pDsC /4o0&

Represaitaton [earmg

Lecture 14 Part 1

Embedding Similarities

Similar Netflix Users

Suppose you are a data scientist at Netflix

You're given an n x n similarity matrix W of users
entry (i,j) tells you how similar user i and user j are
1 means “very similar”, 0 means “not at all”

Goal: visualize to find patterns

Idea
We like scatter plots. Can we make one?
Users are not vectors / points!

They are nodes in a similarity graph

Similarity Graphs

Similarity matrices can be thought of as weighted graphs,
and vice versa.

A B ¢ %
Al / o/ oz g/

gl o/ / 07 \/
¢ \ oz o %

Goal

Embed nodes of a similarity graph as points.
Similar nodes should map to nearby points.

o

syf

\%/ o

Today

We will design a graph embedding approach:
Spectral embeddings via Laplacian eigenmaps

More Formally

Given:
A similarity graph with n nodes
a number of dimensions, R

Compute: an embedding of the n points into R¥
so that similar objects are placed nearby

To Start

Given:
A similarity graph with n nodes

Compute: an embedding of the n points into R’
so that similar objects are placed nearby

Vectors as Embeddings into R’
Suppose we have n nodes (objects) to embed
Assume they are numbered 1, 2, ..., n

Let f1, f5, -, f, € R be the embeddings

-
.

We can pack them all into a vector: f.

Goal: find a good set of embeddings, f

Example

f=01,3,2,-4)

An Optimization Problem
We'll turn it into an optimization problem:

Step 1: Design a cost function quantifying how
good a particular embedding f is

Step 2: Minimize the cost

Example

Which is the best embedding?

£/£ |

Ny T

Cost Function for Embeddings
Idea: cost is low if similar points are close

Here is one approach:

Cost(f) = > > wy(fi-f;)?

n
i=1 j=1

where w;; is the weight between i and j.

Interpreting the Cost

Cost() = > wylf; - £

n

1=1 J=1
If w;; = 0, that pair can be placed very far apart
without increasing cost

If w;; = 1, the pair should be placed close
together in order to have small cost.

Do you see a problem with the cost function?

n

Cost(f i Z w(f; - f;)?

i=1 j=1

Hint: what embedding fminimizes it?

Problem
The cost is always minimized by taking f = 0.
This is a “trivial” solution. Not useful.

Fix: require [|f]| =1
Really, any number would work. 1 is convenient.

Do you see another problem with the cost function,
even if we require f to be a unit vector?

Cost() =S > wy(f; -)
i=1 j=1

Hint: what other choice of f will always make this
zero?

Problem

The cost is always minimized by taking

-1 T
f=p(1,1,,0)

This is a “trivial” solution. Again, not useful.

Fix: require fto be orthogonal to (1,1, ..., 1)".
Written: f L (1,1,...,1)"

Ensures that solution is not close to trivial solution
Might seem strange, but it will work!

The New Optimization Problem

Given: an n x n similarity matrix W

Compute: embedding vector f minimizing

subjectto Ifll =1and f L (1,1,...,1)"

How?
This looks difficult.
Let's write it in matrix form.

We'll see that it is actually (hopefully) familiar.

pDsC /4o0&

Represaitaton [earmg

Lecture 14 Part 2

The Graph Laplacian

The Problem

Compute: embedding vector fminimizing

Cost(f) = > > wilfi -)

i=1 j=1

subjectto ||f|| =1and f L (1,1,...,1)

Now: write the cost function as a matrix
expression.

The Degree Matrix

Recall: in an unweighted graph, the degree of
node i equals number of neighbors.

Equivalently (where A is the adjacency matrix):

n
degree(i) ZAU
j=1

Since Aj; = 1 only if j is a neighbor of i

The Degree Matrix

In a weighted graph, define degree of node i
similarly:

n
degree(i) = Z w;;

j

That is, it is the total weight of all neighbors.

The Degree Matrix

The degree matrix D of a weighted graph is the
diagonal matrix where entry (i, 1) is given by:

d;; = degree(i)

n
- Z Wij
j=1

The Graph Laplacian

DefineL=D-W
D is the degree matrix
W is the similarity matrix (weighted adjacency)

L is called the Graph Laplacian matrix.

It is a very useful object

Very Important Fact
Claim:

Cost(f)=) > wy(fi- £} = fILf

Proof: expand both sides '

'Note that there was originally a 1 in front of fTLf, but this was not
correct as written. See Problem 06 in the Midterm 02 practice for a longer
explanation.

Proof

pDsC /4o0&

Represaitaton [earmg

Lecture 14 Part 3

Solving the Optimization Problem

A New Formulation
Given: an n x n similarity matrix W

Compute: embedding vector f minimizing
Cost(f) = fTLf

subjectto If]l =1and f L (1,1,...,1)"

This might sound familiar...

Recall: PCA

Given: a d x d covariance matrix C

Find: vector i maximizing the variance in the
direction of u:
urci

subject to ||d]| = 1.

Solution: take i = top eigenvector of C

A New Formulation

Forget about orthogonality constraint for now.

Compute: embedding vector f minimizing
Cost(f) = fTLf
subject to || f]| = 1.

Solution: the bottom eigenvector of L.
That is, eigenvector with smallest eigenvalue.

Claim

The bottom eigenvector is f = ﬁ(h (e

It has associated eigenvalue of 0.

That is, Lf = Of =0

Spectral’ Theorem

Theorem
If Ais a symmetric matrix, eigenvectors of A with
distinct eigenvalues are orthogonal to one another.

2“Spectral” not in the sense of specters (ghosts), but because the
eigenvalues of a transformation form the “spectrum”

The Fix

Remember: we wanted fto be orthogonal to

1 T
(11,1

i.e., should be orthogonal to bottom eigenvector of L.

Fix: take f to the be eigenvector of L with with
smallest eigenvalue # 0.

Will be L ﬁ(t 1,...,1)T by the spectral theorem.

Spectral Embeddings: Problem

Given: similarity graph with n nodes

Compute: an embedding of the n points into R’
so that similar objects are placed nearby

Formally: find embedding vector f minimizing

Cost(f) = i

i=1j

wi(f; - £)? = fTLf

n
=1

subjectto ||f|| =1and f L (1,1,...,1)

Spectral Embeddings: Solution

Form the graph Laplacian matrix, L =D - W

Choose fbe an eigenvector of L with smallest
eigenvalue > 0

This is the embedding!

Example

z- W = np.array([

[1, 0.1, 0.2],
/ 01 [@.1; 1, O-7]y
g / [0.2, 0.7, 1]

1)
0.7

D = np.diag(W.sum(axis=1))
L=D-W
0.z % vals, vecs = np.linalg.eigh(L)

% f = vecs[:,1]

Example

Embedding into R*
This embeds nodes into R'.
What about embedding into R*?

Natural extension: find bottom k eigenvectors
with eigenvalues > 0

New Coordinates

With k eigenvectors f0), f@, .., f® each node is
mapped to a point in R*.

Consider node i. A
First new coordinate is f{".

Second new coordinate is f.
Third new coordinate is f°.

Example

W = np.array([
[1, 0.1, 0.2],
[0.2, 1, 0.7],

/g / % . [0.2, 0.7, 1]

np.diag(W.sum(axis=1))

D - W
\ % vals, vecs = np.linalg.eigh(L)

o

—

take two eigenvectors
to map to R"2
f = vecs[:,1:3]

Example

Laplacian Eigenmaps

This approach is part of the method of
“Laplacian eigenmaps”

Introduced by Mikhail Belkin® and Partha Niyogi

It is a type of spectral embedding

3Now at HDSI

A Practical Issue

The Laplacian is often normalized:

Lyorm = D71/2LD71/2

norm

where D™'/2 is the diagonal matrix whose ith
diagonal entry is ‘I/JdT,-.

Proceed by finding the eigenvectors of L,

In Summary

We can embed a similarity graph’s nodes into R"
using the eigenvectors of the graph Laplacian

Yet another instance where eigenvectors are
solution to optimization problem

Next time: using this for dimensionality
reduction

