
Claim▶ To maximize �⃗�𝑇𝐶�⃗� over unit vectors, choose �⃗� to
be the top eigenvector of 𝐶.▶ Proof:

 



PCA (for a single new feature)▶ Given: data points ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑
1. Compute the covariance matrix, 𝐶.
2. Compute the top eigenvector �⃗�, of 𝐶.
3. For 𝑖 ∈ {1, … , 𝑛}, create new feature:𝑧(𝑖) = �⃗� ⋅ ⃗𝑥(𝑖)
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Dimensionality Reduction with d ≥ 2



So far: PCA▶ Given: data ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑▶ Map: each data point ⃗𝑥(𝑖) to a single feature, 𝑧𝑖.▶ Idea: maximize the variance of the new feature▶ PCA: Let 𝑧𝑖 = ⃗𝑥(𝑖) ⋅ �⃗�, where �⃗� is top eigenvector of
covariance matrix, 𝐶.



Now: More PCA▶ Given: data ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑▶ Map: each data point ⃗𝑥(𝑖) to 𝑘 new features,⃗𝑧(𝑖) = (𝑧(𝑖)1 , … , 𝑧(𝑖)𝑘 ).



A Single Principal Component▶ Recall: the principal component is the top
eigenvector �⃗� of the covariance matrix, 𝐶▶ It is a unit vector in ℝ𝑑▶ Make a new feature 𝑧 ∈ ℝ for point ⃗𝑥 ∈ ℝ𝑑 by
computing 𝑧 = ⃗𝑥 ⋅ �⃗�▶ This is dimensionality reduction from ℝ𝑑 → ℝ1



Example▶ MNIST: 60,000 images in 784 dimensions▶ Principal component: �⃗� ∈ ℝ784▶ We can project an image in ℝ784 onto �⃗� to get a
single number representing the image



Example



Another Feature?▶ Clearly, mapping from ℝ784 → ℝ1 loses a lot of
information▶ What about mapping from ℝ784 → ℝ2? ℝ𝑘?



A Second Feature▶ Our first feature is a mixture of features, with weights
given by unit vector �⃗�(1) = (𝑢(1)1 , 𝑢(1)2 , … , 𝑢(1)𝑑 )𝑇.𝑧1 = �⃗�(1) ⋅ ⃗𝑥 = 𝑢(1)1 𝑥1 + … + 𝑢(1)𝑑 𝑥𝑑▶ To maximize variance, choose �⃗�(1) to be top
eigenvector of 𝐶.



A Second Feature▶ Make same assumption for second feature:𝑧2 = �⃗�(2) ⋅ ⃗𝑥 = 𝑢(2)1 𝑥1 + … + 𝑢(2)𝑑 𝑥𝑑▶ How do we choose �⃗�(2)?▶ We should choose �⃗�(2) to be orthogonal to �⃗�(1).▶ No “redundancy”.



A Second Feature



Intuition▶ Claim: if �⃗� and ⃗𝑣 are eigenvectors of a symmetric
matrix with distinct eigenvalues, they are
orthogonal.▶ We should choose �⃗�(2) to be an eigenvector of
the covariance matrix, 𝐶.▶ The second eigenvector of 𝐶 is called the second
principal component.



A Second Principal Component▶ Given a covariance matrix 𝐶.▶ The principal component �⃗�(1) is the top
eigenvector of 𝐶.▶ Points in the direction of maximum variance.▶ The second principal component �⃗�(2) is the
second eigenvector of 𝐶.▶ Out of all vectors orthogonal to the principal

component, points in the direction of max variance.



PCA: Two Components▶ Given data { ⃗𝑥(1), ..., ⃗𝑥(𝑛)} ∈ ℝ𝑑.▶ Compute covariance matrix 𝐶, top two
eigenvectors �⃗�(1) and �⃗�(2).▶ For any vector ⃗𝑥 ∈ ℝ, its new representation inℝ2 is ⃗𝑧 = (𝑧1, 𝑧2)𝑇, where:𝑧1 = ⃗𝑥 ⋅ �⃗�(1)𝑧2 = ⃗𝑥 ⋅ �⃗�(2)



Example



Example



Example



Example



Example



PCA: 𝑘 Components▶ Given data { ⃗𝑥(1), ..., ⃗𝑥(𝑛)} ∈ ℝ𝑑, number of components 𝑘.▶ Compute covariance matrix 𝐶, top 𝑘 ≤ 𝑑 eigenvectors �⃗�(1),�⃗�(2), …, �⃗�(𝑘).▶ For any vector ⃗𝑥 ∈ ℝ, its new representation in ℝ𝑘 is⃗𝑧 = (𝑧1, 𝑧2, … 𝑧𝑘)𝑇, where: 𝑧1 = ⃗𝑥 ⋅ �⃗�(1)𝑧2 = ⃗𝑥 ⋅ �⃗�(2)⋮𝑧𝑘 = ⃗𝑥 ⋅ �⃗�(𝑘)



Matrix Formulation▶ Let 𝑋 be the data matrix (𝑛 rows, 𝑑 columns)▶ Let 𝑈 be matrix of the 𝑘 eigenvectors as columns
(𝑑 rows, 𝑘 columns)▶ The new representation: 𝑍 = 𝑋𝑈
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Reconstructions



Reconstructing Points▶ PCA helps us reduce dimensionality fromℝ𝑑 → 𝑅𝑘▶ Suppose we have the “new” representation in ℝ𝑘.▶ Can we “go back” to ℝ𝑑?▶ And why would we want to?



Back to ℝ𝑑
▶ Suppose new
representation of ⃗𝑥 is 𝑧.▶ 𝑧 = ⃗𝑥 ⋅ �⃗�(1)▶ Idea: ⃗𝑥 ≈ 𝑧�⃗�(1)



Reconstructions▶ Given a “new” representation of ⃗𝑥, ⃗𝑧 = (𝑧1, … , 𝑧𝑘) ∈ ℝ𝑘▶ And top 𝑘 eigenvectors, �⃗�(1), … , �⃗�(𝑘)▶ The reconstruction of ⃗𝑥 is𝑧1�⃗�(1) + 𝑧2�⃗�(2) + … + 𝑧𝑘�⃗�(𝑘) = 𝑈 ⃗𝑧



Reconstruction Error▶ The reconstruction approximates
the original point, ⃗𝑥.▶ The reconstruction error for a
single point, ⃗𝑥:‖ ⃗𝑥 − 𝑈 ⃗𝑧‖2▶ Total reconstruction error:𝑛∑𝑖=1 ‖ ⃗𝑥(𝑖) − 𝑈 ⃗𝑧(𝑖)‖2
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Interpreting PCA



Three Interpretations▶ What is PCA doing?▶ Three interpretations:
1. Mazimizing variance
2. Finding the best reconstruction
3. Decorrelation



Recall: Matrix Formulation▶ Given data matrix 𝑋.▶ Compute new data matrix 𝑍 = 𝑋𝑈.▶ PCA: choose 𝑈 to be matrix of eigenvectors of 𝐶.▶ For now: suppose 𝑈 can be anything – but
columns should be orthonormal▶ Orthonormal = “not redundant”



View #1: Maximizing Variance▶ This was the view we used to derive PCA▶ Define the total variance to be the sum of the
variances of each column of 𝑍.▶ Claim: Choosing 𝑈 to be top eigenvectors of 𝐶
maximizes the total variance among all choices
of orthonormal 𝑈.



Main Idea
PCA maximizes the total variance of the new data.
I.e., chooses the most “interesting” new features
which are not redundant.



View #2: Minimizing Reconstruction
Error▶ Recall: total reconstruction error𝑛∑𝑖=1 ‖ ⃗𝑥(𝑖) − 𝑈 ⃗𝑧(𝑖)‖2▶ Goal: minimize total reconstruction error.▶ Claim: Choosing 𝑈 to be top eigenvectors of 𝐶 minimizes

reconstruction error among all choices of orthonormal 𝑈



Main Idea
PCA minimizes the reconstruction error. It is the
“best” projection of points onto a linear subspace
of dimensionality 𝑘. When 𝑘 = 𝑑, the reconstruc-
tion error is zero.



View #3: Decorrelation▶ PCA has the effect of “decorrelating” the features.



Main Idea
PCA learns a new representation by rotating the
data into a basis where the features are uncorre-
lated (not redundant). That is: the natural basis

vectors are the principal directions (eigenvectors
of the covariance matrix). PCA changes the basis
to this natural basis.


