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Visualizing Covariance Matrices

 



Visualizing Covariance Matrices▶ Covariance matrices are symmetric.▶ They have axes of symmetry (eigenvectors and
eigenvalues).▶ What are they?
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Intuitions▶ The eigenvectors of the covariance matrix
describe the data’s “principal directions”▶ 𝐶 tells us something about data’s shape.▶ The top eigenvector points in the direction of
“maximum variance”.▶ The top eigenvalue is proportional to the
variance in this direction.



Caution▶ The data doesn’t always look like this.▶ We can always compute covariance matrices.▶ They just may not describe the data’s shape very well.
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PCA, More Formally



The Story (So Far)▶ We want to create a single new feature, 𝑧.▶ Our idea: 𝑧 = ⃗𝑥 ⋅ �⃗�; choose �⃗� to point in the
“direction of maximum variance”.▶ Intuition: the top eigenvector of the covariance
matrix points in direction of maximum variance.



More Formally...▶ We haven’t actually defined “direction of
maximum variance”▶ Let’s derive PCA more formally.



Variance in a Direction▶ Let �⃗� be a unit vector.▶ 𝑧(𝑖) = ⃗𝑥(𝑖) ⋅ �⃗� is the new feature for ⃗𝑥(𝑖).▶ The variance of the new features is:Var(𝑧) = 1𝑛 𝑛∑𝑖=1 (𝑧(𝑖) − 𝜇𝑧)2= 1𝑛 𝑛∑𝑖=1 ( ⃗𝑥(𝑖) ⋅ �⃗� − 𝜇𝑧)2



Example



Note▶ If the data are centered, then 𝜇𝑧 = 0 and the
variance of the new features is:Var(𝑧) = 1𝑛 𝑛∑𝑖=1 (𝑧(𝑖))2= 1𝑛 𝑛∑𝑖=1 ( ⃗𝑥(𝑖) ⋅ �⃗�)2



Goal▶ The variance of a data set in the direction of �⃗� is:𝑔(�⃗�) = 1𝑛 𝑛∑𝑖=1 ( ⃗𝑥(𝑖) ⋅ �⃗�)2▶ Our goal: Find a unit vector �⃗� which maximizes 𝑔.



Claim

1𝑛 𝑛∑𝑖=1 ( ⃗𝑥(𝑖) ⋅ �⃗�)2 = �⃗�𝑇𝐶�⃗�



Our Goal (Again)▶ Find a unit vector �⃗� which maximizes �⃗�𝑇𝐶�⃗�.



Claim▶ To maximize �⃗�𝑇𝐶�⃗� over unit vectors, choose �⃗� to
be the top eigenvector of 𝐶.▶ Proof:



Proof
Show that the maximizer of ‖𝐴 ⃗𝑥‖ s.t., ‖ ⃗𝑥‖ = 1 is the
top eigenvector of 𝐴.
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PCA (for a single new feature)▶ Given: data points ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑
1. Compute the covariance matrix, 𝐶.
2. Compute the top eigenvector �⃗�, of 𝐶.
3. For 𝑖 ∈ {1, … , 𝑛}, create new feature:𝑧(𝑖) = �⃗� ⋅ ⃗𝑥(𝑖)



A Parting Example▶ MNIST: 60,000 images in 784 dimensions▶ Principal component: �⃗� ∈ ℝ784▶ We can project an image in ℝ784 onto �⃗� to get a
single number representing the image



Example
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Dimensionality Reduction with d ≥ 2



So far: PCA▶ Given: data ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑▶ Map: each data point ⃗𝑥(𝑖) to a single feature, 𝑧𝑖.▶ Idea: maximize the variance of the new feature▶ PCA: Let 𝑧𝑖 = ⃗𝑥(𝑖) ⋅ �⃗�, where �⃗� is top eigenvector of
covariance matrix, 𝐶.



Now: More PCA▶ Given: data ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑▶ Map: each data point ⃗𝑥(𝑖) to 𝑘 new features,⃗𝑧(𝑖) = (𝑧(𝑖)1 , … , 𝑧(𝑖)𝑘 ).



A Single Principal Component▶ Recall: the principal component is the top
eigenvector �⃗� of the covariance matrix, 𝐶▶ It is a unit vector in ℝ𝑑▶ Make a new feature 𝑧 ∈ ℝ for point ⃗𝑥 ∈ ℝ𝑑 by
computing 𝑧 = ⃗𝑥 ⋅ �⃗�▶ This is dimensionality reduction from ℝ𝑑 → ℝ1



Example▶ MNIST: 60,000 images in 784 dimensions▶ Principal component: �⃗� ∈ ℝ784▶ We can project an image in ℝ784 onto �⃗� to get a
single number representing the image



Example



Another Feature?▶ Clearly, mapping from ℝ784 → ℝ1 loses a lot of
information▶ What about mapping from ℝ784 → ℝ2? ℝ𝑘?



A Second Feature▶ Our first feature is a mixture of features, with weights
given by unit vector �⃗�(1) = (𝑢(1)1 , 𝑢(1)2 , … , 𝑢(1)𝑑 )𝑇.𝑧1 = �⃗�(1) ⋅ ⃗𝑥 = 𝑢(1)1 𝑥1 + … + 𝑢(1)𝑑 𝑥𝑑▶ To maximize variance, choose �⃗�(1) to be top
eigenvector of 𝐶.



A Second Feature▶ Make same assumption for second feature:𝑧2 = �⃗�(2) ⋅ ⃗𝑥 = 𝑢(2)1 𝑥1 + … + 𝑢(2)𝑑 𝑥𝑑▶ How do we choose �⃗�(2)?▶ We should choose �⃗�(2) to be orthogonal to �⃗�(1).▶ No “redundancy”.



A Second Feature



Intuition▶ Claim: if �⃗� and ⃗𝑣 are eigenvectors of a symmetric
matrix with distinct eigenvalues, they are
orthogonal.▶ We should choose �⃗�(2) to be an eigenvector of
the covariance matrix, 𝐶.▶ The second eigenvector of 𝐶 is called the second
principal component.



A Second Principal Component▶ Given a covariance matrix 𝐶.▶ The principal component �⃗�(1) is the top
eigenvector of 𝐶.▶ Points in the direction of maximum variance.▶ The second principal component �⃗�(2) is the
second eigenvector of 𝐶.▶ Out of all vectors orthogonal to the principal

component, points in the direction of max variance.



PCA: Two Components▶ Given data { ⃗𝑥(1), ..., ⃗𝑥(𝑛)} ∈ ℝ𝑑.▶ Compute covariance matrix 𝐶, top two
eigenvectors �⃗�(1) and �⃗�(2).▶ For any vector ⃗𝑥 ∈ ℝ, its new representation inℝ2 is ⃗𝑧 = (𝑧1, 𝑧2)𝑇, where:𝑧1 = ⃗𝑥 ⋅ �⃗�(1)𝑧2 = ⃗𝑥 ⋅ �⃗�(2)



Example
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PCA: 𝑘 Components▶ Given data { ⃗𝑥(1), ..., ⃗𝑥(𝑛)} ∈ ℝ𝑑, number of components 𝑘.▶ Compute covariance matrix 𝐶, top 𝑘 ≤ 𝑑 eigenvectors �⃗�(1),�⃗�(2), …, �⃗�(𝑘).▶ For any vector ⃗𝑥 ∈ ℝ, its new representation in ℝ𝑘 is⃗𝑧 = (𝑧1, 𝑧2, … 𝑧𝑘)𝑇, where: 𝑧1 = ⃗𝑥 ⋅ �⃗�(1)𝑧2 = ⃗𝑥 ⋅ �⃗�(2)⋮𝑧𝑘 = ⃗𝑥 ⋅ �⃗�(𝑘)



Matrix Formulation▶ Let 𝑋 be the data matrix (𝑛 rows, 𝑑 columns)▶ Let 𝑈 be matrix of the 𝑘 eigenvectors as columns
(𝑑 rows, 𝑘 columns)▶ The new representation: 𝑍 = 𝑋𝑈


