in X
n = len(X)
w = np.ones_like(X)
for i in range(n):
for j in range(n):
wli, j] = h(X[i], X[j])



With SciPy

distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances**2 / sigma*=*2)



Gaussian Similarity



Gaussian Similarity




ilarity

imi

Gaussian S




ilarity

imi

Gaussian S




pDsC /1408

Represaitaton [ earm@

Lecture 15 Part 4

Summary: Laplacian Eigenmaps



Problem: Graph Embedding

Given: a similarity graph, target dimension R

Goal: embed the nodes of the graph as points in
R* so that similar nodes are nearby

(One) Solution: Embed using eigenvectors of the
graph Laplacian



Problem: Non-linear Dimensionality
Reduction

Given: points in RY, target dimension k

Goal: embed the points in R* so that points that
were close in R? are close after



Idea

Build a similarity graph from points in R?
epsilon neighbors, k-neighbors, or fully connected

Embed the similarity graph in R using
eigenvectors of graph Laplacian



|

Ira

° e ~,
D Ooo‘o %
(Vg * ) Y
® \\oo .ooo - "
) & o s e T

Example 1
"



Example 1: Spiral

Build a k-neighbors graph.
Note: follows the 1-d shape of the data.

=9
'S e
8,
’ 4 AN
/ " S s}
N
J N
‘lr
y \
S
[ » y I
y )\ !
. ;
. o
8,
" .\ b4
\ L
A\ b



Example 1: Spectral Embedding

Let W be the weight matrix (R-neighbor
adjacency matrix)

ComputeL=D-W

Compute bottom k non-constant eigenvectors of
L, use as embedding



Example 1: Spiral

Embedding into R’



Example 1: Spiral

Embedding into R?



Example 1: Spiral

import sklearn.neighbors

import sklearn.manifold

W = sklearn.neighbors.kneighbors_graph(
X, n_neighbors=4

)

embedding = sklearn.manifold.spectral_embedding(
W, n_components=2

)



Example 2: Face Pose

B A s ca B
CaBe o Be P
> B Gy B9 P
P [ B0 B s €0
NN N
B G B s B B
KO G B > B B
pa 50 A B o B
. dTld TS
P B BN 6 € B




Example 2: Face Pose

Construct fully-connected similarity graph with
Gaussian similarity

Embed with Laplacian eigenmaps



Example 2: Face Pose




Example 2: Face Pose

2 o 'DT h
sl i g . @ L

a"h‘s!ir - £ ‘*ﬁ?
0.05 5 > q

3‘&%, o lmf?
0.00 - t@ B
o - = s K

o | . Tl 3 4 TF
| Ry w.
’i




