DEC $140 B$ Representation Learning Lecture 10 Part 1
Visualizing Covariance Matrices

Visualizing Covariance Matrices

- Covariance matrices are symmetric.
- They have axes of symmetry (eigenvectors and eigenvalues).
- What are they?

Visualizing Covariance Matrices

$$
c \approx(\quad)
$$

Visualizing Covariance Matrices

Eigenvectors:

$$
\begin{aligned}
& \vec{u}^{(1)} \approx \\
& \vec{u}^{(2)} \approx
\end{aligned}
$$

Visualizing Covariance Matrices

$$
C \approx(
$$

Visualizing Covariance Matrices

Eigenvectors:

$$
\begin{aligned}
& \vec{u}^{(1)} \approx \\
& \vec{u}^{(2)} \approx
\end{aligned}
$$

Visualizing Covariance Matrices

$$
C \approx\left(\begin{array}{cc}
6 & 5 \\
5 & 7
\end{array}\right)
$$

Visualizing Covariance Matrices

Eigenvectors:

$$
\begin{aligned}
& \vec{u}^{(1)} \approx(1,1) \\
& \vec{u}^{(2)} \approx(-1,1)
\end{aligned}
$$

Intuitions

- The eigenvectors of the covariance matrix describe the data's "principal directions"
- C tells us something about data's shape.
- The top eigenvector points in the direction of "maximum variance".
- The top eigenvalue is proportional to the variance in this direction.

Caution

- The data doesn't always look like this.
- We can always compute covariance matrices.

- They just may not describe the data's shape very well.

Caution

- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.

Caution

- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.

Caution

- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.

DEC $140 B$ Representation Learning Lecture 10 Part 2

The Story (So Far)

- We want to create a single new feature, z.
- Our idea $Z=\vec{x} \cdot \vec{u}$; choose \vec{u} to point in the "direction of maximum variance".
- Intuition: the top eigenvector of the covariance matrix points in direction of maximum variance.

More Formally...

- We haven't actually defined "direction of maximum variance"
- Let's derive PCA more formally.

Variance in a Direction
Let \vec{u} be a unit vector. $\cos \dot{u} \quad\|\vec{u}\|=1$ $z^{(i)}=\vec{x}^{(i)} \cdot \vec{u}$ is the new feature for $\vec{x}^{(i)} . \quad\left\{z^{(i)}, z^{(\psi)} \ldots z^{(a)}\right\}$

The variance of the new features is:

$$
\begin{aligned}
\operatorname{Var}(z) & =\frac{\frac{1}{n} \sum_{i=1}^{n}\left(z^{(i)}-\mu_{z}\right)^{2}}{} \\
& \left.=\frac{1}{n} \sum_{i=1}^{n} \frac{\left(\vec{x}^{(i)} \cdot \vec{u}-\mu_{z}\right.}{\Delta}\right)^{2}
\end{aligned}
$$

Example

Note

- If the data are centered, then $\mu_{z}=0$ and the variance of the new features is:

$$
\begin{aligned}
\operatorname{Var}(z) & =\frac{1}{n} \sum_{i=1}^{n}\left(z^{(i)}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\vec{x}^{(i)} \cdot \vec{u}\right)^{2}
\end{aligned}
$$

Goal

- The variance of a data set in the direction of \vec{u} is:

$$
g(\vec{u})=\frac{1}{n} \sum_{i=1}^{n}\left(\vec{x}^{(i)} \cdot \vec{u}\right)^{2}
$$

- Our goal: Find a unit vector \vec{u} which maximizes g.

Our Goal (Again)

Find a unit vector \vec{u} which maximizes $\vec{u}^{\top} C \vec{u}$.

$$
\underset{\vec{u}}{\operatorname{mgx}} \underset{\vec{u}}{ } \vec{u}^{\top} G \vec{u} \quad \text { sit, }\|\vec{\omega}\|=1
$$

Claim

> To maximize $\vec{u}^{\top} C \vec{u}$ over unit vectors, choose \vec{u} to be the top eigenvector of C.

- Proof:

$b_{2} \cdots b_{d}=1 \quad$ Claim
To maximize $\vec{u}^{\top} \subseteq \underline{C} \vec{u}$ over unit vectors, choose \vec{u} to be the top eigenvector of C.

Proof:
diagalizarab
un: ligand decomposition

$$
\left.\lambda_{d}\right] \tilde{b}^{1}=b_{1}^{2} \lambda_{1}+\cdots+b_{d}^{2} \lambda_{d}
$$

Claim

> To maximize $\vec{u}^{\top} C \vec{u}$ over unit vectors, choose \vec{u} to be the top eigenvector of C.

- Proof:

PCA (for a single new feature)

Given: data points $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)} \in \mathbb{R}_{b}^{d} \rightarrow \mathbb{R}^{\prime}$

1. Compute the covariance matrix, C.
2. Compute the top eigenvector \vec{u}, of C.
3. For $i \in\{1, \ldots, n\}$, create new feature:

$$
z^{(i)}=\vec{u} \cdot \vec{x}^{(i)}
$$

A Parting Example

- MNIST: 60,000 images in 784 dimensions
- Principal component $\vec{u} \in \mathbb{R}^{784}$
- We can project an image in \mathbb{R}^{784} onto \vec{u} to get a single number representing the image

Example

DEC $140 B$ Representation Learning Lecture 10 Part 3
Dimensionality Reduction with $\mathrm{d} \geq 2$

So far: PCA

- Given: data $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)} \in \mathbb{R}^{d}$
- Map: each data point $\vec{x}^{(i)}$ to a single feature, z_{i}.
- Idea: maximize the variance of the new feature

PCA: Let $z_{i}=\vec{x}^{(i)} \cdot \vec{u}$, where \vec{u} is top eigenvector of covariance matrix, C.

Now: More PCA

Given: data $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)} \in \mathbb{R}^{d}$

Map: each data point $\vec{x}^{(i)}$ to k new features, $\vec{z}^{(i)}=\left(z_{1}^{(i)}, \ldots, z_{k}^{(i)}\right)$.

A Single Principal Component

- Recall: the principal component is the top eigenvector \vec{u} of the covariance matrix, C
\Rightarrow It is a unit vector in \mathbb{R}^{d}
- Make a new feature $z \in \mathbb{R}$ for point $\vec{x} \in \mathbb{R}^{d}$ by computing $z=\vec{x} \cdot \vec{u}$
$>$ This is dimensionality reduction from $\mathbb{R}^{d} \rightarrow \mathbb{R}^{1}$

Example

- MNIST: 60,000 images in 784 dimensions
- Principal component: $\vec{u} \in \mathbb{R}^{784}$
- We can project an image in \mathbb{R}^{784} onto \vec{u} to get a single number representing the image

Example

Another Feature?

Clearly, mapping from $\mathbb{R}^{784} \rightarrow \mathbb{R}^{1}$ loses a lot of information

- What about mapping from $\mathbb{R}^{784} \rightarrow \mathbb{R}^{2} ? \mathbb{R}^{k}$?

A Second Feature

- Our first feature is a mixture of features, with weights given by unit vector $\vec{u}^{(1)}=\left(u_{1}^{(1)}, u_{2}^{(1)}, \ldots, u_{d}^{(1)}\right)^{T}$.

$$
z_{1}=\vec{u}^{(1)} \cdot \vec{x}=u_{1}^{(1)} x_{1}+\ldots+u_{d}^{(1)} x_{d}
$$

- To maximize variance, choose $\vec{u}^{(1)}$ to be top eigenvector of C.

A Second Feature

- Make same assumption for second feature:

$$
z_{2}=\vec{u}^{(2)} \cdot \vec{x}=u_{1}^{(2)} x_{1}+\ldots+u_{d}^{(2)} x_{d}
$$

\Rightarrow How do we choose $\vec{u}^{(2)}$?

- We should choose $\vec{u}^{(2)}$ to be orthogonal to $\vec{u}^{(1)}$.
- No "redundancy".

A Second Feature

Intuition

- Claim: if \vec{u} and \vec{v} are eigenvectors of a symmetric matrix with distinct eigenvalues, they are orthogonal.
- We should choose $\vec{u}^{(2)}$ to be an eigenvector of the covariance matrix, C.
- The second eigenvector of C is called the second principal component.

A Second Principal Component

- Given a covariance matrix C.
- The principal component $\vec{u}^{(1)}$ is the top eigenvector of C.
- Points in the direction of maximum variance.
- The second principal component $\vec{u}^{(2)}$ is the second eigenvector of C.
- Out of all vectors orthogonal to the principal component, points in the direction of max variance.

PCA: Two Components

Given data $\left\{\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}\right\} \in \mathbb{R}^{d}$.

- Compute covariance matrix C, top two eigenvectors $\vec{u}^{(1)}$ and $\vec{u}^{(2)}$.
- For any vector $\vec{x} \in \mathbb{R}$, its new representation in \mathbb{R}^{2} is $\vec{z}=\left(z_{1}, z_{2}\right)^{\top}$, where:

$$
\begin{aligned}
& z_{1}=\vec{x} \cdot \vec{u}^{(1)} \\
& z_{2}=\vec{x} \cdot \vec{u}^{(2)}
\end{aligned}
$$

Example

Example

Example

Example

Example

PCA: k Components

\triangleright Given data $\left\{\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}\right\} \in \mathbb{R}^{d}$, number of components k.

- Compute covariance matrix C, top $k \leq d$ eigenvectors $\vec{u}^{(1)}$, $\vec{u}^{(2)}, \ldots, \vec{u}^{(k)}$.
- For any vector $\vec{x} \in \mathbb{R}$, its new representation in \mathbb{R}^{k} is $\vec{z}=\left(z_{1}, z_{2}, \ldots z_{k}\right)^{\top}$, where:

$$
\begin{aligned}
z_{1} & =\vec{x} \cdot \vec{u}^{(1)} \\
z_{2} & =\vec{x} \cdot \vec{u}^{(2)} \\
& \vdots \\
z_{k} & =\vec{x} \cdot \vec{u}^{(k)}
\end{aligned}
$$

Matrix Formulation

- Let X be the data matrix (n rows, d columns)
- Let U be matrix of the k eigenvectors as columns (d rows, k columns)
- The new representation: $Z=X U$

