DEC $140 B$ Representation Learning Embedding Similarities

## Similar Netflix Users

- Suppose you are a data scientist at Netflix
- You're given an $n \times n$ similarity matrix $W$ of users
$\Rightarrow$ entry $(i, j)$ tells you how similar user $i$ and user $j$ are
> 1 means "very similar", 0 means "not at all"
- Goal: visualize to find patterns


## Idea

- We like scatter plots. Can we make one?
- Users are not vectors / points!
- They are nodes in a similarity graph

Similarity Graphs

Similarity matrices can be thought of as weighted graphs, and vice versa.

$$
\left.\begin{array}{ccc}
A & B & C \\
B \\
C & 1 & 0.1 \\
0.1 & 1 & 0.2 \\
0.2 & 0.7 & 1
\end{array}\right)
$$



Goal
Embed nodes of a similarity graph as points.
Similar nodes should map to nearby points.


## Today

We will design a graph embedding approach:

- Spectral embeddings via Laplacian eigenmaps


## More Formally

- Given:
- A similarity graph with $n$ nodes
- a number of dimensions, $k$

Compute: an embedding of the $n$ points into $\mathbb{R}^{k}$ so that similar objects are placed nearby

## To Start

- Given:
- A similarity graph with $n$ nodes

Compute: an embedding of the $n$ points into $\mathbb{R}^{1}$ so that similar objects are placed nearby

## Vectors as Embeddings into $\mathbb{R}^{1}$

- Suppose we have $n$ nodes (objects) to embed
- Assume they are numbered $1,2, \ldots, n$
$\Rightarrow$ Let $f_{1}, f_{2}, \ldots, f_{n} \in \mathbb{R}$ be the embeddings
- We can pack them all into a vector: $\vec{f}$.
- Goal: find a good set of embeddings, $\vec{f}$.

Example

$$
\vec{f}=(1,3,2,-4)^{T}
$$

$x_{1}$


## An Optimization Problem

- We'll turn it into an optimization problem:
- Step 1: Design a cost function quantifying how good a particular embedding $\vec{f}$ is
- Step 2: Minimize the cost

$$
p C A: \operatorname{mog}_{u} \vec{u}^{\top} C \vec{u} \quad \| \vec{u} k=1
$$

Example

Which is the best embedding?


## Cost Function for Embeddings

- Idea: cost is low if similar points are close
- Here is one approach:


$$
\operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2} \rightarrow \text { squared Euchiden } \quad \text { dsumn }
$$

v where $w_{i j}$ is the weight between $i$ and $j$.

## Interpreting the Cost

$$
\operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$



- If $w_{i j} \approx 0$, that pair can be placed very far apart without increasing cost
- If $w_{i j} \approx 1$, the pair should be placed close together in order to have small cost.


## Exercise

Do you see a problem with the cost function?

$$
\operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

Hint: what embedding $\vec{f}$ minimizes it?

$$
\vec{f} \dot{f}(0,0,0, \ldots-0)
$$

## Problem

- The cost is always minimized by taking $\hat{f}=0$.
- This is a "trivial" solution. Not useful.
- Fix: require $\|\vec{f}\|=1$
- Really, any number would work. 1 is convenient.


## Exercise

Do you see another problem with the cost function, even if we require $\vec{f}$ to be a unit vector?

$$
\operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j} \underset{=0}{\left(f_{i}-f_{j}\right)^{2} \quad\|\vec{f}\|=1 \mid}
$$

Hint: what other choice of $\vec{f}$ will always make this zero?

## Problem

- The cost is always minimized by taking $\vec{f}=\frac{1}{\sqrt{n}}(1,1, \ldots, 1)^{T}$.
- This is a "trivial" solution. Again, not useful.
- Fix: require $\vec{f}$ to be orthogonal to $(1,1, \ldots, 1)^{\top}$.
- Written: $\vec{f} \perp(1,1, \ldots, 1)^{T}$
- Ensures that solution is not close to trivial solution
- Might seem strange, but it will work!


## The New Optimization Problem

- Given: an $n \times n$ similarity matrix $W$

Compute: embedding vector $\vec{f}$ minimizing

$$
\operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

subject to $\|\vec{f}\|=1$ and $\vec{f} \perp(1,1, \ldots, 1)^{T}$

## How?

- This looks difficult.
- Let's write it in matrix form.
- We'll see that it is actually (hopefully) familiar.

DST $140 B$ Representation Learning Lecture 14 Part 2
The Graph Laplacian

## The Problem

Compute: embedding vector $\vec{f}$ minimizing

$$
\operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

subject to $\|\vec{f}\|=1$ and $\vec{f} \perp(1,1, \ldots, 1)^{T}$

- Now: write the cost function as a matrix expression.


## The Degree Matrix

- Recall: in an unweighted graph, the degree of ${ }^{\dagger}$ node $i$ equals number of neighbors.
$\Rightarrow$ Equivalently (where $A$ is the adjacency matrix):

$$
\underline{\underline{\operatorname{degree}(i)}}=\sum_{j=1}^{n} A_{i j}
$$


$\Rightarrow$ Since $A_{i j}=1$ only if $j$ is a neighbor of $i$

## The Degree Matrix

- In a weighted graph, define degree of node $i$ similarly:

$$
\text { degree }(i)=\sum_{j=1}^{n} w_{i j}
$$

- That is, it is the total weight of all neighbors.


## The Degree Matrix

- The degree matrix $D$ of a weighted graph is the diagonal matrix where entry $(i, i)$ is given by:

$$
\begin{aligned}
d_{i i} & =\operatorname{degree}(i) \\
& =\sum_{j=1}^{n} w_{i j}
\end{aligned}
$$



## The Graph Laplacian

- Define $L=D-W$
$\checkmark D$ is the degree matrix
- $W$ is the similarity matrix (weighted adjacency)
- $L$ is called the Graph Laplacian matrix.
- It is a very useful object


## Very Important Fact

- Claim:

$$
\begin{aligned}
& \operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}=\vec{f}^{T} L \vec{f} \\
& \text { Proof: expand both sides }{ }^{1}
\end{aligned}
$$

${ }^{1}$ Note that there was originally a $\frac{1}{2}$ in front of $\vec{f}^{\top} L \vec{f}$, but this was not ${ }^{\triangle}$ correct as written. See Problem 06 in the Midterm 02 practice for a longer explanation.

## Proof

DEC $140 B$ Representation Learning Lecture 14 Part 3
Solving the Optimization Problem

## A New Formulation

- Given: an $n \times n$ similarity matrix $W$
- Compute: embedding vector $\vec{f}$ minimizing

$$
\operatorname{Cost}(\vec{f})=\vec{f}^{\top} L \vec{f}
$$

subject to $\|\vec{f}\|=1$ and $\vec{f} \perp(1,1, \ldots, 1)^{T}$

- This might sound familiar...


## Recall: PCA

- Given: ad $\times d$ covariance matrix $C$
- Find: vector $\vec{u}$ maximizing the variance in the direction of $\vec{u}$ :

$$
\vec{u}^{\top} c \vec{u}
$$

subject to $\|\vec{u}\|=1$.

- Solution: take $\vec{u}=$ top eigenvector of $C$


## A New Formulation

- Forget about orthogonality constraint for now.
- Compute: embedding vector $\vec{f}$ minimizing

$$
\operatorname{Cost}(\vec{f})=\vec{f}^{\top} L \vec{f}
$$

subject to $\|\vec{f}\|=1$.

- Solution: the bottom eigenvector of $L$.
- That is, eigenvector with smallest eigenvalue.


## Claim

- The bottom eigenvector is $\vec{f}=\frac{1}{\sqrt{n}}(1,1, \ldots, 1)^{T}$
- It has associated eigenvalue of 0 .

That is, $L \vec{f}=0 \vec{f}=\overrightarrow{0}$

## Spectral ${ }^{2}$ Theorem

Theorem
If $A$ is a symmetric matrix, eigenvectors of $A$ with distinct eigenvalues are orthogonal to one another.

[^0]
## The Fix

- Remember: we wanted $\vec{f}$ to be orthogonal to $\frac{1}{\sqrt{n}}(1,1, \ldots, 1)^{\top}$.
- i.e., should be orthogonal to bottom eigenvector of $L$.
- Fix: take $\vec{f}$ to the be eigenvector of $L$ with with smallest eigenvalue $\neq 0$.
- Will be $\perp \frac{1}{\sqrt{n}}(1,1, \ldots, 1)^{\top}$ by the spectral theorem.


## Spectral Embeddings: Problem

- Given: similarity graph with $n$ nodes
- Compute: an embedding of the $n$ points into $\mathbb{R}^{1}$ so that similar objects are placed nearby
- Formally: find embedding vector $\vec{f}$ minimizing

$$
\operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}=\vec{f}^{\top} L \vec{f}
$$

subject to $\|\vec{f}\|=1$ and $\vec{f} \perp(1,1, \ldots, 1)^{T}$

## Spectral Embeddings: Solution

- Form the graph Laplacian matrix, $L=D-W$
- Choose $\vec{f}$ be an eigenvector of $L$ with smallest eigenvalue > 0
- This is the embedding!

Example


])
$\underline{D}=n p \cdot \operatorname{diag}($ W.sum $($ axis=1) $)$
$\underline{\text { vals, vecs }}=n p . l i n a l g . e i g h(L)$
$f=\operatorname{vecs}[:, 1]$

Example


## Embedding into $\mathbb{R}^{k}$

- This embeds nodes into $\mathbb{R}^{1}$.
- What about embedding into $\mathbb{R}^{k}$ ?
- Natural extension: find bottom $k$ eigenvectors with eigenvalues >0


## New Coordinates

- With $k$ eigenvectors $\vec{f}(1), \vec{f}^{(2)}, \ldots, \vec{f}^{(k)}$, each node is mapped to a point in $\mathbb{R}^{k}$.
- Consider node i.
$\downarrow$ First new coordinate is $\vec{f}_{i}^{(1)}$.
$\checkmark$ Second new coordinate is $\left(\vec{f}_{i}^{(2)}\right.$.
- Third new coordinate is $\vec{f}_{i}^{(3)}$.
- 

Example


Example

$\qquad$

## Laplacian Eigenmaps

- This approach is part of the method of "Laplacian eigenmaps"
- Introduced by Mikhail Belkin³ and Partha Niyogi
- It is a type of spectral embedding


## A Practical Issue

- The Laplacian is often normalized:

$$
L_{\text {norm }}=D^{-1 / 2} L D^{-1 / 2}
$$

where $D^{-1 / 2}$ is the diagonal matrix whose ith diagonal entry is $1 / \sqrt{d_{i j}}$.

- Proceed by finding the eigenvectors of $L_{\text {norm }}$.


## In Summary

- We can embed a similarity graph's nodes into $\mathbb{R}^{k}$ using the eigenvectors of the graph Laplacian
- Yet another instance where eigenvectors are solution to optimization problem
- Next time: using this for dimensionality reduction


[^0]:    ${ }^{2}$ "Spectral" not in the sense of specters (ghosts), but because the eigenvalues of a transformation form the "spectrum"

