psC /140&

Represaitaton [earm@

Lecture 13 Part 1

Nonlinear Dimensionality Reduction

Scenario

You want to train a
classifier on this data.

It would be easier if we
could “unroll” the spiral.

Data seems to be
one-dimensional, even
though In two dimensions.

Dimensionality reduction?

PCA?
Does PCA work here?

Try projecting onto one principal component.

N e s
. L O
% Voo, . 2
’~.- P [4
%/ %gee. o .
. e
° L) LR

No

@ 2@ @ BN G) e W

PCA?

PCA simply “rotates” the data.
No amount of rotation will “unroll” the spiral.

We need a fundamentally different approach
that works for non-linear patterns.

Today

Non-linear dimensionality reduction via
spectral embeddings.
/\M

Rethinking Dimensionality

Each point is an (x, y) 2~
coordinate in two
dimensional space

But the structure is i
one-dimensional

Could (roughly) locate
point using one number:
distance from end.

Rethinking Dimensionality

Rethinking Dimensionality

Rethinking Dimensionality

) M P@(WM&%
Informally: data expressed with d dimensions,
but its really confined toR-dimensional rei\iono/

(K.

This region is called a manifold
d is the ambient dimension

R is the intrinsic dimension

Example

"

Ambient dimension: 2

Intrinsic dimension: 1

Example

Ambient dimension: 3

Intrinsic dimension: 2

g@ﬁq—fé

Ambient dimension: %

Intrinsic dimension:) _

Manifold Learning
Given: data in high dimensions 74

Recover: the low-dimensional manifold /Q

P | ypes of Manifolds
M’w (D é’"_ffﬁo

Manifolds can be linear
E.g., linear subpaces <hyperplanes
Learned by PCA X

Can also be non-linear (locally linear)

Example: the spi
Learned by Laplacian eigenmaps, among others \(L‘/(V
—

&\\\g&wbb‘
&ﬂ ® [] []
O
Ry Euclidean vs. Geodesic Distances

Euclidean distance: the “straight-line” distance
Geodesic distance: the distance along the manifold

Euclidean vs. Geodesic Distances

Euclidean distance: the “straight-line” distance
Geodesic distance: the distance along the manifold

et T
Euclidean vs. Geodesic Distances

If data is close to a linear manifold, geodesic =
Euclidean i—

L =
Otherwise, can be very different

Non-Linear Dimensionality
Reduction

Goal: Map points in RY to R"

Such thatif X and y are close in
distance in RY, they are close in Euclidear%é> Compgn

distance in R¥ Z@k gb\rxif(@gp
N\ ———_ Comms

Embeddings

A b,

pDsC /1408

Represaitaton [earmg

Lecture 13 Part 2

Embedding Similarities

NES Naqwr W} @mﬁ@/@o&\@

, Similar Netflix Users /?/%
/ — R

uppose you are a data scientist at Netflix

\(QJ

You're given an n x n similarity matrix-W of users
entry (i,) tells you how similar user i and userj are -
1 means “very similar”, 0 means “not at all”

Goal: visualize to find patterns

Idea
We like scatter plots. Can we make one?
Users are not vectors / points!

They are nodes in a similarity graph

Similarity Graphs

Similarity matrices can be thought of as weighted graphs,
and vice versa.

A 8 ¢ p 0,/,;@

/]{/ /;0/) o0z g/

B 0/ / 0.7 \ /0'4
C \ 0.2 0.% / 0.2 %

G word WL
oal = [p"

s~

Embed nodes of a similarity graph as points.

hculd map to nearby points.

o
(jeﬂ/f/ {‘(’VY W/(f /(g %// A &u[/‘/&”& All}f&’w»b(/

Today

We will design a graph embedding approach:
Spectral embeddings via Laplacian eigenmaps
A —

More Formally

Given:
A similarity graph with n nodes
a number of dimensions, kR

Compute: an embedding of the n points into R¥
so that similar objects are placed nearby

To Start

Given:
A similarity graph with n nodes

Compute: an embedding of the n points into R’
so that similar objects are placed nearby

Vectors as Embeddings into R’
Suppose we have n nodes (objects) to embed
Assume they are numbered 1, 2, ..., n

Let f,, f5,---, [, € R be the embeddings

-

We can pack them all into a vector: f.

Goal: find a good set of embeddings, f

Example

f=01,3,2,-4)

An Optimization Problem
We'll turn it into an optimization problem:

Step 1: Design a cost function quantifying how
good a particular embedding f is

Step 2: Minimize the cost

Example

Which is the best embedding?

Cost Function for Embeddings

ldea: cost is low if similar points are close

Here is one approach:

Cost(f) = > > wylfi - f;)?

n
=1 j=1

where w;; is the weight between i and j.

Interpreting the Cost

cost(F)= > > wif; - £,

i=1 j=1
If w;; = 0, that pair can be placed very far apart
without increasing cost

If w;; = 1, the pair should be placed close
together in order to have small cost.

Do you see a problem with the cost function?

Cost(f) = > > wyl(fi - f;)?

n
i=1 j=1

-

Hint: what embedding f minimizes it?

Problem
The cost is always minimized by taking f = 0.
This is a “trivial” solution. Not useful.

Fix: require ||f]| = 1
Really, any number would work. 1is convenient.

Do you see another problem with the cost function,
even if we require f to be a unit vector?

Cost(f) = > S wy(fi - £

i=1 j=1

Hint: what other choice of fwill always make this
zero?

Problem

The cost is always minimized by taking

-

_ 1 T
f=0,.,0)

This is a “trivial” solution. Again, not useful.

Fix: require f to be orthogonal to (1,1, ..., 1)".
Written: f L (1,1,...,1)
Ensures that solution is not close to trivial solution
Might seem strange, but it will work!

The New Optimization Problem

Given: an n x n similarity matrix W

Compute: embedding vector f minimizing
5 n

Cost(f) = Z

=1

I

wi(f; - £;)

.

n
J=1

subjectto [|f|| =1and f L (1,1,..., 1)

How?
This looks difficult.
Let's write it in matrix form.

We'll see that it is actually (hopefully) familiar.

