DSC 140B Representation Learning

Lecture 14 Part 1

Embedding Similarities

Similar Netflix Users

Suppose you are a data scientist at Netflix

- You're given an n × n similarity matrix W of users
 entry (i, j) tells you how similar user i and user j are
 1 means "very similar", 0 means "not at all"
- ► Goal: visualize to find patterns

Idea

- ▶ We like scatter plots. Can we make one?
- Users are **not** vectors / points!
- They are nodes in a similarity graph

Similarity Graphs

Similarity matrices can be thought of as weighted graphs, and vice versa.

Goal

Embed nodes of a similarity graph as points.
 Similar nodes should map to nearby points.

Today

We will design a graph embedding approach:
 Spectral embeddings via Laplacian eigenmaps

More Formally

- **Given**:
 - A similarity graph with n nodes
 - a number of dimensions, k
- Compute: an embedding of the n points into R^k so that similar objects are placed nearby

To Start

Given:
 A similarity graph with n nodes

Compute: an embedding of the n points into R¹ so that similar objects are placed nearby

2-

Vectors as Embeddings into \mathbb{R}^1

- Suppose we have *n* nodes (objects) to embed
- Assume they are numbered 1, 2, ..., n
- ▶ Let $f_1, f_2, ..., f_n \in \mathbb{R}$ be the embeddings
- We can pack them all into a vector: \vec{f} .

• Goal: find a good set of embeddings, \vec{f} .

Example

An Optimization Problem

- We'll turn it into an optimization problem:
- Step 1: Design a cost function quantifying how good a particular embedding f is
- **Step 2**: Minimize the cost

Example

Which is the best embedding?

Cost Function for Embeddings

Idea: cost is low if similar points are close

• where w_{ij} is the weight between *i* and *j*.

Interpreting the Cost

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

- If w_{ij} ≈ 0, that pair can be placed very far apart without increasing cost
- If w_{ij} ≈ 1, the pair should be placed close together in order to have small cost.

Exercise

Do you see a problem with the cost function?

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

Hint: what embedding \vec{f} minimizes it?

$$\vec{f} \doteq (0, 0, 0, \dots, 0)$$

Problem

• The cost is **always** minimized by taking $\vec{f} = 0$.

This is a "trivial" solution. Not useful.

Exercise

Do you see **another** problem with the cost function, even if we require \vec{f} to be a unit vector?

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$$

Hint: what other choice of \vec{f} will **always** make this zero?

Problem

- The cost is **always** minimized by taking $\vec{f} = \frac{1}{\sqrt{n}} (1, 1, ..., 1)^T$.
- This is a "trivial" solution. Again, not useful.
- Fix: require \vec{f} to be orthogonal to $(1, 1, ..., 1)^T$.
 - Written: $\vec{f} \perp (1, 1, ..., 1)^{\mathsf{T}}$
 - Ensures that solution is not close to trivial solution
 - Might seem strange, but it will work!

The New Optimization Problem

► **Given**: an *n* × *n* similarity matrix *W*

• **Compute**: embedding vector \vec{f} minimizing

$$\underbrace{\text{Cost}(\vec{f})}_{i=1} = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$$

subject to $\|\vec{f}\| = 1$ and $\vec{f} \perp (1, 1, ..., 1)^T$

How?

- This looks difficult.
- Let's write it in matrix form.
- ► We'll see that it is actually (hopefully) familiar.

DSC 140B Representation Learning

Lecture 14 Part 2

The Graph Laplacian

The Problem

Compute: embedding vector \vec{f} minimizing

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

subject to
$$\|\vec{f}\| = 1$$
 and $\vec{f} \perp (1, 1, ..., 1)^T$

Now: write the cost function as a matrix expression.

The Degree Matrix 3

- Recall: in an unweighted graph, the degree of node *i* equals number of neighbors.
- Equivalently (where A is the adjacency matrix): $i \ge 3x$ degree(i) = $\sum_{j=1}^{n} A_{ij}$
- Since A_{ij} = 1 only if j is a neighbor of i

The Degree Matrix

In a weighted graph, define degree of node i similarly:

degree(i) =
$$\sum_{j=1}^{n} w_{ij}$$

▶ That is, it is the total weight of all neighbors.

The Degree Matrix

The degree matrix D of a weighted graph is the diagonal matrix where entry (i, i) is given by:

$$d_{ii} = \text{degree}(i)$$
$$= \sum_{j=1}^{n} w_{ij}$$

The Graph Laplacian

Define L = D - W
 D is the degree matrix
 W is the similarity matrix (weighted adjacency)

- L is called the Graph Laplacian matrix.
- It is a very useful object

Proof

Representation Learning

Lecture 14 Part 3

Solving the Optimization Problem

A New Formulation

- ► **Given**: an *n* × *n* similarity matrix *W*
- **Compute**: embedding vector \vec{f} **minimizing** $Cost(\vec{f}) = \vec{f}^T L \vec{f}$ subject to $\|\vec{f}\| = 1$ and $\vec{f} \perp (1, 1, ..., 1)^T$
- ► This might sound familiar...

Recall: PCA

- ► **Given**: a *d* × *d* covariance matrix *C*
- Find: vector u maximizing the variance in the direction of u:

subject to $\|\vec{u}\| = 1$.

Solution: take \vec{u} = top eigenvector of C

A New Formulation

Forget about orthogonality constraint for now.

• **Compute**: embedding vector \vec{f} **minimizing** $Cost(\vec{f}) = \vec{f}^T L \vec{f}$ Symmetry L = D Wsubject to $\|\vec{f}\| = 1$.

Solution: the *bottom* eigenvector of *L*.
 That is, eigenvector with smallest eigenvalue.

Claim \angle

• The bottom eigenvector is
$$\vec{f} = \frac{1}{\sqrt{n}}(1, 1, ..., 1)^T$$

It has associated eigenvalue of 0.

That is,
$$L\vec{f} = 0\vec{f} = \vec{0}$$

Spectral² Theorem

Theorem

If A is a symmetric matrix, eigenvectors of A with distinct eigenvalues are orthogonal to one another.

²"Spectral" not in the sense of specters (ghosts), but because the eigenvalues of a transformation form the "spectrum"

The Fix

Remember: we wanted \vec{f} to be orthogonal to $\frac{1}{\sqrt{n}}(1, 1, ..., 1)^T$.

i.e., should be orthogonal to bottom eigenvector of L.

Fix: take \vec{f} to the be eigenvector of L with with smallest eigenvalue $\neq 0$.

• Will be $\perp \frac{1}{\sqrt{n}} (1, 1, ..., 1)^T$ by the **spectral theorem**.

Spectral Embeddings: Problem

- Given: similarity graph with n nodes
- **Compute**: an **embedding** of the *n* points into \mathbb{R}^1 so that similar objects are placed nearby
- Formally: find embedding vector \vec{f} minimizing

$$\underbrace{\text{Cost}(\vec{f})}_{i=1} = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2 = \vec{f}^T L \vec{f}$$

subject to $\|\vec{f}\| = 1$ and $\vec{f} \perp (1, 1, \dots, 1)^T$

Spectral Embeddings: Solution

- ► Form the **graph Laplacian** matrix, *L* = *D W*
- Choose <u>f</u> be an eigenvector of L with smallest eigenvalue > 0
- This is the embedding!

Example

Example

Embedding into \mathbb{R}^k

- This embeds nodes into \mathbb{R}^1 .
- What about embedding into \mathbb{R}^k ?
- Natural extension: find bottom k eigenvectors with eigenvalues > 0

New Coordinates

- ▶ With *k* eigenvectors $\vec{f}^{(1)}, \vec{f}^{(2)}, \dots, \vec{f}^{(k)}$, each node is mapped to a point in \mathbb{R}^k .
- Consider node i.

 - First new coordinate is $\vec{f}_i^{(1)}$.
 Second new coordinate is $\vec{f}_i^{(2)}$.
 - Third new coordinate is $\vec{f}_{i}^{(3)}$.

Example

vals, vecs = np.linalg.eigh(L)

take two eigenvectors
to map to R²
f = vecs[:,1:3]

Example

Laplacian Eigenmaps

This approach is part of the method of "Laplacian eigenmaps"

Introduced by Mikhail Belkin³ and Partha Niyogi

It is a type of spectral embedding

³Now at HDSI

A Practical Issue

► The Laplacian is often **normalized**:

$$L_{\rm norm} = D^{-1/2} L D^{-1/2}$$

where $D^{-1/2}$ is the diagonal matrix whose *i*th diagonal entry is $1/\sqrt{d_{ii}}$.

▶ Proceed by finding the eigenvectors of L_{norm} .

In Summary

- We can **embed** a similarity graph's nodes into R^k using the eigenvectors of the graph Laplacian
- Yet another instance where eigenvectors are solution to optimization problem
- Next time: using this for dimensionality reduction