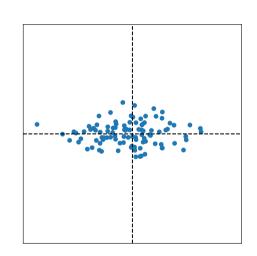
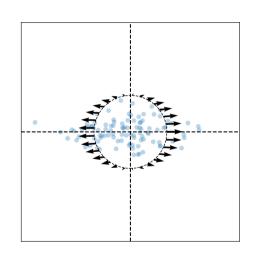
DSC 1408 Representation Learning

Lecture 10 | Part 1

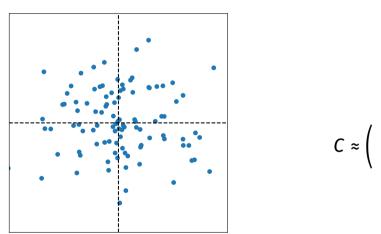
- Covariance matrices are symmetric.
- They have axes of symmetry (eigenvectors and eigenvalues).
- What are they?

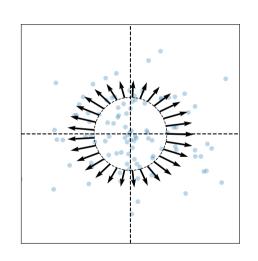




Eigenvectors:

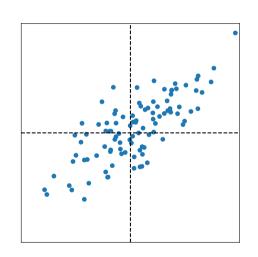
$$\vec{u}^{(1)} \approx$$

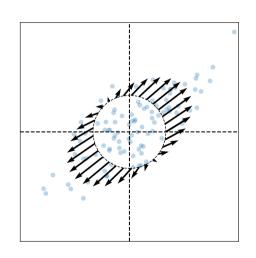




Eigenvectors:

$$\vec{u}^{(2)}$$





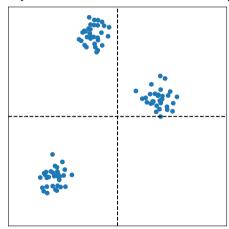
Eigenvectors:

$$\vec{u}^{(1)} \approx$$

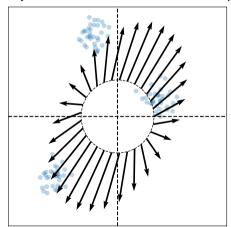
Intuitions

- ► The **eigenvectors** of the covariance matrix describe the data's "principal directions"
 - C tells us something about data's shape.
- ► The **top eigenvector** points in the direction of "maximum variance".
- ► The **top eigenvalue** is proportional to the variance in this direction.

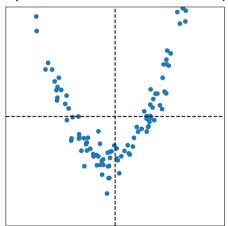
- ► The data doesn't always look like this.
- ► We can always compute covariance matrices.
- ► They just may not describe the data's shape very well.



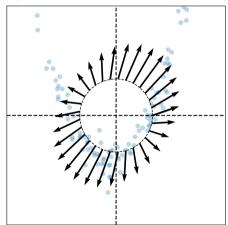
- ► The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.



- ► The data doesn't always look like this.
- ► We can always compute covariance matrices.
- ► They just may not describe the data's shape very well.



- ► The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.



DSC 1408 Representation Learning

Lecture 10 | Part 2

PCA, More Formally

The Story (So Far)

- We want to create a single new feature, z.
- Our idea: $z = \vec{x} \cdot \vec{u}$; choose \vec{u} to point in the "direction of maximum variance".
- Intuition: the top eigenvector of the covariance matrix points in direction of maximum variance.

More Formally...

We haven't actually defined "direction of maximum variance"

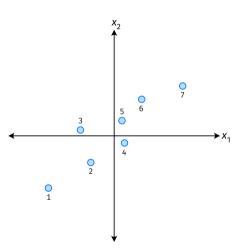
Let's derive PCA more formally.

Variance in a Direction

- ightharpoonup Let \vec{u} be a unit vector.
- $ightharpoonup z^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$ is the new feature for $\vec{x}^{(i)}$.
- ► The variance of the new features is:

$$Var(z) = \frac{1}{n} \sum_{i=1}^{n} (z^{(i)} - \mu_z)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\vec{x}^{(i)} \cdot \vec{u} - \mu_z)^2$$

Example



Note

If the data are centered, then $\mu_z = 0$ and the variance of the new features is:

$$Var(z) = \frac{1}{n} \sum_{i=1}^{n} (z^{(i)})^{2}$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\vec{x}^{(i)} \cdot \vec{u})^{2}$$

Goal

▶ The variance of a data set in the direction of \vec{u} is:

$$g(\vec{u}) = \frac{1}{n} \sum_{i=1}^{n} \left(\vec{x}^{(i)} \cdot \vec{u} \right)^2$$

ightharpoonup Our goal: Find a unit vector \vec{u} which maximizes g.

$$\frac{1}{n}\sum_{i=1}^{n}\left(\vec{x}^{(i)}\cdot\vec{u}\right)^{2}=\vec{u}^{T}C\vec{u}$$

Our Goal (Again)

Find a unit vector \vec{u} which maximizes $\vec{u}^T C \vec{u}$.

To maximize $\vec{u}^T C \vec{u}$ over unit vectors, choose \vec{u} to be the top eigenvector of C.

Proof:

Show that the maximizer of
$$||A\vec{x}||$$
 s.t., $||\vec{x}|| = 1$ is the top eigenvector of A .

$$||A\vec{x}|| = A \left(b_1 \vec{u}^{(1)} + b_2 \vec{u}^{(2)} \right)$$

$$= b_1 \lambda_1 \vec{u}^{(1)} + b_2 \lambda_2 \vec{u}^{(2)}$$

$$= b_1 \lambda_1 \vec{u}^{(2)} + b_2 \lambda_2 \vec{u}^{(2)}$$

To maximize $\vec{u}^T C \vec{u}$ over unit vectors, choose \vec{u} to be the top eigenvector of C.

Proof:

To maximize $\vec{u}^T C \vec{u}$ over unit vectors, choose \vec{u} to be the top eigenvector of C.

Proof:

PCA (for a single new feature)

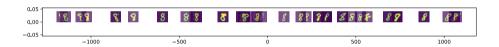
- ▶ **Given**: data points $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$
- 1. Compute the covariance matrix, C.
- 2. Compute the top eigenvector \vec{u} , of C.
- 3. For $i \in \{1, ..., n\}$, create new feature:

$$z^{(i)} = \vec{u} \cdot \vec{x}^{(i)}$$

A Parting Example

- MNIST: 60,000 images in 784 dimensions
- Principal component: $\vec{u} \in \mathbb{R}^{784}$
- We can project an image in \mathbb{R}^{784} onto \vec{u} to get a single number representing the image

Example



DSC 1408 Representation Learning

Lecture 10 | Part 3

Dimensionality Reduction with $d \ge 2$

So far: PCA

- ▶ **Given**: data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$
- **Map**: each data point $\vec{x}^{(i)}$ to a single feature, z_i .
 - ► Idea: maximize the variance of the new feature
- **PCA**: Let $z_i = \vec{x}^{(i)} \cdot \vec{u}$, where \vec{u} is top eigenvector of covariance matrix, C.

Now: More PCA

- ▶ **Given**: data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$
- Map: each data point $\vec{x}^{(i)}$ to k new features, $\vec{z}^{(i)} = (z_1^{(i)}, \dots, z_k^{(i)})$.

A Single Principal Component

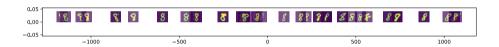
- Recall: the **principal component** is the top eigenvector \vec{u} of the covariance matrix, C
- ▶ It is a unit vector in \mathbb{R}^d

- Make a new feature $z \in \mathbb{R}$ for point $\vec{x} \in \mathbb{R}^d$ by computing $z = \vec{x} \cdot \vec{u}$
- ► This is dimensionality reduction from $\mathbb{R}^d \to \mathbb{R}^1$

Example

- MNIST: 60,000 images in 784 dimensions
- Principal component: $\vec{u} \in \mathbb{R}^{784}$
- We can project an image in \mathbb{R}^{784} onto \vec{u} to get a single number representing the image

Example



Another Feature?

- ► Clearly, mapping from $\mathbb{R}^{784} \to \mathbb{R}^1$ loses a lot of information
- ▶ What about mapping from $\mathbb{R}^{784} \to \mathbb{R}^2$? \mathbb{R}^k ?

A Second Feature

Our first feature is a mixture of features, with weights given by unit vector $\vec{u}^{(1)} = (u_1^{(1)}, u_2^{(1)}, ..., u_d^{(1)})^T$.

$$z_1 = \vec{u}^{(1)} \cdot \vec{x} = u_1^{(1)} x_1 + \dots + u_d^{(1)} x_d$$

To maximize variance, choose $\vec{u}^{(1)}$ to be top eigenvector of C.

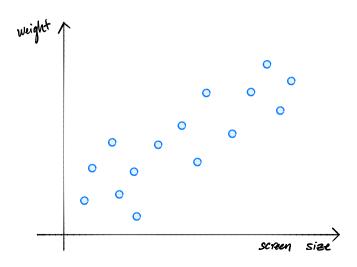
A Second Feature

Make same assumption for second feature:

$$z_2 = \vec{u}^{(2)} \cdot \vec{x} = u_1^{(2)} x_1 + \dots + u_d^{(2)} x_d$$

- ightharpoonup How do we choose $\vec{u}^{(2)}$?
- ▶ We should choose $\vec{u}^{(2)}$ to be **orthogonal** to $\vec{u}^{(1)}$.
 - No "redundancy".

A Second Feature



Intuition

- Claim: if \vec{u} and \vec{v} are eigenvectors of a symmetric matrix with distinct eigenvalues, they are orthogonal.
- We should choose $\vec{u}^{(2)}$ to be an **eigenvector** of the covariance matrix, C.
- ► The second eigenvector of *C* is called the **second principal component**.

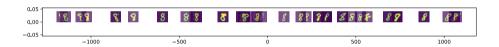
A Second Principal Component

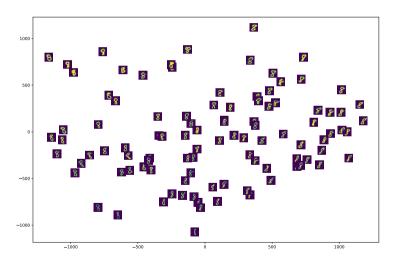
- ► Given a covariance matrix C.
- The principal component $\vec{u}^{(1)}$ is the top eigenvector of C.
 - Points in the direction of maximum variance.
- The second principal component $\vec{u}^{(2)}$ is the second eigenvector of C.
 - Out of all vectors orthogonal to the principal component, points in the direction of max variance.

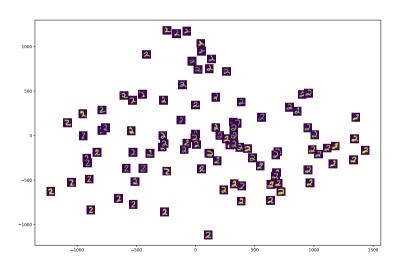
PCA: Two Components

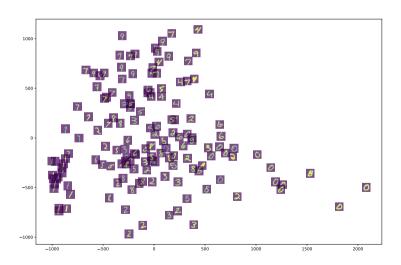
- ► Given data $\{\vec{x}^{(1)}, ..., \vec{x}^{(n)}\} \in \mathbb{R}^d$.
- Compute covariance matrix C, top two eigenvectors $\vec{u}^{(1)}$ and $\vec{u}^{(2)}$.
- For any vector $\vec{x} \in \mathbb{R}$, its new representation in \mathbb{R}^2 is $\vec{z} = (z_1, z_2)^T$, where:

$$z_1 = \vec{x} \cdot \vec{u}^{(1)}$$
$$z_2 = \vec{x} \cdot \vec{u}^{(2)}$$









PCA: *k* Components

- ► Given data $\{\vec{x}^{(1)}, ..., \vec{x}^{(n)}\} \in \mathbb{R}^d$, number of components k.
- Compute covariance matrix C, top $k \le d$ eigenvectors $\vec{u}^{(1)}$, $\vec{u}^{(2)}$, ..., $\vec{u}^{(k)}$.
- For any vector $\vec{x} \in \mathbb{R}$, its new representation in \mathbb{R}^k is $\vec{z} = (z_1, z_2, ... z_k)^T$, where:

$$z_1 = \vec{x} \cdot \vec{u}^{(1)}$$

$$z_2 = \vec{x} \cdot \vec{u}^{(2)}$$

$$\vdots$$

$$z_k = \vec{x} \cdot \vec{u}^{(k)}$$

Matrix Formulation

Let X be the **data matrix** (n rows, d columns)

- Let U be matrix of the k eigenvectors as columns (d rows, k columns)
- ► The new representation: Z = XU