Learning with ALL Experiences

— A Standardized ML Formalism

UC San Diego

- Zhiting Hu **Assistant Professor**
 - HDSI, UCSD

Real-world Machine Learning Problems

Machine learning: computational methods that enable machines to learn from experiences.

supervision signals that drive the learning

Experiences of all kinds

Type-2 diabetes is 90% more common than type-1

Data examples

Constraints

Rewards

Auxiliary agents

And all combinations of of that ...

How human beings solve them ALL?

The zoo of algorithms and heuristics

maximum likelihood estimation data re-weighting inverse RL data augmentation actor-critic label smoothing imitation learning adversarial domain adaptation GANs knowledge distillation intrinsic reward prediction minimization regularized Bayes energy-based GANs

- reinforcement learning as inference
 - active learning policy optimization reward-augmented maximum likelihood softmax policy gradient posterior regularization constraint-driven learning generalized expectation learning from measurements
- weak/distant supervision

To solve problems by integrating all possible sources of information

How can we design learning systems that can learn from all types of experiences?

Example Problems: Controllable Content Generation

[Hu et al., ICML'17]

Applications: personalized chatbot, live sports commentary production

ng writing style nes contributed 26 points, 8 7 assists. nes rounded out the box score around impressive performance, sconng zo points, grabbing 8 rebounds Elaporate and dishing out 7 assists.

[Lin et al., EMNLP'20Findings]

Example Problems: Controllable Content Generation Ex1: Text Ex2: Fashion images

Applications: virtual clothing try-on system

Constraints of human gesture

Source image

[Hu et al., NeurIPS'18]

ht poses

Example Problems: Controllable Content Generation Ex1: Text Ex2: Fashion images Ex3: Medical reports

Applications: assistive diagnosis

- Expert feedbacks

[Li et al., NeurIPS'18, AAAI'19]

- Medical domain knowledge

Abnormal findings

rs appear within ight lateral bndary to a small

11

Example Problems: Controllable Content GenerationEx1: TextEx2: Fashion imagesEx3: Medical reports

How can we design learning systems that can learn from all types of experiences?

Limitations of the dominant way for designing learning systems

 Isolated learning frameworks A bewildering marketplace hard to navigate through

> maximum likelihood estimation data re-weighting inverse RL data augmentation actor-critic label smoothing imitatior adversarial domain adaptation GANs knowledge distillation intrinsic rev prediction minimization regularized energy-based GANs weak/distant supervision

reinforcement learning as inference

policy optimization		active learning	
	reward-augmented maximum likelihood		
n learnin	g softmax policy gradient		
	posterior regularization		
	constr	aint-driven learning	
ward			
Bayes	generalized expec	tation	
	learning from	measurements	

Limitations of the dominant way for designing learning systems

 Isolated learning frameworks A bewildering marketplace hard to navigate through

 Isolated problem solving Choose/adapt algorithms for particular set of experiences

Limitations of the dominant way for designing learning systems

 Isolated learning frameworks A bewildering marketplace hard to navigate through

 Isolated problem solving Choose/adapt algorithms for particular set of experiences

Isolated algorithm innovations

E.g. better learning-from-reward rarely informs better learning-from-constraints

An alternative way ...

Need a unifying perspective

You don't need something more in order to get something more.

-- Murray Gell-Mann (1929–2019), Physicist, Nobel laureate

An alternative way under a unifying perspective

- Isolated learning frameworks
- A standardized ML formalism A holistic understanding of the diverse ML techniques
- Isolated problem solving
- Integrated problem solving Plugging in arbitrary available experiences to drive learning
- Isolated algorithm innovations
- Integrated algorithm innovation E.g. automated **reward** acquisition —> automated **constraint** inducing —> automated **data** augmentation stabilized **policy** training —> stabilized **GAN** training

An alternative way under a unifying perspective

 A standardized ML formalism A holistic understanding of the diverse ML techniques

 Integrated problem solving Plugging in arbitrary available experiences to drive learning

Integrated algorithm innovation

stabilized **policy** training

E.g. automated **reward** acquisition —> automated **constraint** inducing —> automated **data** augmentation —> stabilized **GAN** training

18

Outline

A standardized ML formalism 1

2 Integrated problem solving

3

Integrated algorithm innovation

Outline

A standardized ML formalism

MLE at a close look:

- The most classical learning algorithm
- Supervised:
 - Observe data $\mathcal{D} = \{(x^*, y^*)\}$
 - Solve with SGD
- Unsupervised:
 - Observe $\mathcal{D} = \{(x^*)\}, y \text{ is latent variation}$
 - Posterior $p_{\theta}(\boldsymbol{y}|\boldsymbol{x})$
 - Solve with EM, etc

$$\min_{\theta} - \mathbb{E}_{(x^*, y^*) \sim \mathcal{D}} \log p_{\theta}(y^* | x^*)$$

iable
$$\min_{\theta} - \mathbb{E}_{x^* \sim \mathcal{D}} \left[\log \int_{y} p_{\theta}(x^*, y) \right]$$

22

MLE as entropy maximization

 $\min_{p(x,y)} H(p)$

• Duality between Supervised MLE and maximum entropy, when p is exponential family

* Proof with Lagrangian method

Shannon entropy H

MLE as entropy maximization

- Unsupervised MLE can be achieved by maximizing the negative free energy:
 - Introduce auxiliary distribution q(y|x) (and then play with its entropy and cross entropy, etc.)

$$\log \int_{\mathbf{y}} p_{\theta}(\mathbf{x}^*, \mathbf{y}) = \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)} \left[\log \frac{p_{\theta}(\mathbf{x}^*, \mathbf{y})}{q(\mathbf{y}|\mathbf{x}^*)} \right] + \mathrm{KL} \left(q(\mathbf{y}|\mathbf{x}^*) || p_{\theta}(\mathbf{y}|\mathbf{x}^*) \right)$$

 $\geq H(q(\boldsymbol{y}|\boldsymbol{x}^*)) + \mathbb{E}_{q(\boldsymbol{y}|\boldsymbol{x}^*)}[\log p_{\theta}(\boldsymbol{x}^*, \boldsymbol{y})] \coloneqq \mathcal{L}(q, \boldsymbol{\theta})$

Solvers for unsupervised MLE $\log \int_{\mathbf{y}} p_{\theta}(\mathbf{x}^*, \mathbf{y}) \ge H(q(\mathbf{y}|\mathbf{x}^*)) + \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)}[\log p_{\theta}(\mathbf{x}^*, \mathbf{y})] \coloneqq \mathcal{L}(q, \theta)$

Solve with **EM**

- E-step: Maximize $\mathcal{L}(q, \theta)$ w.r.t q, equivalent to minimizing KL by setting • $q(\mathbf{y}|\mathbf{x}^*) = p_{\theta^{old}}(\mathbf{y}|\mathbf{x}^*)$
- M-step: Maximize $\mathcal{L}(q, \theta)$ w.r.t θ : max $\mathbb{E}_{q(y|x^*)}[\log p_{\theta}(x^*, y)]$ •

When p_{θ} is complex, solve with variational EM

- When q is also complex, solve with wake-sleep [Hinton et al., 1995], VAE, etc

Posterior Regularization (PR)

- Make use of constraints in Bayesian learning [Ganchev et al., 2010; Zhu et al., 2014] • Generalized to more general learning settings [Hu et al., 2016] • E.g., Complex rule constraints on general NNs
- - Auxiliary distribution q(x, y)
 - Constant weight $\alpha = \beta > 0$, Slack variable ξ

$$\begin{split} \min_{q,\,\theta,\xi} &- \alpha H(q) - \beta \mathbb{E}_q \left[\log p_\theta(\boldsymbol{x}, \boldsymbol{y}) \right] + \xi \\ s.t. \ \mathbb{E}_{q(\boldsymbol{x},\boldsymbol{y})} \left[1 - r(\boldsymbol{x}, \boldsymbol{y}) \right] \leq \xi \end{split}$$

- E.g., r(x, y) is a 1st-order logic rule: Sentence *x*: *A* but *B* \Rightarrow its sentiment y is the sentiment of B
- "This was a terrific movie, but the director could have done better."

EM for the general PR

Rewrite without slack variable:

$$\min_{q,\theta} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(\boldsymbol{x}, \boldsymbol{y}) \right] - \mathbb{E}_{q(\boldsymbol{x}, \boldsymbol{y})} \left[f(\boldsymbol{x}, \boldsymbol{y}) \right]$$

• Solve with EM

• E-step: $q(\mathbf{x}, \mathbf{y}) = \exp\left\{\frac{\beta \log p_{d}}{1-\beta}\right\}$

• M-step:
$$\min_{\theta} \mathbb{E}_q \left[\log p_{\theta}(x, y) \right]$$

$$\frac{\partial_{\theta}(\boldsymbol{x},\boldsymbol{y}) + f(\boldsymbol{x},\boldsymbol{y})}{\alpha} \bigg\} / Z$$

Reformulating unsupervised MLE with PR $\log \int p_{\theta}(\boldsymbol{x}^{*}, \boldsymbol{y}) \geq H(q(\boldsymbol{y}|\boldsymbol{x}^{*})) + \mathbb{E}_{q(\boldsymbol{y}|\boldsymbol{x}^{*})}[\log p_{\theta}(\boldsymbol{x}^{*}, \boldsymbol{y})]$

- Introduce arbitrary q(y|x)
 - $\min_{q,\theta,\xi} \alpha H(q) \beta \mathbb{E}_q \left[\log p_{\theta}(x, y) \right] + \xi$
 - $\circ f(\mathbf{x}; \mathcal{D}) := \log \mathbb{E}_{\mathbf{x}^* \sim \mathcal{D}} [\mathbb{1}_{\mathbf{x}^*}(\mathbf{x})]$
 - A constraint saying x must equal to one of the true data points
 - Or alternatively, the (log) expected similarity of \boldsymbol{x} to dataset \mathcal{D} , with $1(\cdot)$ as the similarity measure (we'll come back to this later)

 $\circ \quad \alpha = \beta = 1$

The Standard Equation (SE) s.t. $-\mathbb{E}_{q(x,y)}\left| f(x,y) \right| < \xi$ Equivalently: 3 terms: Experiences

$\min_{q,\theta,\xi\geq 0} \alpha \mathbb{D}\left(q(\boldsymbol{x},\boldsymbol{y}), p_{\theta}(\boldsymbol{x},\boldsymbol{y})\right) - \beta \mathbb{H}(q) + \xi$

 $\min_{q,\theta} - \mathbb{E}_{q(\boldsymbol{x},\boldsymbol{y})} \left[f(\boldsymbol{x},\boldsymbol{y}) \right] + \alpha \mathbb{D} \left(q(\boldsymbol{x},\boldsymbol{y}), p_{\theta}(\boldsymbol{x},\boldsymbol{y}) \right) - \beta \mathbb{H}(q)$ Divergence Uncertainty (exogenous regularizations) (fitness) (self-regularization) e.g., data examples, rules e.g., Cross Entropy e.g., Shannon entropy

Uncertainty

SE with data experience -- unsupervised MLE $\min_{q,\theta} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right] - \mathbb{E}_q \left[f(\mathbf{x}, \mathbf{y}) \right]$

 $f \coloneqq f(x; \mathcal{D}) = \log \mathbb{E}_{x^* \sim \mathcal{D}} [\mathbb{1}_{x^*}(x)] \qquad \alpha = \beta = 1$

 $q = q(\mathbf{y}|\mathbf{x})$

~

SE with data experience -- supervised MLE $\min_{q,\theta} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(x, y) \right] - \mathbb{E}_{q(x,y)} \left[f(x, y) \right]$

$f := f(x, y; \mathcal{D}) = \log \mathbb{E}_{(x^*, y^*) \sim \mathcal{D}} \left[\mathbb{1}_{(x^*, y^*)}(x, y) \right] \quad \alpha = 1, \beta = \epsilon$

SE with "oracle data experience" -- active learning

- Have access to a vast pool of unlabeled data instances • Can select instances (queries) to be labeled by an oracle (e.g., human)

- Experiences:
 - u(x) measures informativeness of an instance x
 - e.g., Uncertainty on x, measured by predictive entropy
 - Instances + oracle labels:

 $f(x, y; Oracle) = \log \mathbb{E}_{x^* \sim \mathcal{D}}$

$$[y, y^* \sim Oracle(x^*) [1_{(x^*, y^*)}(x, y)]$$

SE and Active Learning $\min_{q,\theta} - \alpha H(q) - \beta \mathbb{E}_{q} \left[\log p_{\theta}(x) \right]$

 $f \coloneqq f(\mathbf{x}, \mathbf{y}; Oracle) + u(\mathbf{x})$

• E-step $q(x, y) = \exp\left\{\frac{\beta \log p_{\theta}(x, y)}{2}\right\}$

• M-step $\min_{\theta} - \mathbb{E}_q \left[\log p_{\theta}(x, y) \right]$

$$\left[\begin{array}{c} \mathbf{x}, \mathbf{y} \\ \mathbf{y} \end{array} \right] - \mathbb{E}_{q(\mathbf{x}, \mathbf{y})} \left[\begin{array}{c} f(\mathbf{x}, \mathbf{y}) \\ f(\mathbf{x}, \mathbf{y}) \end{array} \right]$$
$$\alpha = 1, \beta = \epsilon$$

$$\frac{+f(\boldsymbol{x},\boldsymbol{y};Oracle)+u(\boldsymbol{x})}{\alpha} \Big\} / Z$$

Equivalent to [e.g., Ertekin et al., 07]:

- Randomly draw a subset $\mathcal{D}_{sub} = \{x^*\}$
- Draw a query x^* from \mathcal{D}_{sub} according to $\exp\{u(x)\}$
- Get label y^* for x^* from the oracle
- Maximize log likelihood on (x^*, y^*)

SE and Reinforcement learning (RL) - State x_t AGENT Markov Decision Process (MDP) ... - New state x_{t+1}

- Policy $p_{\theta}(y|x)$
- the current policy p_{θ} $Q^{\theta}(\mathbf{x},\mathbf{y}) = \mathbb{E}$
- $\mu^{\theta}(\mathbf{x})$ state distribution

$$\mu^{\theta}(\boldsymbol{x}) = \sum_{t=0}^{\infty} p(\boldsymbol{x}_t = \boldsymbol{x})$$

- Take action $y_t \sim p_{\theta}(y_t | x_t)$

- Get reward $r_t = r(\mathbf{x}_t, \mathbf{y}_t)$

• $Q^{\theta}(x, y)$ – expected future reward of taking action y in state x and continuing

$$p_{\theta} \left[\sum_{t=0}^{\infty} r_t \mid x_0 = x, y_0 = y \right]$$

SE with reward experience I -- RL as inference $\min_{q,\theta} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(\boldsymbol{x}, \boldsymbol{y}) \right] - \mathbb{E}_q \left[f(\boldsymbol{x}, \boldsymbol{y}) \right]$ • RL-as-inference [Dayan'97; Levine'18, ...]

$$f(\mathbf{x}, \mathbf{y}) \coloneqq Q^{\theta^{t}}(\mathbf{x}, \mathbf{y}) \qquad \alpha = \beta = \tau \ (> 0)$$

$$q(\mathbf{x}, \mathbf{y}) = q(\mathbf{y}|\mathbf{x})\mu^{\theta^{t}}(\mathbf{x}) \qquad p_{\theta}(\mathbf{x}, \mathbf{y}) = p_{\theta}(\mathbf{y}|\mathbf{x})\mu^{\theta^{t}}(\mathbf{x})$$

$$\downarrow$$

$$\min_{q, \theta} - \tau H(q) - \tau \mathbb{E}_{q} \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right] - \mathbb{E}_{q(\mathbf{x}, \mathbf{y})} \left[Q^{\theta^{t}}(\mathbf{x}, \mathbf{y}) \right]$$

$$\geq -\log \mathbb{E}_{\mu^{\theta^{t}}(\mathbf{x})p_{\theta}(\mathbf{y}|\mathbf{x})} \left[p(o = 1 \mid \mathbf{x}, \mathbf{y}) \right]$$
Negative variational lower b

$$\alpha = \beta = \tau (> 0)$$
$$p_{\theta}(x, y) = p_{\theta}(y|x)\mu^{\theta^{t}}(x)$$

Define random variable $o \in \{0,1\}, p(o = 1) \propto exp\{Q^{\theta^t}(x,y)/\tau\}$ (reward excitement fuc.)

SE with reward experience II -- Policy gradient $\min_{q,\theta} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(\boldsymbol{x}, \boldsymbol{y}) \right] - \mathbb{E}_q \left[f(\boldsymbol{x}, \boldsymbol{y}) \right]$

Policy gradient

$$f(\mathbf{x}, \mathbf{y}) := \log Q^{\theta^t}(\mathbf{x}, \mathbf{y})$$

 $q(\mathbf{y}|\mathbf{x}) = p_{\theta^t}(\mathbf{y}|\mathbf{x})Q^{\theta^t}(\mathbf{x},\mathbf{y}) / Z$ • E-step • M-step

 $\mathbb{E}_{q(x,y)}[\nabla_{\theta}\log p_{\theta}(y|x)] = 1/Z \cdot \mathbb{E}_{\mu^{\theta^{t}}(x) p_{\theta}(y|x)}[Q^{\theta^{t}}(x,y) \nabla_{\theta}\log p_{\theta}(y|x)]$

$$= 1/Z \cdot \nabla_{\theta} \mathbb{E}_{\mu^{\theta^{t}}(\boldsymbol{x}) \boldsymbol{p}_{\theta}(\boldsymbol{y}|\boldsymbol{x})} \left[Q^{\theta^{t}}(\boldsymbol{x},\boldsymbol{y}) \right]$$

$$\alpha = \beta = 1$$

 $q(\mathbf{x}, \mathbf{y}) = q(\mathbf{y}|\mathbf{x})\mu^{\theta^{\tau}}(\mathbf{x}) \qquad p_{\theta}(\mathbf{x}, \mathbf{y}) = p_{\theta}(\mathbf{y}|\mathbf{x})\mu^{\theta^{\tau}}(\mathbf{x})$

(Importance sampling est.)

(Log-derivative trick) **Conventional policy gradient**

SE with adversarial experiences and other divergences -- variations of GAN

 $\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(x), p_{\theta}\right)$

- Recall in MLE, *f* is a fixed function $f \coloneqq f(x; \mathcal{D}) = \log \mathbb{E}_{x^* \sim \mathcal{D}} \left[\mathbb{1}_{x^*}(x) \right]$
- \boldsymbol{x} against real data \mathcal{D}

$$(\mathbf{x})) - \mathbb{E}_{q(\mathbf{x})} \left[f(\mathbf{x}) \right]$$

• Intuitively, see f as a similarity metric that measures similarity of sample

• Instead of the above manually fixed metric, can we **learn** a metric f_{ϕ} ?

SE with adversarial experiences and other divergences -- variations of GAN

• Augment the standard objective to account for ϕ :

 $\min_{\theta} \max_{q} \min_{q} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(\mathbf{x})\right)$

- Set $\alpha = 0, \beta = 1$. Under mild conditions, the objective recovers:
 - Vanilla GAN [Goodfellow et al., 2014], when $\mathbb D$ is JS-divergence and f_{ϕ} is a binary classifier
 - f-GAN [Nowozin et al., 2016], when \mathbb{D} is f-divergence
 - W-GAN [Arjovsky et al., 2017], when \mathbb{D} is Wasserstein distance and f_{ϕ} is a 1-Lipschitz function

$$(\mathbf{x}), p_{\theta}(\mathbf{x}) - \mathbb{E}_{q(\mathbf{x})} \left[f_{\phi}(\mathbf{x}) \right] + \mathbb{E}_{p_{d}(\mathbf{x})} \left[f_{\phi}(\mathbf{x}) \right]$$

More algorithms recovered by SE

- Data augmentation / re-weighting / RAML • Unified EM (UEM) / Constraint-driven learning (CoDL)
- Curiosity-driven RL
- Knowledge distillation

A table of all algorithms

Algorithm	f	lpha	eta	\mathbb{D}	
Unsupervised MLE	$f(oldsymbol{x};\mathcal{D})$	1	1	CE	
Supervised MLE	$f(oldsymbol{x},oldsymbol{y};\mathcal{D})$	1	ϵ	CE	Paradigms not (yet)
Active Learn.	$f(oldsymbol{x},oldsymbol{y};\mathcal{D})+u(oldsymbol{x})$	temp., > 0	ϵ	CE	covered by SE:
Reward-augment MLE	$f_{ ext{metric}}(oldsymbol{x},oldsymbol{y};\mathcal{D},r)$	1	ε	CE	 Meta learning
PG for Seq. Gen.	$f_{ ext{metric}}(oldsymbol{x},oldsymbol{y};\mathcal{D},r)$	1	1	CE	 Lifelong learning
Posterior Reg.	$f_{rule}(oldsymbol{x},oldsymbol{y})$	weight, > 0	lpha	CE	• • •
Unified EM	$f_{rule}(oldsymbol{x},oldsymbol{y})$	weight, $\in \mathbb{R}$	1	CE	Interesting future w
Policy Gradient (PG)	$\log Q^{ex}(oldsymbol{x},oldsymbol{y})$	1	1	CE	study the connectio
+ Intrinsic Reward	$\log Q^{ex}(\boldsymbol{x},\boldsymbol{y}) + Q^{in}(\boldsymbol{x},\boldsymbol{y})$	1	1	CE	
RL as inference	$Q^{ex}(oldsymbol{x},oldsymbol{y})$	temp., > 0	lpha	CE	
Vanilla GAN	binary classifier	0	1	JSD	
f-GAN	discriminator	0	1	f-divg.	
WGAN	1-Lipschitz discriminator	0	1	W dist.	

A standardized ML formalism

2 Integrated problem solving Plugging arbitrary experiences in learning

3

Outline

High-level Ideas

- Distinct experiences are used in learning in the same way Plug arbitrary available experiences into the learning procedure!

$f = w_1 \cdot f(\mathbf{x} | \texttt{B}) + w_2 \cdot f(\mathbf{x} | \texttt{B})$

$$1) + w_3 \cdot f(\mathbf{x} \mid \mathfrak{S}) + w_4 \cdot f(\mathbf{x} \mid \mathfrak{S}) \cdot$$

Focus on what to use, instead of worrying about how to use

Problem: Controllable Text Generation Ex. controlling sentiment

Goals: generating a new sentence that has the target sentiment while preserving all other aspects

Key challenge: no direct supervision data

target sentimentpositive

source text

The manager is a horrible person!

[Hu et al., ICML'17]

Goals: generating a new sentence that has the target sentiment while preserving all other aspects

1) Consider what experiences to use

target sentiment positive

source text

The manager is a horrible person!

[Hu et al., ICML'17]

Goals: generating a new sentence that has the target sentiment while preserving all other aspects

1) Consider what experiences to use

Sentiment classifier

[Hu et al., ICML'17]

Sentiment classifier \longrightarrow logit of target sentiment

Goals: generating a new sentence that has the target sentiment while preserving all other aspects

1) Consider what experiences to use

Sentiment classifier

[Hu et al., ICML'17]

Goals: generating a new sentence that has the target sentiment while preserving all other aspects

1) Consider what experiences to use

target sentiment negative

source text

The manager is a horrible person!

[Hu et al., ICML'17]

Goals: generating a new sentence that has the target sentiment while preserving all other aspects

1) Consider what experiences to use

Sentiment classifier

The manager is a perfect person!

[Hu et al., ICML'17]

Language model ...

1) Consider what experiences to use

2) Plug experiences into the algorithm

[Hu et al., ICML'17]

1) Consider what experiences to use

2) Plug experiences into the algorithm

Source text: The manager is a horrible person!

Experiences plugged in:

$f - f(x | \Delta S)$ $+ f(x | \exists)$

 $+ f(\mathbf{x}|\mathbf{A})$

[Hu et al., ICML'17]

Resulting generated text:

The manager is a perfect person!

58

[Hu et al., ICML'17]

/ (∱)	Perservation (\uparrow)	Language quality (\downarrow)
	0.1	326.1
	65.6	115.6
	57.8	47.2

Controllable text generation as an NLP benchmark

[Tikhonov et al., EMNLP2019, Style Transfer for Texts: Retrain, Report Errors, Compare with Rewrites]

Preservation (\uparrow)

Controllable text generation in various applications

follow-up work

- Emotional chatbot [e.g. Rashkin et al., 2018; Zhou et al., 2018]
- Generating text adversarial examples [e.g. Zhao et al., 2018]
- -

- Neutralizing bias in text [e.g. Chen et al., 2018; Youngmann, 2019] Data augmentation [e.g. Verma et al., 2018; Malandrakis et al., 2019]

Controllable Text Generation Other work

Rewriting content

He scored 23 points and pulled down 8 rebounds .

Name	LeBron James		
Points	32		
Rebounds	4		
Assists	7		

LeBron James scored 32 points, pulled

down 4 rebounds, and added 7 assists.

[Lin et al., 2019]

Guiding conversation flow

- Hi, how are you today?
 - Fine. Just finished riding along the river.
- **Cool!** You can ride **bikes**, listen to music there too.
 - Yes. I like Taylor Swift.
- I love to sing her songs! Do you?
- Not really. I cannot sing well.
- **b** How about dancing? I love **dancing**!

[Tang et al., ACL'19]

Open-source toolkits for composing ML solutions

Tutorials & invited talks:

Medical Diagnosis

https://github.com/asyml **°** 327 **€** 2,017 **°** 85 **€** 603

• • •

We welcome any contributions !

O PyTorch

- into the integrated algorithm
- Rich problems and results in controllable text generation

Designing learning solutions by plugging arbitrary experiences

Outline

High-level Ideas

- Accelerate innovations across areas
- Solving challenges in one area by applying well-known solutions in another

Unifying perspective of extensive algorithms

Systematic idea transfer and solution exchange

[Hu et al., NeurIPS'18]

[Hu et al., NeurIPS'18]

Human body constraint: $f(x|_{int}) = match score$

Key challenge: the constraint is not accurate enough

[Hu et al., NeurIPS'18]

Human body constraint: f(x| = match score

Key challenge: the constraint is not accurate enough

[Hu et al., NeurIPS'18]

Solving the challenge under the unifying perspective

Learning problem: adapting the constraint while learning the model

Learning problem: adapting the constraint while learning the model

Solving the challenge under the unifying perspective

Learning problem: adapting the constraint while learning the model

[Hu et al., NeurIPS'18]

Import a solution from another area!

MaxEnt inverse RL [Ziebart'08]

Solving the challenge under the unifying perspective

Learning problem: adapting the constraint while learning the model

[Hu et al., NeurIPS'18]

A closer look:

Resemble adversarial learning, but sampling from q_{ϕ} instead of p_{θ}

Bonus: This is more effective! [Wu et al., 2020]

$$\mathbb{E}_{\boldsymbol{x}^{*}} \bigotimes \left[\nabla_{\phi} f_{\phi}(\boldsymbol{x}^{*} | \boldsymbol{\omega}) - \mathbb{E}_{q_{\phi}(\boldsymbol{x})} \left[\nabla_{\phi} f_{\phi}(\boldsymbol{x} | \boldsymbol{\omega}) \right] \right]$$

take gradient w.r.t ϕ

 $q_{\phi}(\boldsymbol{x}) = \exp\left\{\frac{\alpha \log p_{\theta}(\boldsymbol{x}) + f_{\phi}(\boldsymbol{x} \mid \boldsymbol{x})}{\alpha + \beta}\right\} / Z$

Experimental Setup

- Dataset: DeepFashion [Liu et al'16]
 - 81K data examples
 - Image size: 256x256

. Comparison methods:

- Base: GANs + supervised
- + Fixed knowledge
- + Learned knowledge (Ours)
- Previous work [Isola et al.'17, Ma et al.'17]

[Hu et al., NeurIPS'18]

Not exploiting any structured knowledge of the problem

+ Fixed

+ Learned knowledge knowledge (Ours)

true target

Human Evaluation (\uparrow)

Auto Evaluation: Structural Similarity (T)

78

Pairwise Comparisons with Previous Work Human Evaluation (\uparrow)

Off-the-shelf reward learning algorithms

- MaxEnt inverse RL [Ziebart'08]
- Intrinsic reward learning [Pathak'17, Zheng'18, ...]

Stablized policy training

 Proximal Policy Optimization [Schulman'2017]

[Burda'15]

Integrated innovation across areas Other work

Constraint adapting [Hu et al., NeurIPS'18]

Automated data augmentation & re-weighting [Hu, Tan, et al., NeurIPS'19]

Stablized GAN training [Wu et al, 2020]

Importance weighted VAE _____ Importance weighted GANs [Hu et al., ICLR'18]

80

Stablized policy training

Proximal Policy Optimization [Schulman'2017]

Figure 1: Illustration of the proposed approach for stabilizing GAN training. Results are from the CIFAR-10 experiment in Sec. 4.1. Left: The conventional and surrogate objectives for generator training, as we interpolate between the initial generator parameters θ_{old} and the updated generator parameters θ_{new} which we compute after one iteration of training. The updated θ_{new} obtains maximal surrogate objective. The surrogate objective imposes a penalty for having too large of a generator update, since the curve starts decreasing after x = 1. In contrast, the conventional objective (for WGAN-GP) keeps increasing with larger generator updates. Middle and right: Discriminator and generator losses w/ and w/o sample re-weighting. WGAN-GP with our re-weighting plugged in shows lower variance in both discriminator and generator losses throughout training (and achieves better final performance as shown in Sec. (4.1).

Integrated innovation across areas Other work

Stablized GAN training [Wu et al, 2020]

Method	IS (†)	FID (\downarrow)
Real data	$11.24 \pm .12$	7.8
WGAN-GP (2017)	$7.86 {\pm}.08$	-
CT-GAN (2018)	$8.12 \pm .12$	-
SN-GANs (2018)	$8.22 {\pm} .05$	$21.7 \pm .21$
WGAN-ALP (2020)	$8.34 {\pm} .06$	$12.96 \pm .35$
SRNGAN (2020)	$8.53 \pm .04$	19.83
AutoGAN (2019)	$8.55 \pm .10$	12.42
Ours (re-weighting only)	8.45±.14	13.21±.60
Ours (full)	8.69±.13	$\textbf{10.70} {\pm} \textbf{.10}$
	1 0	

Table 1: CIFAR-10 results. Our method is run 3 times for average and standard deviation.

Length	MLE	SeqGAN [53]	LeakGAN [19]	RelGAN [36]	WGAN-GP [18]	Ours	Real
20	9.038	8.736	7.038	6.680	6.89	5.67	5.750
40	10.411	10.310	7.191	6.765	6.78	6.14	4.071
	Ta	ble 2. Oracle ne	gative log-likelik	nood scores (1)	on synthetic data		

Method	BLEU-2 (†)	BLEU-3 (†)	BLEU-4 (†)	BLEU-5 (†)	\mathbf{NLL}_{gen} (\downarrow)
MLE	0.768	0.473	0.240	0.126	2.382
SegGAN [53]	0.777	0.491	0.261	0.138	2.773
LeakGAN [19]	0.826	0.645	0.437	0.272	2.356
RelGAN (100) [36]	0.881	0.705	0.501	0.319	2.482
RelGAN (1000) [36]	0.837	0.654	0.435	0.265	2.285
WGAN-GP [18]	0.872	0.636	0.379	0.220	2.209
Ours	0.905	0.692	0.470	0.322	2.265

Table 3: Results on EMNLP2017 WMT News. BLEU measures text quality and NLL_{gen} evaluates sample diversity. We copied the results of previous text GAN models from [36], where RelGAN (100) and RelGAN (1000) use different hyperparameters as reported in the paper.

Take Aways

- Systematic idea transfer and solution exchange
 - Accelerate innovations across areas
 - Solutions to new problems come for free !

A standardized ML formalism

Integrated problem solving 2 Plugging arbitrary experiences in learning

Integrated algorithm innovation An advance in one area unlocks advances in many others

 $\min_{q,\theta} - \mathbb{E}_{q(\boldsymbol{x},\boldsymbol{y})} \left[f(\boldsymbol{x},\boldsymbol{y}) \right] + \alpha \mathbb{D} \left(q(\boldsymbol{x},\boldsymbol{y}), p_{\theta}(\boldsymbol{x},\boldsymbol{y}) \right) - \beta \mathbb{H}(q)$

Expanding the unifying understanding

. How can we connect the dots of the wider landscape of ML? learning, etc)

Learning from multiple experiences

- Ex. learning in changing, interactive environment (online learning, lifelong

Expanding the unifying understanding

. How can we connect the dots of the wider landscape of ML? learning, etc)

Ex. learning in changing, interactive environment (online learning, lifelong

Expanding the unifying understanding

. How can we connect the dots of the wider landscape of ML?

. How can we provide guarantees for learning with multiple experiences? Ex. get better performance every time adding new (possibly noisy)

From standardization to automation

- enriched "AutoML" capability (beyond hyperparameter & arch search)
- Unified, standardized algorithmic representation Automated manipulation and creation of learning solutions Improving ML accessibility to broader users
- Healthcare
- Energy eng.
- Bio eng.

• • •

Domain knowledge in various forms

Predictions

- HCI . Learning from all experiences - PL Automated ML engine - System

• • •

Food for Thought: How Far Would This Take Us?

Physics

It is only slightly overstating the case to say that **physics is the study of symmetry**.

-- Phil Anderson (1923-2020), Physicist, Nobel laureate

Food for Thought: How Far Would This Take Us?

Physics

Maxwell's equations

1861

General relativity

1910s

Machine Learning

 Unified way of thinking
 Systematic understanding
 Automated solution creation
 Improved ML accessibility

Theory of everything

1970s

Thanks !