
Lecture 14| Part 1

Embedding Similarities

Similar Netflix Users▶ Suppose you are a data scientist at Netflix▶ You’re given an 𝑛 × 𝑛 similarity matrix 𝑊 of users▶ entry (𝑖, 𝑗) tells you how similar user 𝑖 and user 𝑗 are▶ 1 means “very similar”, 0 means “not at all”▶ Goal: visualize to find patterns

Idea▶ We like scatter plots. Can we make one?▶ Users are not vectors / points!▶ They are nodes in a similarity graph

Similarity Graphs▶ Similarity matrices can be thought of as weighted graphs,
and vice versa.

Goal▶ Embed nodes of a similarity graph as points.▶ Similar nodes should map to nearby points.

Today▶ We will design a graph embedding approach:▶ Spectral embeddings via Laplacian eigenmaps

More Formally▶ Given:▶ A similarity graph with 𝑛 nodes▶ a number of dimensions, 𝑘▶ Compute: an embedding of the 𝑛 points into ℝ𝑘
so that similar objects are placed nearby

To Start▶ Given:▶ A similarity graph with 𝑛 nodes▶ Compute: an embedding of the 𝑛 points into ℝ1
so that similar objects are placed nearby

Vectors as Embeddings into ℝ1▶ Suppose we have 𝑛 nodes (objects) to embed▶ Assume they are numbered 1, 2, ..., 𝑛▶ Let 𝑓1, 𝑓2, … , 𝑓𝑛 ∈ ℝ be the embeddings▶ We can pack them all into a vector: ⃗𝑓.▶ Goal: find a good set of embeddings, ⃗𝑓.

Example⃗𝑓 = (1, 3, 2, −4)𝑇

An Optimization Problem▶ We’ll turn it into an optimization problem:▶ Step 1: Design a cost function quantifying how
good a particular embedding ⃗𝑓 is▶ Step 2: Minimize the cost

Example▶ Which is the best embedding?

Cost Function for Embeddings▶ Idea: cost is low if similar points are close▶ Here is one approach:Cost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2▶ where 𝑤𝑖𝑗 is the weight between 𝑖 and 𝑗.

Interpreting the CostCost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2▶ If 𝑤𝑖𝑗 ≈ 0, that pair can be placed very far apart
without increasing cost▶ If 𝑤𝑖𝑗 ≈ 1, the pair should be placed close
together in order to have small cost.

Exercise
Do you see a problem with the cost function?Cost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2
Hint: what embedding ⃗𝑓 minimizes it?

Problem▶ The cost is always minimized by taking ⃗𝑓 = 0.▶ This is a “trivial” solution. Not useful.▶ Fix: require ‖ ⃗𝑓‖ = 1▶ Really, any number would work. 1 is convenient.

Exercise
Do you see another problemwith the cost function,
even if we require ⃗𝑓 to be a unit vector?Cost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2
Hint: what other choice of ⃗𝑓 will always make this
zero?

Problem▶ The cost is always minimized by taking⃗𝑓 = 1√𝑛(1, 1, … , 1)𝑇.▶ This is a “trivial” solution. Again, not useful.▶ Fix: require ⃗𝑓 to be orthogonal to (1, 1, … , 1)𝑇.▶ Written: ⃗𝑓 ⟂ (1, 1, … , 1)𝑇▶ Ensures that solution is not close to trivial solution▶ Might seem strange, but it will work!

The New Optimization Problem▶ Given: an 𝑛 × 𝑛 similarity matrix 𝑊▶ Compute: embedding vector ⃗𝑓 minimizingCost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2
subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇

How?▶ This looks difficult.▶ Let’s write it in matrix form.▶ We’ll see that it is actually (hopefully) familiar.

Lecture 14| Part 2

The Graph Laplacian

The Problem▶ Compute: embedding vector ⃗𝑓 minimizingCost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2
subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇▶ Now: write the cost function as a matrix
expression.

The Degree Matrix▶ Recall: in an unweighted graph, the degree of
node 𝑖 equals number of neighbors.▶ Equivalently (where 𝐴 is the adjacency matrix):degree(𝑖) = 𝑛∑𝑗=1 𝐴𝑖𝑗▶ Since 𝐴𝑖𝑗 = 1 only if 𝑗 is a neighbor of 𝑖

The Degree Matrix▶ In a weighted graph, define degree of node 𝑖
similarly: degree(𝑖) = 𝑛∑𝑗=1 𝑤𝑖𝑗▶ That is, it is the total weight of all neighbors.

The Degree Matrix▶ The degree matrix 𝐷 of a weighted graph is the
diagonal matrix where entry (𝑖, 𝑖) is given by:𝑑𝑖𝑖 = degree(𝑖)= 𝑛∑𝑗=1 𝑤𝑖𝑗

The Graph Laplacian▶ Define 𝐿 = 𝐷 − 𝑊▶ 𝐷 is the degree matrix▶ 𝑊 is the similarity matrix (weighted adjacency)▶ 𝐿 is called the Graph Laplacian matrix.▶ It is a very useful object

Very Important Fact▶ Claim: Cost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2 = ⃗𝑓𝑇𝐿 ⃗𝑓
▶ Proof: expand both sides 1

1Note that there was originally a 12 in front of ⃗𝑓𝑇𝐿 ⃗𝑓, but this was not
correct as written. See Problem 06 in the Midterm 02 practice for a longer
explanation.

Proof

Lecture 14| Part 3

Solving the Optimization Problem

A New Formulation▶ Given: an 𝑛 × 𝑛 similarity matrix 𝑊▶ Compute: embedding vector ⃗𝑓 minimizingCost(⃗𝑓) = ⃗𝑓𝑇𝐿 ⃗𝑓
subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇▶ This might sound familiar...

Recall: PCA▶ Given: a 𝑑 × 𝑑 covariance matrix 𝐶▶ Find: vector �⃗� maximizing the variance in the
direction of �⃗�: �⃗�𝑇𝐶�⃗�
subject to ‖�⃗�‖ = 1.▶ Solution: take �⃗� = top eigenvector of 𝐶

A New Formulation▶ Forget about orthogonality constraint for now.▶ Compute: embedding vector ⃗𝑓 minimizingCost(⃗𝑓) = ⃗𝑓𝑇𝐿 ⃗𝑓
subject to ‖ ⃗𝑓‖ = 1.▶ Solution: the bottom eigenvector of 𝐿.▶ That is, eigenvector with smallest eigenvalue.

Claim▶ The bottom eigenvector is ⃗𝑓 = 1√𝑛(1, 1, … , 1)𝑇▶ It has associated eigenvalue of 0.▶ That is, 𝐿 ⃗𝑓 = 0 ⃗𝑓 = 0⃗

Spectral2 Theorem

Theorem
If 𝐴 is a symmetric matrix, eigenvectors of 𝐴 with
distinct eigenvalues are orthogonal to one another.

2“Spectral” not in the sense of specters (ghosts), but because the
eigenvalues of a transformation form the “spectrum”

The Fix▶ Remember: we wanted ⃗𝑓 to be orthogonal to1√𝑛(1, 1, … , 1)𝑇.▶ i.e., should be orthogonal to bottom eigenvector of 𝐿.▶ Fix: take ⃗𝑓 to the be eigenvector of 𝐿 with with
smallest eigenvalue ≠ 0.▶ Will be ⟂ 1√𝑛(1, 1, … , 1)𝑇 by the spectral theorem.

Spectral Embeddings: Problem▶ Given: similarity graph with 𝑛 nodes▶ Compute: an embedding of the 𝑛 points into ℝ1
so that similar objects are placed nearby▶ Formally: find embedding vector ⃗𝑓 minimizingCost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2 = ⃗𝑓𝑇𝐿 ⃗𝑓
subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇

Spectral Embeddings: Solution▶ Form the graph Laplacian matrix, 𝐿 = 𝐷 − 𝑊▶ Choose ⃗𝑓 be an eigenvector of 𝐿 with smallest
eigenvalue > 0▶ This is the embedding!

Example

W = np.array([
[1, 0.1, 0.2],
[0.1, 1, 0.7],
[0.2, 0.7, 1]

])

D = np.diag(W.sum(axis=1))
L = D - W

vals, vecs = np.linalg.eigh(L)

f = vecs[:,1]

Example

Embedding into ℝ𝑘▶ This embeds nodes into ℝ1.▶ What about embedding into ℝ𝑘?▶ Natural extension: find bottom 𝑘 eigenvectors
with eigenvalues > 0

New Coordinates▶ With 𝑘 eigenvectors ⃗𝑓 (1), ⃗𝑓 (2), … , ⃗𝑓 (𝑘), each node is
mapped to a point in ℝ𝑘.▶ Consider node 𝑖.▶ First new coordinate is ⃗𝑓 (1)𝑖 .▶ Second new coordinate is ⃗𝑓 (2)𝑖 .▶ Third new coordinate is ⃗𝑓 (3)𝑖 .▶ ⋮

Example
W = np.array([

[1, 0.1, 0.2],
[0.1, 1, 0.7],
[0.2, 0.7, 1]

])

D = np.diag(W.sum(axis=1))
L = D - W

vals, vecs = np.linalg.eigh(L)

take two eigenvectors
to map to R^2
f = vecs[:,1:3]

Example

Laplacian Eigenmaps▶ This approach is part of the method of
“Laplacian eigenmaps”▶ Introduced by Mikhail Belkin3 and Partha Niyogi▶ It is a type of spectral embedding

3Now at HDSI

A Practical Issue▶ The Laplacian is often normalized:𝐿norm = 𝐷−1/2𝐿𝐷−1/2
where 𝐷−1/2 is the diagonal matrix whose 𝑖th
diagonal entry is 1/√𝑑𝑖𝑖.▶ Proceed by finding the eigenvectors of 𝐿norm.

In Summary▶ We can embed a similarity graph’s nodes into ℝ𝑘
using the eigenvectors of the graph Laplacian▶ Yet another instance where eigenvectors are
solution to optimization problem▶ Next time: using this for dimensionality
reduction

