
Lecture 13 | Part 1

Nonlinear Dimensionality Reduction

Scenario▶ You want to train a
classifier on this data.▶ It would be easier if we
could “unroll” the spiral.▶ Data seems to be
one-dimensional, even
though in two dimensions.▶ Dimensionality reduction?

PCA?▶ Does PCA work here?▶ Try projecting onto one principal component.

No

PCA?▶ PCA simply “rotates” the data.▶ No amount of rotation will “unroll” the spiral.▶ We need a fundamentally different approach
that works for non-linear patterns.

Today▶ Non-linear dimensionality reduction via
spectral embeddings.

Rethinking Dimensionality

▶ Each point is an (𝑥, 𝑦)
coordinate in two
dimensional space▶ But the structure is
one-dimensional▶ Could (roughly) locate
point using one number:
distance from end.

Rethinking Dimensionality

Rethinking Dimensionality

Rethinking Dimensionality▶ Informally: data expressed with 𝑑 dimensions,
but its really confined to 𝑘-dimensional region▶ This region is called a manifold▶ 𝑑 is the ambient dimension▶ 𝑘 is the intrinsic dimension

Example

▶ Ambient dimension: 2▶ Intrinsic dimension: 1

Example

▶ Ambient dimension: 3▶ Intrinsic dimension: 2

Example

▶ Ambient dimension:▶ Intrinsic dimension:

Manifold Learning▶ Given: data in high dimensions▶ Recover: the low-dimensional manifold

Types of Manifolds▶ Manifolds can be linear▶ E.g., linear subpaces – hyperplanes▶ Learned by PCA▶ Can also be non-linear (locally linear)▶ Example: the spiral data▶ Learned by Laplacian eigenmaps, among others

Euclidean vs. Geodesic Distances▶ Euclidean distance: the “straight-line” distance▶ Geodesic distance: the distance along the manifold

Euclidean vs. Geodesic Distances▶ Euclidean distance: the “straight-line” distance▶ Geodesic distance: the distance along the manifold

Euclidean vs. Geodesic Distances▶ If data is close to a linear manifold, geodesic ≈
Euclidean▶ Otherwise, can be very different

Non-Linear Dimensionality
Reduction▶ Goal: Map points in ℝ𝑑 to ℝ𝑘▶ Such that: if ⃗𝑥 and ⃗𝑦 are close in geodesic

distance in ℝ𝑑, they are close in Euclidean
distance in ℝ𝑘

Embeddings

Lecture 13 | Part 2

Embedding Similarities

Similar Netflix Users▶ Suppose you are a data scientist at Netflix▶ You’re given an 𝑛 × 𝑛 similarity matrix 𝑊 of users▶ entry (𝑖, 𝑗) tells you how similar user 𝑖 and user 𝑗 are▶ 1 means “very similar”, 0 means “not at all”▶ Goal: visualize to find patterns

Idea▶ We like scatter plots. Can we make one?▶ Users are not vectors / points!▶ They are nodes in a similarity graph

Similarity Graphs▶ Similarity matrices can be thought of as weighted graphs,
and vice versa.

Goal▶ Embed nodes of a similarity graph as points.▶ Similar nodes should map to nearby points.

Today▶ We will design a graph embedding approach:▶ Spectral embeddings via Laplacian eigenmaps

More Formally▶ Given:▶ A similarity graph with 𝑛 nodes▶ a number of dimensions, 𝑘▶ Compute: an embedding of the 𝑛 points into ℝ𝑘
so that similar objects are placed nearby

To Start▶ Given:▶ A similarity graph with 𝑛 nodes▶ Compute: an embedding of the 𝑛 points into ℝ1
so that similar objects are placed nearby

Vectors as Embeddings into ℝ1▶ Suppose we have 𝑛 nodes (objects) to embed▶ Assume they are numbered 1, 2, ..., 𝑛▶ Let 𝑓1, 𝑓2, … , 𝑓𝑛 ∈ ℝ be the embeddings▶ We can pack them all into a vector: ⃗𝑓.▶ Goal: find a good set of embeddings, ⃗𝑓.

Example⃗𝑓 = (1, 3, 2, −4)𝑇

An Optimization Problem▶ We’ll turn it into an optimization problem:▶ Step 1: Design a cost function quantifying how
good a particular embedding ⃗𝑓 is▶ Step 2: Minimize the cost

Example▶ Which is the best embedding?

Cost Function for Embeddings▶ Idea: cost is low if similar points are close▶ Here is one approach:Cost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2▶ where 𝑤𝑖𝑗 is the weight between 𝑖 and 𝑗.

Interpreting the CostCost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2▶ If 𝑤𝑖𝑗 ≈ 0, that pair can be placed very far apart
without increasing cost▶ If 𝑤𝑖𝑗 ≈ 1, the pair should be placed close
together in order to have small cost.

Exercise
Do you see a problem with the cost function?Cost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2
Hint: what embedding ⃗𝑓 minimizes it?

Problem▶ The cost is always minimized by taking ⃗𝑓 = 0.▶ This is a “trivial” solution. Not useful.▶ Fix: require ‖ ⃗𝑓‖ = 1▶ Really, any number would work. 1 is convenient.

Exercise
Do you see another problemwith the cost function,
even if we require ⃗𝑓 to be a unit vector?Cost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2
Hint: what other choice of ⃗𝑓 will always make this
zero?

Problem▶ The cost is always minimized by taking⃗𝑓 = 1√𝑛(1, 1, … , 1)𝑇.▶ This is a “trivial” solution. Again, not useful.▶ Fix: require ⃗𝑓 to be orthogonal to (1, 1, … , 1)𝑇.▶ Written: ⃗𝑓 ⟂ (1, 1, … , 1)𝑇▶ Ensures that solution is not close to trivial solution▶ Might seem strange, but it will work!

The New Optimization Problem▶ Given: an 𝑛 × 𝑛 similarity matrix 𝑊▶ Compute: embedding vector ⃗𝑓 minimizingCost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2
subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇

How?▶ This looks difficult.▶ Let’s write it in matrix form.▶ We’ll see that it is actually (hopefully) familiar.

