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Lecture 10 Part 1

Visualizing Covariance Matrices



Visualizing Covariance Matrices
Covariance matrices are symmetric.

They have axes of symmetry (eigenvectors and
eigenvalues).

What are they?



Visualizing Covariance Matrices




Visualizing Covariance Matrices
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Visualizing Covariance Matrices
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Visualizing Covariance Matrices
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Visualizing Covariance Matrices
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Visualizing Covariance Matrices

;7" é} Eigenvectors:
ZoF T
Zde 42




Intuitions

The eigenvectors of the covariance matrix

describe the data’s “principal directions”
C tells us something about data’s shape.

The top eigenvector points in the direction of
“maximum variance”.

The top eigenvalue is proportional to the
variance in this direction.



Caution

The data doesn’t always look like this.
We can always compute covariance matrices.
They just may not describe the data’s shape very well.
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Caution

The data doesn’t always look like this.
We can always compute covariance matrices.
They just may not describe the data’s shape very well.




Caution

The data doesn’t always look like this.
We can always compute covariance matrices.
They just may not describe the data’s shape very well.
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Caution

The data doesn’t always look like this.
We can always compute covariance matrices.
They just may not describe the data’s shape very well.

- /S-------
S

1

N
=
7




pDsC /4o0&

Represaitaton [ earmg

Lecture 10 Part 2

PCA, More Formally



The Story (So Far)

We want to create a single new feature, z.

Our idea: z = X - Ul; choose U to point in the
“direction of maximum variance”.

Intuition: the top eigenvector of the covariance
matrix points in direction of maximum variance.



More Formally...

We haven't actually defined “direction of
maximum variance”

Let's derive PCA more formally.



Variance in a Direction
Let U be a unit vector.
20 = 30) . {1 is the new feature for X,

The variance of the new features is:

(20 - p,)?
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Note

If the data are centered, then p, = 0 and the
variance of the new features is:
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Goal

The variance of a data set in the direction of 4 is:

Our goal: Find a unit vector & which maximizes g.






Our Goal (Again)

Find a unit vector  which maximizes u'Cd.



Claim

To maximize 4'Cu over unit vectors, choose i to
be the top eigenvector of C.

Proof:
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Claim

To maximize 4'Cu over unit vectors, choose i to
be the top eigenvector of C.

Proof:



Claim

To maximize 4'Cu over unit vectors, choose i to
be the top eigenvector of C.

Proof:



PCA (for a single new feature)
Given: data points (", ..., X" e R4
Compute the covariance matrix, C.

Compute the top eigenvector i, of C.

For i €{1,...,n}, create new feature:

FOR 0



A Parting Example
MNIST: 60,000 images in 784 dimensions
Principal component: i € R’8

We can project an image in R’®* onto 4 to get a
single number representing the image
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Lecture 10 Part 3

Dimensionality Reduction with d > 2



So far: PCA
Given: data XV, ..., X" e R4

Map: each data point X to a single feature, z,.
Idea: maximize the variance of the new feature

PCA: Let z, = X - §j, where i is top eigenvector of
covariance matrix, C.



Now: More PCA
Given: data ("), ..., X" e RY

Map: each data point X() to k new features,
20 = @,..., 7).



A Single Principal Component

Recall: the principal component is the top
eigenvector i of the covariance matrix, C

It is a unit vector in R

Make a new feature z € R for point X € R? by
computingz=X- 0

This is dimensionality reduction from R4 —» R’



Example
MNIST: 60,000 images in 784 dimensions
Principal component: i € R’8

We can project an image in R’®* onto 4 to get a
single number representing the image



0.05

0.00

—0.05

Example

0 H BEH H EE O I EeEE

-1000 -500 0 500

1000




Another Feature?

Clearly, mapping from R’ — R loses a lot of
information

What about mapping from R78* — R2?? RF?



A Second Feature

Our first feature is a mixture of features, with weights
given by unit vector i = (u{", u{", ..., ul)".

- M.y =y (1)
z, = 0MW X = 0%, + v uyxy

To maximize variance, choose (") to be top
eigenvector of C.



A Second Feature

Make same assumption for second feature:

_ 5 2 _ 2 (2)
z, = U@ X = ux, + v Uy xy
How do we choose i(¥)?

We should choose ii® to be orthogonal to i(".
No “redundancy”.



A Second Feature
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Intuition

Claim: if U and v are eigenvectors of a symmetric
matrix with distinct eigenvalues, they are
orthogonal.

We should choose ii? to be an eigenvector of
the covariance matrix, C.

The second eigenvector of C is called the second
principal component.



A Second Principal Component
Given a covariance matrix C.

The principal component &) is the top
eigenvector of C.
Points in the direction of maximum variance.

The second principal component ii? is the
second eigenvector of C.

Out of all vectors orthogonal to the principal
component, points in the direction of max variance.



PCA: Two Components
Given data {x(",.., X(M} e RY.

Compute covariance matrix C, top two
eigenvectors 4" and (2.

For any vector X € R, its new representation in
R? is Z = (z,2,)", where:

Z4

]
X1 X4

Z;
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PCA: kR Components
Given data {X(", .., XM} € RY number of components k.

Compute covariance matrix C, top k < d eigenvectors (",
(2 ij(R)
@, .. ah.

For any vector X € R, its new representation in R* is
7 =(z4,2,-.-2,)", Where:

—y.00
z,=X%-aM
- yv.n2
z,=X-0@
- 3.k
z,=Xx-a®



Matrix Formulation
Let X be the data matrix (n rows, d columns)

Let U be matrix of the k eigenvectors as columns
(d rows, k columns)

The new representation: Z = XU



