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Lecture 14 Part 1

Embedding Similarities



Similar Netflix Users

Suppose you are a data scientist at Netflix

You're given an n x n similarity matrix W of users
entry (i,j) tells you how similar user i and user j are
1 means “very similar”, 0 means “not at all”

Goal: visualize to find patterns



Idea
We like scatter plots. Can we make one?
Users are not vectors / points!

They are nodes in a similarity graph



Similarity Graphs

Similarity matrices can be thought of as weighted graphs,
and vice versa.
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Goal

Embed nodes of a similarity graph as points.
Similar nodes should map to nearby points.
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Today

We will design a graph embedding approach:
Spectral embeddings via Laplacian eigenmaps
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More Formally

Given:
A similarity graph with n nodes
a number of dimensions, kR

Compute: an embedding of the n points into R*
so that similar objects are placed nearby



To Start

Given:
A similarity graph with n nodes £
= |

Compute: an embedding of the n points into &;
so that similar objects are placed nearby



Vectors as Embeddings into R’

Suppose we have n nodes (objects) to embed
Assume they are numbered 1, 2, ..., n

Let f,, f5,---, [, € R be the embeddings
2
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We can pack them all into a vector:L

Goal: find a good set of embeddings, f
/\/\/



Example
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An Optimization Problem

We'll turn it into an optimization problem:

. loss . .
Step 1: Design a cost function quantifying how

good a particular embedding fis

Step 2: Minimize the cost
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Example

Which is the best embedding?
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Cost Function for Embeddings

ldea: cost is low if similar points are close

Here is one approach: {7@‘ ”}C))
. i n , - S%m W@(/{ @M[‘*/&m
Cost(f) = wi;(fi - f;)= S
= w S— foe

where W,-}-OiS the weight between i and j.
7

.



Interpreting the Cost
n_n O Wi
Cost(f) = Z wii(fi - f;)° —/’2—) J
i=1 j=1

If w;; = 0, that pair can be placed very far apart
without increasing cost

If w;; = 1, the pair should be placed close
together in order to have small cost.



Do you see a problem with the cost function?

-

Cost(f)= > > wylfi-f;? =0

n
i=1 j=1

Hint: what embedding fminimizes it?
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Problem

The cost is always minimized by taking@

This is a “trivial” solution. Not useful.

Fix: require ||f|| =1

— . .
Really, any number would work. 11s convenient.
(_/\/\/'\_x/_\_/:



Do you see another problem with the cost function,
even if we require f to be a unit vector?

Cost(f) = Z Z WU(L_J )? [l:F// R

Hint: what other choice of fwill always make this
zero?
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Problem / 64)// 2/

The cost is always minimized by taking

21 )
f=0,.,0)

—

This is a “trivial” solution. Again, not useful.

Fix: require f to be orthogonal to (1,1, ..., 1)".
written: £ 1 (1,1,..., 1) T T
Ensures that solutlon Is not close to trivial solution
Might seem strange, but it will work!



The New Optimization Problem

Given: an n x n similarity matrix W

Compute: embedding vector f minimizing

n n

Cost(f) = p > wyfi-f)

= =g

subjectto [|f|| =1and f L (1,1,..., 1)
—




How?
This looks difficult.
Let's write it in matrix form.

We'll see that it is actually (hopefully) familiar.



psC /140&

Represaitaton [ earm@

Lecture 14 Part 2

The Graph Laplacian



The Problem

Compute: embedding vector fminimizing

Cost(f) = Z

|

n n
wi;(f; - fj)z

1 =1

subjectto |fll=1and f L (1,1,...,1)

Now: write the cost function as a matrix
expression.



%
The Degree Matrix - N -
¥ 2%

3 3
Recall: in an unweighted graph, the degree of =

node | equals number of neighbors.

Equivalently (wher@s the adjacency matrix):

[

: ALTO |

degree(i) = ZA,-]- / b0
(%ﬁ

j=1
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Since A;; = 1 only if j is a neighbor of i



The Degree Matrix

In a weighted graph, define degree of node i
simirawr@:AﬁJg\

n
degree(i) = Z Wj;

That is, it is the total weight of all neighbors.



The Degree Matrix

The degree matrixQ/of a weighted graph is the
diagonal matrix where entry (i, 1) is given by:

=,
; b O
= ;W:‘j ? -

d;; = degree(i)



The Graph Laplacian

DefineL=D-W_
D is the degree matrix

W is the similarity matrix (weighted adjacency)
T W - - )

L is called the Graph Laplacian matrix.

It is a very useful object



Claim: W%’%;J(Ny&ﬁ

n n
Cost(f) = ) > wylfi-f;)* # f'Lf
| (o)A
Proof: expand both sides’
S .
j@?ﬂ%ﬁ
"Note that there was originally a % in front of fTLf, but this was not=

correct as written. See Problem 06 in the Midterm 02 practice for a longer
explanation.




Proof
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Solving the Optimization Problem



A New Formulation

Given: an n x n similarity matrix W

Compute: embedding vector f minimizing
Cost(f) = fTLf

subjectto [|f|| =1and f L (1,1,...,1)T

-_— OO

This might sound familiar...



Recall: PCA

Given: a d x d covariance matrix C

Find: vector U maximizing the variance in the
direction of u:

a'cu
subject to ||d]| = 1.

Solution: take U = top eigenvector of C



A New Formulation

Forget about orthogonality constraint for now.

Compute: embedding vector f ﬂm

L _)/7 S/m»vr“/wv L*D—M
Cost(f) =J%]_‘

subject té e J;

Solution: the@ggwof L.
That is, eigenvector with smallest eigenvalue.




Claim

The bottom eigenvector is f =

Sl

It has associated eigenvalue of 0.

-

Thatis, Lf = 0f = 0

/
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Spectral’ Theorem

Theorem

If A is a symmetric matrix, ei tors of A with
distinct eigenvalues are orthogonalto one another.

2“Spectral” not in the sense of specters (ghosts), but because the
eigenvalues of a transformation form the “spectrum”



The Fix

Remember: we wanted fto be orthogonal to
(1,1,...,1.
Jn

l.e., should be orthogonal to bottom eigenvector of L.

Fix: take f to the be eigenvector of L with with

smallest eigenvalue # 0.
?-

Will be L ﬁ“’ 1,...,1)T by the spectral theorem.
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Spectral Embeddings: Problem

Given: similarity graph with n nodes

Compute: an embedding of the n points into R’
so that similar objects are placed nearby

Formally: find embedding vector fminimizing

Cost(f) = ) > wy(fi-£)* = f'Lf

subjectto ||f]l =1and f L (1,1,...,1)



Spectral Embeddings: Solution

Form the graph Laplacian matrix, L =D - W

Chooseibe an eigenvector of L with smallest
eigenvalue >0

This is the embedding!



Example

W = np.array([

- [1, 0.1, 0.2],
[0.1, 1, 0.7],
[06.2, 0.7, 1]

p.diag(wW.sum(axis=1))

vals, vecs = np.linalg.eigh(L)
— -
f = vecs[:,1]

D



Example




° ° k
Embedding into IR/

This embeds nodes into R7.
=

What about embedding into R*?

Natural extension: find bottom k eigenvectors
o o ,\_\,_\’_//—\/
with eigenvalues > 0
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New Coordinates

With k eigenvectors.., f®) each node is
mapped to a point in R,

Consider node I.
First new coordinate is f{".

Second new coordinate is f(z)
Third new coordinate is f©).




Example

W = np.array([
[1, 0.1, 0.2],
[0.1, 1, 0.7],
[0.2, 0.7, 1]

1)
D = np.diag(W.sum(axis=1))
L=D-W

vals, vecs = np.linalg.eigh(L)
\4

# take two eigenvectors
# to map to R"2
f = vecs[:,1:3]



Example




Laplacian Eigenmaps

This approach is part of the method of
“Laplacian eigenmaps”

Introduced by Mikhail Belkin® and Partha Niyogi

- _ -

It is a type of spectral embedding

3Now at HDSI



A Practical Issue

The Laplacian is often normalized:

Lyorm = D7/2LD71/2

norm

where D7'/2 is the diagonal matrix whose ith
diagonal entry is 1/JdT,~.

Proceed by finding the eigenvectors of L,



In Summary

We can embed a similarity graph’s nodes into R*
using the eigenvectors of the graph Laplacian

Yet another instance where eigenvectors are
solution to optimization problem

Next time: using this for dimensionality
reduction



