
PCA: 𝑘 Components▶ Given data { ⃗𝑥(1), ..., ⃗𝑥(𝑛)} ∈ ℝ𝑑, number of components 𝑘.▶ Compute covariance matrix 𝐶, top 𝑘 ≤ 𝑑 eigenvectors 𝑢⃗(1),𝑢⃗(2), …, 𝑢⃗(𝑘).▶ For any vector ⃗𝑥 ∈ ℝ, its new representation in ℝ𝑘 is⃗𝑧 = (𝑧1, 𝑧2, … 𝑧𝑘)𝑇, where: 𝑧1 = ⃗𝑥 ⋅ 𝑢⃗(1)𝑧2 = ⃗𝑥 ⋅ 𝑢⃗(2)⋮𝑧𝑘 = ⃗𝑥 ⋅ 𝑢⃗(𝑘)



Matrix Formulation▶ Let 𝑋 be the data matrix (𝑛 rows, 𝑑 columns)▶ Let 𝑈 be matrix of the 𝑘 eigenvectors as columns
(𝑑 rows, 𝑘 columns)▶ The new representation: 𝑍 = 𝑋𝑈
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Reconstructions



Reconstructing Points▶ PCA helps us reduce dimensionality fromℝ𝑑 → 𝑅𝑘▶ Suppose we have the “new” representation in ℝ𝑘.▶ Can we “go back” to ℝ𝑑?▶ And why would we want to?



Back to ℝ𝑑
▶ Suppose new
representation of ⃗𝑥 is 𝑧.▶ 𝑧 = ⃗𝑥 ⋅ 𝑢⃗(1)▶ Idea: ⃗𝑥 ≈ 𝑧𝑢⃗(1)



Reconstructions▶ Given a “new” representation of ⃗𝑥, ⃗𝑧 = (𝑧1, … , 𝑧𝑘) ∈ ℝ𝑘▶ And top 𝑘 eigenvectors, 𝑢⃗(1), … , 𝑢⃗(𝑘)▶ The reconstruction of ⃗𝑥 is𝑧1𝑢⃗(1) + 𝑧2𝑢⃗(2) + … + 𝑧𝑘𝑢⃗(𝑘) = 𝑈 ⃗𝑧



Reconstruction Error▶ The reconstruction approximates
the original point, ⃗𝑥.▶ The reconstruction error for a
single point, ⃗𝑥:‖ ⃗𝑥 − 𝑈 ⃗𝑧‖2▶ Total reconstruction error:𝑛∑𝑖=1 ‖ ⃗𝑥(𝑖) − 𝑈 ⃗𝑧(𝑖)‖2
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Interpreting PCA



Three Interpretations▶ What is PCA doing?▶ Three interpretations:
1. Mazimizing variance
2. Finding the best reconstruction
3. Decorrelation



Recall: Matrix Formulation▶ Given data matrix 𝑋.▶ Compute new data matrix 𝑍 = 𝑋𝑈.▶ PCA: choose 𝑈 to be matrix of eigenvectors of 𝐶.▶ For now: suppose 𝑈 can be anything – but
columns should be orthonormal▶ Orthonormal = “not redundant”



View #1: Maximizing Variance▶ This was the view we used to derive PCA▶ Define the total variance to be the sum of the
variances of each column of 𝑍.▶ Claim: Choosing 𝑈 to be top eigenvectors of 𝐶
maximizes the total variance among all choices
of orthonormal 𝑈.



Main Idea
PCA maximizes the total variance of the new data.
I.e., chooses the most “interesting” new features
which are not redundant.



View #2: Minimizing Reconstruction
Error▶ Recall: total reconstruction error𝑛∑𝑖=1 ‖ ⃗𝑥(𝑖) − 𝑈 ⃗𝑧(𝑖)‖2▶ Goal: minimize total reconstruction error.▶ Claim: Choosing 𝑈 to be top eigenvectors of 𝐶 minimizes

reconstruction error among all choices of orthonormal 𝑈



Main Idea
PCA minimizes the reconstruction error. It is the
“best” projection of points onto a linear subspace
of dimensionality 𝑘. When 𝑘 = 𝑑, the reconstruc-
tion error is zero.



View #3: Decorrelation▶ PCA has the effect of “decorrelating” the features.



Main Idea
PCA learns a new representation by rotating the
data into a basis where the features are uncorre-
lated (not redundant). That is: the natural basis

vectors are the principal directions (eigenvectors
of the covariance matrix). PCA changes the basis
to this natural basis.
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PCA in Practice



PCA in Practice▶ PCA is often used in preprocessing before
classifier is trained, etc.▶ Must choose number of dimensions, 𝑘.▶ One way: cross-validation.▶ Another way: the elbow method.



Total Variance▶ The total variance is the sum of the eigenvalues
of the covariance matrix.▶ Or, alternatively, sum of variances in each
orthogonal basis direction.





Caution▶ PCA’s assumption: variance is interesting▶ PCA is totally unsupervised▶ The direction most meaningful for classification
may not have large variance!
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Nonlinear Dimensionality Reduction



Scenario▶ You want to train a
classifier on this data.▶ It would be easier if we
could “unroll” the spiral.▶ Data seems to be
one-dimensional, even
though in two dimensions.▶ Dimensionality reduction?



PCA?▶ Does PCA work here?▶ Try projecting onto one principal component.



No



PCA?▶ PCA simply “rotates” the data.▶ No amount of rotation will “unroll” the spiral.▶ We need a fundamentally different approach
that works for non-linear patterns.



Today▶ Non-linear dimensionality reduction via
spectral embeddings.



Rethinking Dimensionality

▶ Each point is an (𝑥, 𝑦)
coordinate in two
dimensional space▶ But the structure is
one-dimensional▶ Could (roughly) locate
point using one number:
distance from end.



Rethinking Dimensionality



Rethinking Dimensionality



Rethinking Dimensionality▶ Informally: data expressed with 𝑑 dimensions,
but its really confined to 𝑘-dimensional region▶ This region is called a manifold▶ 𝑑 is the ambient dimension▶ 𝑘 is the intrinsic dimension



Example

▶ Ambient dimension: 2▶ Intrinsic dimension: 1



Example

▶ Ambient dimension: 3▶ Intrinsic dimension: 2



Example

▶ Ambient dimension:▶ Intrinsic dimension:



Manifold Learning▶ Given: data in high dimensions▶ Recover: the low-dimensional manifold



Types of Manifolds▶ Manifolds can be linear▶ E.g., linear subpaces – hyperplanes▶ Learned by PCA▶ Can also be non-linear (locally linear)▶ Example: the spiral data▶ Learned by Laplacian eigenmaps, among others



Euclidean vs. Geodesic Distances▶ Euclidean distance: the “straight-line” distance▶ Geodesic distance: the distance along the manifold



Euclidean vs. Geodesic Distances▶ Euclidean distance: the “straight-line” distance▶ Geodesic distance: the distance along the manifold



Euclidean vs. Geodesic Distances▶ If data is close to a linear manifold, geodesic ≈
Euclidean▶ Otherwise, can be very different



Non-Linear Dimensionality
Reduction▶ Goal: Map points in ℝ𝑑 to ℝ𝑘▶ Such that: if ⃗𝑥 and ⃗𝑦 are close in geodesic

distance in ℝ𝑑, they are close in Euclidean
distance in ℝ𝑘



Embeddings


