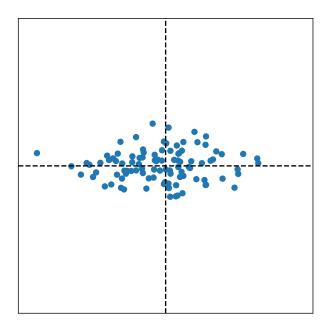
Representation Learning

Lecture 10 Part 1

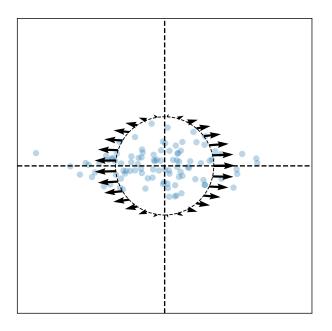
Visualizing Covariance Matrices

Covariance matrices are symmetric.

- They have axes of symmetry (eigenvectors and eigenvalues).
- ► What are they?

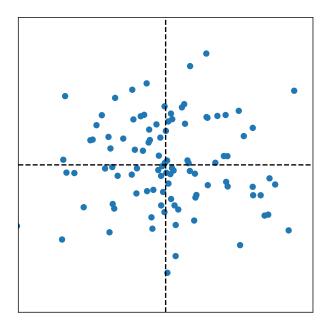


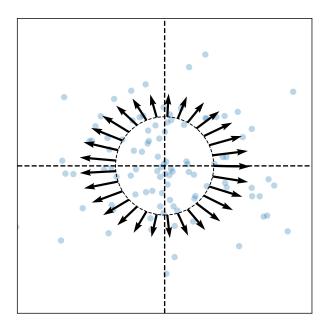
C ≈ (



Eigenvectors:

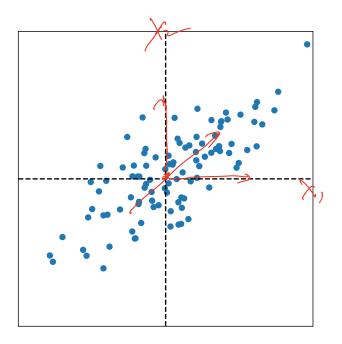
 $\vec{u}^{(1)} \approx$ $\vec{u}^{(2)} \approx$



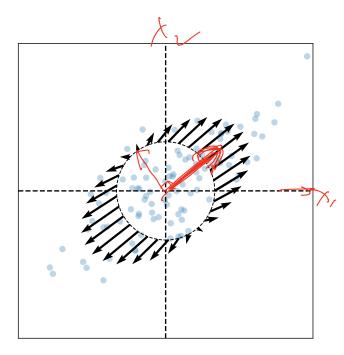


Eigenvectors:

 $\vec{u}^{(1)} \approx \vec{u}^{(2)} \approx$



 $C \approx \begin{pmatrix} 0 & f \\ f & f \end{pmatrix}$



 $\begin{pmatrix} 60 \\ 5 \end{pmatrix}$

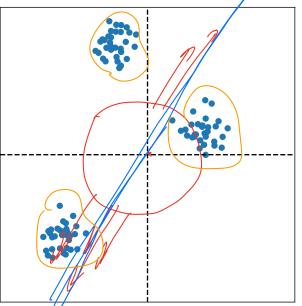
Eigenvectors:

$$\vec{u}^{(1)} \approx \begin{pmatrix} | & | \\ | & | \end{pmatrix}$$
$$\vec{u}^{(2)} \approx \begin{pmatrix} -| & | \end{pmatrix}$$

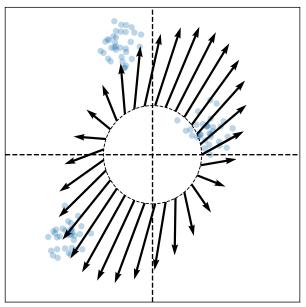
Intuitions

- The eigenvectors of the covariance matrix describe the data's "principal directions"
 C tells us something about data's shape.
- The top eigenvector points in the direction of "maximum variance".
- The top eigenvalue is proportional to the variance in this direction.

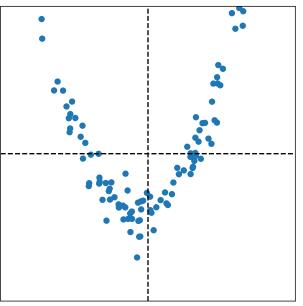
- The data doesn't always look like this.
- $C = \frac{1}{\eta} X^{T} X$ We can always compute covariance matrices.
- They just may not describe the data's shape very well.



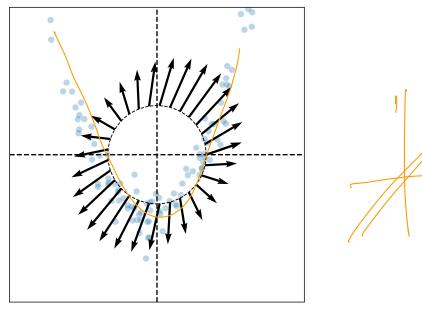
- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.



- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.



- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.



DSC 140B Representation Learning

Lecture 10 | Part 2

PCA, More Formally

The Story (So Far)

- ▶ We want to create a single new feature, *z*.
- Our idea: $\vec{z} = \vec{x} \cdot \vec{u}$; choose \vec{u} to point in the "direction of maximum variance".
- Intuition: the top eigenvector of the covariance matrix points in direction of maximum variance.

More Formally...

- We haven't actually defined "direction of maximum variance"
- ► Let's derive PCA more formally.

Variance in a Direction $\vec{\nu}$

► Let $\vec{\mu}$ be a unit vector. $\vec{\mu} = \vec{\mu}$

$$z^{(i)} = \vec{x}^{(i)} \cdot \vec{u} \text{ is the new feature for } \vec{x}^{(i)}. \quad \left\{ \geq^{(i)}, z^{(i)}, \ldots, z^{(n)} \right\}$$

The variance of the new features is:

$$Var(z) = \frac{1}{n} \sum_{i=1}^{n} (z^{(i)} - \mu_z)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\vec{x}^{(i)} \cdot \vec{u} - \mu_z)^2$$

Example



Note

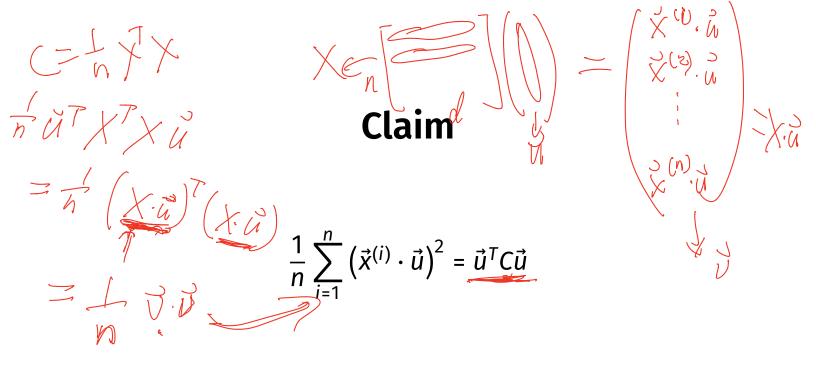
► If the data are centered, then $\mu_z = 0$ and the variance of the new features is:

$$Var(z) = \frac{1}{n} \sum_{i=1}^{n} (z^{(i)})^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\vec{x}^{(i)} \cdot \vec{u})^2$$

Goal

• The variance of a data set in the direction of \vec{u} is:

• Our goal: Find a unit vector \vec{u} which maximizes g.



Our Goal (Again)

 $mg \in \mathcal{U}^T \mathcal{L} \mathcal{U} \qquad S.f. \|\mathcal{U}\| = r$

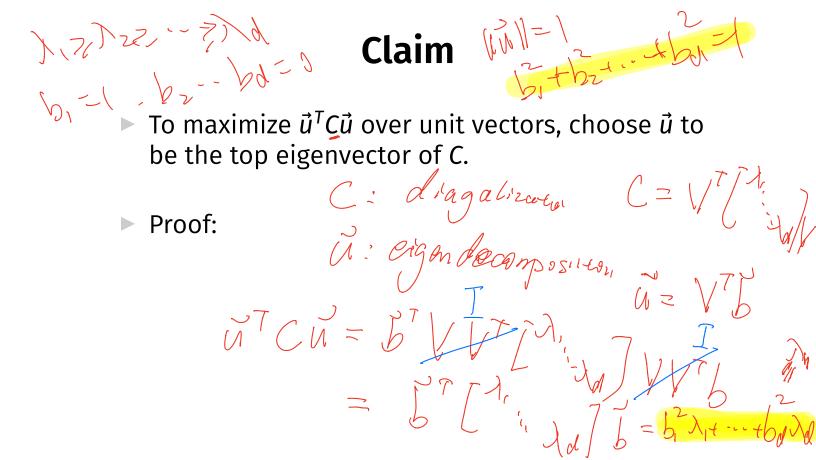
Find a unit vector \vec{u} which maximizes $\vec{u}^T C \vec{u}$.

Claim

To maximize $\vec{u}^T C \vec{u}$ over unit vectors, choose \vec{u} to be the top eigenvector of C.

Proof:

liften tecomparie Proof 16,00+6,00) $\begin{pmatrix} \mathcal{J} \\ \mathcal{J}$ Show that the maximizer of $||A\vec{x}||$ s.t., I = 1 is the top eigenvector of A. A (b, a"+hi 1 = b, Ay (2) + b2A 11 = assume, $= h \lambda (u + b)$ 2 $(b, \lambda, \tilde{u}^{(w)} + bz, \lambda z \tilde{u}^{(k)}) \cdot (b, \tilde{v})$ $\left\| \left\| A \right\|^{2} =$ 5, 2, U, U + 2 bb A, A, U ()



Claim

To maximize $\vec{u}^T C \vec{u}$ over unit vectors, choose \vec{u} to be the top eigenvector of C.

Proof:

PCA (for a single new feature)

► **Given**: data points $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d_{\sim} \longrightarrow \mathbb{R}^d$

1. Compute the covariance matrix, C.

2. Compute the top eigenvector \vec{u} , of C.

3. For $i \in \{1, ..., n\}$, create new feature:

$$z^{(i)} = \vec{u} \cdot \vec{x}^{(i)}$$

A Parting Example

28 × 28
 MNIST: 60,000 images in 784 dimensions

- ▶ Principal component: $\vec{u} \in \mathbb{R}^{784}$
- ► We can project an image in \mathbb{R}^{784} onto $\underline{\vec{u}}$ to get a single number representing the image

Example

Representation Learning

Lecture 10 | Part 3

Dimensionality Reduction with $d \ge 2$

So far: PCA

▶ **Given**: data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$

- Map: each data point x⁽ⁱ⁾ to a single feature, z_i.
 Idea: maximize the variance of the new feature
- **PCA**: Let $z_i = \vec{x}^{(i)} \cdot \vec{u}$, where \vec{u} is top eigenvector of covariance matrix, *C*.

Now: More PCA

► **Given**: data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$

Map: each data point $\vec{x}^{(i)}$ to k new features, $\vec{z}^{(i)} = (z_1^{(i)}, \dots, z_k^{(i)}).$

A Single Principal Component

Recall: the principal component is the top eigenvector u of the covariance matrix, C

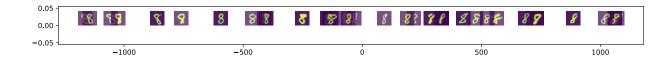
► It is a unit vector in \mathbb{R}^d

- ► Make a new feature $z \in \mathbb{R}$ for point $\vec{x} \in \mathbb{R}^d$ by computing $z = \vec{x} \cdot \vec{u}$
- ▶ This is dimensionality reduction from $\mathbb{R}^d \to \mathbb{R}^1$

Example

- MNIST: 60,000 images in 784 dimensions
- ▶ Principal component: $\vec{u} \in \mathbb{R}^{784}$
- ► We can project an image in \mathbb{R}^{784} onto \vec{u} to get a single number representing the image

Example



Another Feature?

- ▶ Clearly, mapping from $\mathbb{R}^{784} \rightarrow \mathbb{R}^1$ loses a lot of information
- ▶ What about mapping from $\mathbb{R}^{784} \rightarrow \mathbb{R}^2$? \mathbb{R}^k ?

A Second Feature

• Our first feature is a mixture of features, with weights given by unit vector $\vec{u}^{(1)} = (u_1^{(1)}, u_2^{(1)}, \dots, u_d^{(1)})^T$.

$$z_1 = \vec{u}^{(1)} \cdot \vec{x} = u_1^{(1)} x_1 + \dots + u_d^{(1)} x_d$$

To maximize variance, choose $\vec{u}^{(1)}$ to be top eigenvector of C.

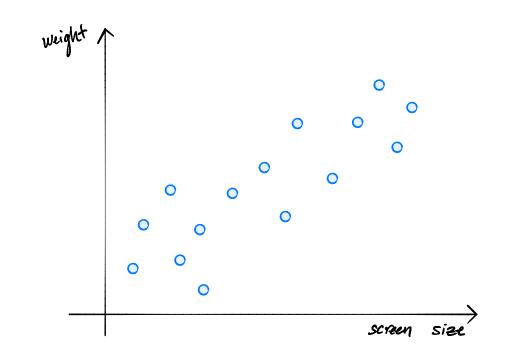
A Second Feature

Make same assumption for second feature:

$$z_2 = \vec{u}^{(2)} \cdot \vec{x} = u_1^{(2)} x_1 + \dots + u_d^{(2)} x_d$$

- How do we choose $\vec{u}^{(2)}$?
- We should choose u⁽²⁾ to be orthogonal to u⁽¹⁾.
 No "redundancy".

A Second Feature



Intuition

- Claim: if u and v are eigenvectors of a symmetric matrix with distinct eigenvalues, they are orthogonal.
- We should choose $\vec{u}^{(2)}$ to be an **eigenvector** of the covariance matrix, *C*.

The second eigenvector of C is called the second principal component.

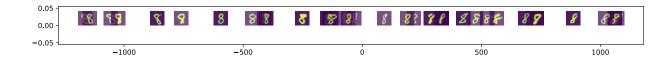
A Second Principal Component

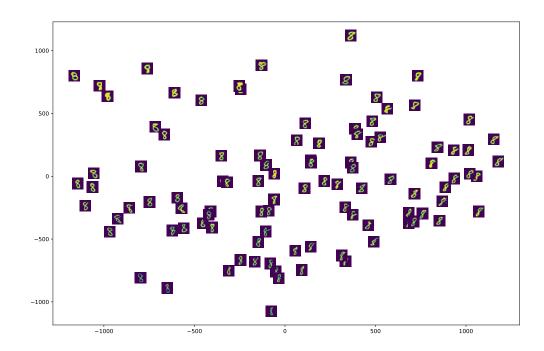
- ► Given a covariance matrix C.
- The principal component $\vec{u}^{(1)}$ is the top eigenvector of *C*.
 - Points in the direction of maximum variance.
- The second principal component $\vec{u}^{(2)}$ is the second eigenvector of C.
 - Out of all vectors orthogonal to the principal component, points in the direction of max variance.

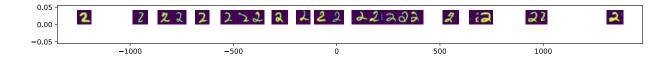
PCA: Two Components

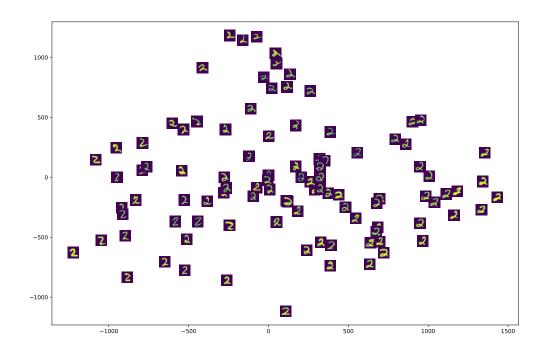
- ► Given data $\{\vec{x}^{(1)}, ..., \vec{x}^{(n)}\} \in \mathbb{R}^d$.
- Compute covariance matrix C, top two eigenvectors $\vec{u}^{(1)}$ and $\vec{u}^{(2)}$.
- For any vector $\vec{x} \in \mathbb{R}$, its new representation in \mathbb{R}^2 is $\vec{z} = (z_1, z_2)^T$, where:

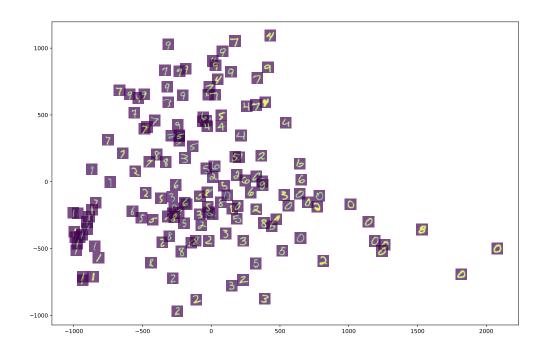
$$z_1 = \vec{x} \cdot \vec{u}^{(1)}$$
$$z_2 = \vec{x} \cdot \vec{u}^{(2)}$$











PCA: *k* **Components**

- ► Given data $\{\vec{x}^{(1)}, ..., \vec{x}^{(n)}\} \in \mathbb{R}^d$, number of components k.
- Compute covariance matrix C, top $k \le d$ eigenvectors $\vec{u}^{(1)}$, $\vec{u}^{(2)}$, ..., $\vec{u}^{(k)}$.
- For any vector $\vec{x} \in \mathbb{R}$, its new representation in \mathbb{R}^k is $\vec{z} = (z_1, z_2, ..., z_k)^T$, where:

$$Z_1 = \vec{x} \cdot \vec{u}^{(1)}$$
$$Z_2 = \vec{x} \cdot \vec{u}^{(2)}$$
$$\vdots$$
$$Z_k = \vec{x} \cdot \vec{u}^{(k)}$$

Matrix Formulation

- Let X be the **data matrix** (*n* rows, *d* columns)
- Let U be matrix of the k eigenvectors as columns (d rows, k columns)
- ► The new representation: *Z* = *XU*