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Lecture 13 Part 1

Nonlinear Dimensionality Reduction



Scenario

You want to train a
classifier on this data.

It would be easier if we
could “unroll” the spiral.

Data seems to be
one-dimensional, even

though in two dimensions.

Dimensionality reduction?



PCA?
Does PCA work here?

Try projecting onto one principal component.
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PCA?
PCA simply “rotates” the data.

No amount of rotation will “unroll” the spiral.

We need a fundamentally different approach
that works for non-linear patterns.



Today

Non-linear dimensionality reduction via
spectral embeddings.



Rethinking Dimensionality

Each point is an (x, y)
coordinate in two
dimensional space

But the structure is
one-dimensional

Could (roughly) locate

point using one number:

distance from end.



Rethinking Dimensionality




Rethinking Dimensionality




Rethinking Dimensionality

Informally: data expressed with d dimensions,
but its really confined to k-dimensional region

This region is called a manifold
d is the ambient dimension

k is the intrinsic dimension



Example

Ambient dimension: 2

Intrinsic dimension: 1



Example

Ambient dimension: 3

Intrinsic dimension: 2




Ambient dimension:

Intrinsic dimension:




Manifold Learning
Given: data in high dimensions

Recover: the low-dimensional manifold



Types of Manifolds

Manifolds can be linear
E.g., linear subpaces - hyperplanes
Learned by PCA

Can also be non-linear (locally linear)
Example: the spiral data
Learned by Laplacian eigenmaps, among others



Euclidean vs. Geodesic Distances

Euclidean distance: the “straight-line” distance
Geodesic distance: the distance along the manifold




Euclidean vs. Geodesic Distances

Euclidean distance: the “straight-line” distance
Geodesic distance: the distance along the manifold




Euclidean vs. Geodesic Distances

If data is close to a linear manifold, geodesic =
Euclidean

Otherwise, can be very different



Non-Linear Dimensionality
Reduction

Goal: Map points in RY to R¥

Such that: if X and y are close in geodesic
distance in RY, they are close in Euclidean
distance in R¥



Embeddings
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Embedding Similarities



Similar Netflix Users

Suppose you are a data scientist at Netflix

You're given an n x n similarity matrix W of users
entry (i,j) tells you how similar user i and user j are
1 means “very similar”, 0 means “not at all”

Goal: visualize to find patterns



Idea
We like scatter plots. Can we make one?
Users are not vectors / points!

They are nodes in a similarity graph



Similarity Graphs

Similarity matrices can be thought of as weighted graphs,
and vice versa.
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Goal

Embed nodes of a similarity graph as points.
Similar nodes should map to nearby points.

o

syf

\%/ o




Today

We will design a graph embedding approach:
Spectral embeddings via Laplacian eigenmaps



More Formally

Given:
A similarity graph with n nodes
a number of dimensions, R

Compute: an embedding of the n points into R¥
so that similar objects are placed nearby



To Start

Given:
A similarity graph with n nodes

Compute: an embedding of the n points into R’
so that similar objects are placed nearby



Vectors as Embeddings into R’
Suppose we have n nodes (objects) to embed
Assume they are numbered 1, 2, ..., n

Let f1, f5, -, f, € R be the embeddings

-
.

We can pack them all into a vector: f.

Goal: find a good set of embeddings, f



Example

f=01,3,2,-4)



An Optimization Problem
We'll turn it into an optimization problem:

Step 1: Design a cost function quantifying how
good a particular embedding f is

Step 2: Minimize the cost



Example

Which is the best embedding?
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Cost Function for Embeddings
Idea: cost is low if similar points are close

Here is one approach:

Cost(f) = > > wy(fi-f;)?

n
i=1 j=1

where w;; is the weight between i and j.



Interpreting the Cost

Cost() = > wylf; - £

n

1=1 J=1
If w;; = 0, that pair can be placed very far apart
without increasing cost

If w;; = 1, the pair should be placed close
together in order to have small cost.



Do you see a problem with the cost function?

n

Cost(f i Z w(f; - f;)?

i=1 j=1

Hint: what embedding fminimizes it?




Problem
The cost is always minimized by taking f = 0.
This is a “trivial” solution. Not useful.

Fix: require [|f]| =1
Really, any number would work. 1 is convenient.



Do you see another problem with the cost function,
even if we require f to be a unit vector?

Cost() =S > wy(f; - )
i=1 j=1

Hint: what other choice of f will always make this
zero?




Problem

The cost is always minimized by taking

-1 T
f=p(1,1,,0)

This is a “trivial” solution. Again, not useful.

Fix: require fto be orthogonal to (1,1, ..., 1)".
Written: f L (1,1,...,1)"

Ensures that solution is not close to trivial solution
Might seem strange, but it will work!



The New Optimization Problem

Given: an n x n similarity matrix W

Compute: embedding vector f minimizing

subjectto Ifll =1and f L (1,1,...,1)"



How?
This looks difficult.
Let's write it in matrix form.

We'll see that it is actually (hopefully) familiar.



