## PCA: $k$ Components

$\triangleright$ Given data $\left\{\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}\right\} \in \mathbb{R}^{d}$, number of components $k$.

- Compute covariance matrix $C$, top $k \leq d$ eigenvectors $\vec{u}^{(1)}$, $\vec{u}^{(2)}, \ldots, \vec{u}^{(k)}$.
- For any vector $\vec{x} \in \mathbb{R}$, its new representation in $\mathbb{R}^{k}$ is $\vec{z}=\left(z_{1}, z_{2}, \ldots z_{k}\right)^{\top}$, where:

$$
\begin{aligned}
& z_{1}=\vec{x} \cdot \vec{u}^{(1)} \\
& z_{2}=\vec{x} \cdot \vec{u}^{(2)} \\
& \vdots \\
& z_{k}=\vec{x} \cdot \vec{u}^{(k)}
\end{aligned}
$$

## Matrix Formulation

- Let $X$ be the data matrix ( $n$ rows, $d$ columns)
- Let $U$ be matrix of the $k$ eigenvectors as columns ( $d$ rows, $k$ columns)
- The new representation: $Z=X U$

DEC $140 B$ Representation Learning Lecture 12 Part 1
Reconstructions

## Reconstructing Points

- PCA helps us reduce dimensionality from $\mathbb{R}^{d} \rightarrow R^{k}$
- Suppose we have the "new" representation in $\mathbb{R}^{k}$.
- Can we "go back" to $\mathbb{R}^{d}$ ?
- And why would we want to?


## Back to $\mathbb{R}^{d}$

- Suppose new representation of $\vec{x}$ is $z$.
$\Rightarrow z=\vec{x} \cdot \vec{u}^{(1)}$
- Idea: $\vec{x} \approx z \vec{u}^{(1)}$



## Reconstructions

$\Rightarrow$ Given a "new" representation of $\vec{x}, \vec{z}=\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{R}^{k}$

- And top $k$ eigenvectors, $\vec{u}^{(1)}, \ldots, \vec{u}^{(k)}$
- The reconstruction of $\vec{x}$ is

$$
z_{1} \vec{u}^{(1)}+z_{2} \vec{u}^{(2)}+\ldots+z_{k} \vec{u}^{(k)}=U \vec{z}
$$

## Reconstruction Error

- The reconstruction approximates the original point, $\vec{x}$.
- The reconstruction error for a single point, $\vec{x}$ :

$$
\|\vec{x}-U \vec{z}\|^{2}
$$

- Total reconstruction error:


$$
\sum_{i=1}^{n}\left\|\vec{x}^{(i)}-U \vec{z}^{(i)}\right\|^{2}
$$

DEC $140 B$ Representation Learning Lecture 12 Part 2
Interpreting PCA

## Three Interpretations

- What is PCA doing?
- Three interpretations:

1. Mazimizing variance
2. Finding the best reconstruction
3. Decorrelation

## Recall: Matrix Formulation

- Given data matrix $X$.
- Compute new data matrix $Z=X U$.
- PCA: choose $U$ to be matrix of eigenvectors of $C$.
- For now: suppose $U$ can be anything - but columns should be orthonormal
- Orthonormal = "not redundant"


## View \#1: Maximizing Variance

- This was the view we used to derive PCA
- Define the total variance to be the sum of the variances of each column of $Z$.
- Claim: Choosing $U$ to be top eigenvectors of $C$ maximizes the total variance among all choices of orthonormal $U$.


## Main Idea

PCA maximizes the total variance of the new data. l.e., chooses the most "interesting" new features which are not redundant.

## View \#2: Minimizing Reconstruction Error

- Recall: total reconstruction error

$$
\sum_{i=1}^{n}\left\|\vec{X}^{(i)}-U \vec{z}^{(i)}\right\|^{2}
$$

- Goal: minimize total reconstruction error.
- Claim: Choosing $U$ to be top eigenvectors of $C$ minimizes reconstruction error among all choices of orthonormal $U$


## Main Idea

PCA minimizes the reconstruction error. It is the "best" projection of points onto a linear subspace of dimensionality $k$. When $k=d$, the reconstruction error is zero.

## View \#3: Decorrelation

- PCA has the effect of "decorrelating" the features.




## Main Idea

PCA learns a new representation by rotating the data into a basis where the features are uncorrelated (not redundant). That is: the natural basis vectors are the principal directions (eigenvectors of the covariance matrix). PCA changes the basis to this natural basis.

$$
\text { DST } 140 B
$$

Representation Learning Lecture 12 Part 3
PCA in Practice

## PCA in Practice

- PCA is often used in preprocessing before classifier is trained, etc.
- Must choose number of dimensions, $k$.
- One way: cross-validation.
- Another way: the elbow method.


## Total Variance

- The total variance is the sum of the eigenvalues of the covariance matrix.
- Or, alternatively, sum of variances in each orthogonal basis direction.



## Caution

- PCA's assumption: variance is interesting
- PCA is totally unsupervised
- The direction most meaningful for classification may not have large variance!

DEC $140 B$ Representation Learning | Lecture 12 |
| :---: | Part 4

## Scenario

- You want to train a classifier on this data.
- It would be easier if we could "unroll" the spiral.
- Data seems to be one-dimensional, even though in two dimensions.
- Dimensionality reduction?



## PCA?

Does PCA work here?

- Try projecting onto one principal component.


No

## PCA?

- PCA simply "rotates" the data.
- No amount of rotation will "unroll" the spiral.
- We need a fundamentally different approach that works for non-linear patterns.


## Today

Non-linear dimensionality reduction via spectral embeddings.

## Rethinking Dimensionality

$\Rightarrow$ Each point is an $(x, y)$ coordinate in two dimensional space

- But the structure is one-dimensional
- Could (roughly) locate point using one number: distance from end.



## Rethinking Dimensionality



## Rethinking Dimensionality



## Rethinking Dimensionality

- Informally: data expressed with d dimensions, but its really confined to $k$-dimensional region
- This region is called a manifold
- $d$ is the ambient dimension
- $k$ is the intrinsic dimension


## Example

Ambient dimension: 2

- Intrinsic dimension: 1



## Example

Ambient dimension: 3

- Intrinsic dimension: 2



## Example

## Ambient dimension:

- Intrinsic dimension:



## Manifold Learning

Given: data in high dimensions

- Recover: the low-dimensional manifold


## Types of Manifolds

- Manifolds can be linear
- E.g., linear subpaces - hyperplanes
- Learned by PCA
- Can also be non-linear (locally linear)
- Example: the spiral data
- Learned by Laplacian eigenmaps, among others


## Euclidean vs. Geodesic Distances

- Euclidean distance: the "straight-line" distance
- Geodesic distance: the distance along the manifold



## Euclidean vs. Geodesic Distances

- Euclidean distance: the "straight-line" distance
- Geodesic distance: the distance along the manifold


## Euclidean vs. Geodesic Distances

- If data is close to a linear manifold, geodesic $\approx$ Euclidean
- Otherwise, can be very different


## Non-Linear Dimensionality Reduction

- Goal: Map points in $\mathbb{R}^{d}$ to $\mathbb{R}^{k}$
- Such that: if $\vec{x}$ and $\vec{y}$ are close in geodesic distance in $\mathbb{R}^{d}$, they are close in Euclidean distance in $\mathbb{R}^{k}$


## Embeddings



