

HALICIOĞLU DATA SCIENCE INSTITUTE

Text Generation with No (Good) Data: Reinforcement Learning, Causal Inference, and Unified Evaluation

Zhiting Hu Assistant Professor Halicioglu Data Science Institute **Computer Science and Engineering** UC San Diego

Text Generation with (Clean) Supervised Data Inspirational success TECH ARTIFICIAL INTELLIGENCE

Language Modeling

Machine Translation

Summarization

Description Generation

Captioning

 $\bullet \bullet \bullet$

Speech Recognition

Loud and clear Switchboard Switchboard cellular

1993	96	98	2000	02	04	06
Sources Mi	crosoft rese	arch nan	orc			

OpenAl's text-generating system GPT-3 is now spewing out 4.5 billion words a day

Robot-generated writing looks set to be the next big thing

By James Vincent | Mar 29, 2021, 8:24am EDT

[The Economist]

2

hypothesis (attack)

Prompt generation

Automatically generating prompts to steer pretrained LMs

Text Generation with No (Good) Data? Controllable text generation

[Hu et al., 2017; Shen et al., 2017]

Controlling writing style

Plain

LeBron James contributed 26 points, 8 rebounds, 7 assists.

LeBron James rounded out the box score with an all around impressive performance, **Elaborate** scoring 26 points, grabbing 8 rebounds and dishing out 7 assists.

[Lin et al., 2020]

Text Generation with No (Good) Data?

Biased data

Gender - occupation

- He went to law school and became a plaintiffs' attorney

Text Generation with No (Good) Data?

Adversarial text examples

Controllable text generation

C	Controlling sentiment		Controlling writing style
Pos	The film is full of imagination!	Plain	LeBron James contributed 26 points, 8 rebounds, 7 assists.
Neg	The film is strictly routine!	Elaborate	LeBron James rounded out the box score with an all around impressive performance, scoring 26 points, grabbing 8 rebounds and dishing out 7 assists.

Prompt generation

Biased data

Gender - occupation

- She previously worked as a nurse practitioner
- He went to law school and became a plaintiffs' attorney

Experiences of all kinds

Data examples

Type-2 diabetes is 90% more common than type-1

Constraints

• • •

Auxiliary agents

Adversaries

Panoramic Learning with A Standardized Machine Learning Formalism

Learning Text Generation from Reward with Efficient (Soft) Q-Learning

Han Guo

Bowen Tan

Carnegie Mellon University

Hector Liu

Eric P. Xing

Zhiting Hu

Learning Text Generation from Reward Adversarial text examples

premises

Compose Reward-1 + Reward-2, and run **Reinforcement Learning**

hypothesis (attack)

Learning Text Generation from Reward Prompt generation

Automatically generating prompts to steer pretrained LMs

Reinforcement Learning (RL)

- Plug in arbitrary reward functions to drive learning
- Fertile research area for robotic and game control

Reinforcement Learning (RL)

- Plug in arbitrary reward functions to drive learning
- Fertile research area for robotic and game control

But ... limited success for training text generation

- Challenges:
 - Extremely large sequence space: (vocab-size)^{text-length} ~ $(10^5)^{20}$ •
 - Sparse reward: only after seeing the whole text sequence

• (Autoregressive) text generation model:

Sentence
$$\mathbf{y} = (y_0, \dots, y_T)$$
 $\pi_{\theta}(y_t$
trajectory, τ action, a

In RL terms:

16

• (Autoregressive) text generation model:

In RL terms:

- Reward $r_t = r(s_t, a_t)$
 - Often **sparse**: $r_t = 0$ for t < T
- The general RL objective: maximize cumu
- Q-function: expected future reward of taking action a_t in state s_t

ulative reward
$$J(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} \right]$$

 $Q^{\pi}(\boldsymbol{s}_{t}, \boldsymbol{a}_{t}) = \mathbb{E}_{\pi} \left[\sum_{t'=t}^{T} \gamma^{t'} \boldsymbol{r}_{t'} \mid \boldsymbol{s}_{t}, \boldsymbol{a}_{t} \right]$

ce		
ł	<	
	_	

17

- On-policy RL
 - Most popular, e.g., Policy Gradient (PG)

On-policy RL

$$(t_t) \nabla_{\theta} \log \pi_{\theta} \left(a_t \mid \boldsymbol{s}_t \right)$$

- Off-policy RL
 - e.g., *Q*-learning
 - Implicitly learns the policy π by approximating the $Q^{\pi}(s_t, a_t)$

 - Learns Q_{θ} with the regression objective:

$$\mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{\pi'} \begin{bmatrix} \frac{1}{2} \left(r_t + \gamma \max_{a_{t+1}} \right) \\ \text{Arbitrary policy} \end{bmatrix} Regression targets \\ \end{bmatrix}$$

• After learning, induces the policy as $a_t = \operatorname{argmax}_a Q_{\theta^*}(s_t, a)$

Off-policy RL

(Static) Training Data

A skier is skiing down a mountain. 0.95 A dog are wags its tail down the boy. 0.47 Men paddle her wings on the lake. 0.56 The woman is carrying two trays of food. 0.91 A barber is giving a haircut. 0.97

...

- Off-policy RL
 - e.g., *Q*-learning

• After learning, induces the policy as $a_t = \operatorname{argmax}_a Q_{\theta^*}(s_t, a)$

Off-policy RL

(Static) Training Data

A skier is skiing down a mountain. 0.95 A dog are wags its tail down the boy. 0.47 Men paddle her wings on the lake. 0.56 The woman is carrying two trays of food. 0.91 A barber is giving a haircut. 0.97 ...

- On-policy RL, e.g., Policy Gradient (PG)
 - Exploration to maximize reward directly Extremely low data efficiency

- Off-policy RL, e.g., Q-learning Unstable training due to bootstrapping & sparse reward Slow updates due to large action space Sensitive to off-policy data quality
- ... Limited success for training text generation

New RL for Text Generation: Soft Q-Learning (SQL) (Hard) Q-learning SQL Goal

logits

- $J(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{I} \gamma^{t} r_{t} \right]$
- Induced policy

 $a_t = \operatorname{argmax}_a Q_{\theta^*}(\mathbf{s}_t, a)$

Goal: entropy regularized

$$J_{\text{MaxEnt}}(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} + \alpha \mathcal{H} \left(\pi \left(\cdot \mid \boldsymbol{s}_{t} \right) \right) \right]$$

Induced policy

$$\pi_{\theta^*}(a_t \mid \boldsymbol{s}_t) = \operatorname{softmax}(Q_{\theta^*}(a_t \mid \boldsymbol{s}_t))$$

Generation model's "logits" now act as *Q*-values !

New RL for Text Generation: Soft *Q*-Learning (SQL) (Hard) *Q*-learning SQL

• Goal

$$J(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} \right]$$

Induced policy

$$a_t = \operatorname{argmax}_a Q_{\theta^*}(\mathbf{s}_t, a)$$

• Training objective:

• Based on temporal consistency Unstable training / slow updates • Goal: entropy regularized

$$J_{\text{MaxEnt}}(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} + \alpha \mathcal{H} \left(\pi \left(\cdot \mid \boldsymbol{s}_{t} \right) \right) \right]$$

Induced policy

 $\pi_{\theta^*}(a_t \mid \boldsymbol{s}_t) = \operatorname{softmax}(Q_{\theta^*}(a_t \mid \boldsymbol{s}_t))$

- Training objective:
 - Based on path consistency
 - Stable / efficient

Efficient Training via Path Consistency $V^{*}(\boldsymbol{s}) = \log \sum_{a'} \exp Q^{*}(\boldsymbol{s}, a')$

• (Single-step) path consistency

[Nachum et al., 2017]

 $\pi^*(a \mid \mathbf{s}) = \operatorname{softmax}(Q^*(a \mid \mathbf{s}))$

Efficient Training via Path Consistency $V^{*}(\boldsymbol{s}) = \log \sum_{a'} \exp Q^{*}(\boldsymbol{s}, a')$

• (Single-step) path consistency $V^{*}(\boldsymbol{s}_{t}) - \gamma V^{*}(\boldsymbol{s}_{t+1}) = r_{t} - \log \pi^{*}(a_{t} | \boldsymbol{s}_{t})$

• Objective

$$\mathcal{L}_{SQL, PCL}(\boldsymbol{\theta}) = \mathbb{E}_{\pi'} \begin{bmatrix} \frac{1}{2} \left(-V_{\bar{\theta}} \left(\boldsymbol{s}_t \right) + \gamma V_{\bar{\theta}} \left(\boldsymbol{s}_t \right) \end{bmatrix} \end{bmatrix}$$

• (Multi-step) path consistency

$$V^{*}(\boldsymbol{s}_{t}) - \gamma^{T-t}V^{*}(\boldsymbol{s}_{T+1}) = \sum_{l=0}^{T-t}$$

Objective

$$\mathcal{L}_{\text{SQL, PCL-ms}}(\boldsymbol{\theta}) = \mathbb{E}_{\pi'} \left[\frac{1}{2} \left(-V_{\bar{\theta}} \left(\boldsymbol{s}_t \right) + \gamma^{T-t} \right) \right] \right]$$

[Nachum et al., 2017]

Implementation is easy

```
model = TransformerLM(...)
for iter in range(max_iters):
    if mode == "off-policy":
        batch = dataset.sample_batch()
        sample_ids = batch.text_ids
    if mode == "on-policy":
        sample_ids = model.decode()
    Q_values = model.forward(sample_ids)
    Q_values_target = target_model.forward(sample_ids)
    rewards = compute_rewards(sample_ids)
    sql_loss = multi_step_SQL_objective(
        Q_values,
        Q_values_target,
        actions=sample_ids,
        rewards=rewards)
    # gradient descent over sql_loss
    # ...
```

def multi_step_SQL_objective(Q_values, Q_values_target, actions, rewards):

```
V = Q_values.logsumexp(dim=-1)
A = Q_values[actions] - V
```

V_target = Q_values_target.logsumexp(dim=-1)

```
A2 = masked_reverse_cumsum(
   A, lengths=actions.sequence_length,
   dim=-1)
```

```
return F.mse_loss(
   A2, rewards.view(-1, 1) - V_target,
   reduction="none")
```


Applications & Experiments

Application (I): Learning from Noisy (Negative) Text

- Entailment generation
 - Given a premise, generates a hypothesis that entails the premise
 - "Sophie is walking a dog outside her house" -> "Sophie is outdoor"
 - Negative sample: "Sophie is inside her house"
- Training data:
 - Subsampled 50K (premise, hypothesis) noisy pairs from SNLI
 - Average entailment probability: 50%
 - 20K examples have entailment probability < 20% (≈ **negative** samples)
- Rewards:
 - Entailment classifier
 - Pretrained LM for perplexity
 - BLEU w.r.t input premises (which effectively prevents trivial generations)

Application (I): Learning from Noisy (Negative) Text

- SQL (full) > MLE+PG (PG alone does not work)

• MLE (and variants) and pure off-policy RL (GOLD-s) do not work \leftarrow rely heavy on data quality

Application (II): Universal Adversarial Attacks

- Attacking entailment classifier
 - Generate readable hypotheses that are classified as "entailment" for all premises
 - Unconditional hypothesis generation model
- Training data:
 - No direct supervision data available
 - "Weak" data: all hypotheses in MultiNLI corpus
- Rewards:
 - Entailment classifier to attack
 - Pretrained LM for perplexity
 - BLEU w.r.t input premises
 - Repetition penalty

Previous adversarial algorithms are not applicable here:

- only attack for specific premise
- not readable

Application (II): Universal Adversarial Attacks

- **SQL (full)** > **MLE+PG** (PG alone does not work)
- MLE+PG collapses: cannot generate more diverse samples ullet

Samples of highest attack rate

Application (III): Prompt Generation for Controlling LMs

Existing gradient-based prompt tuning methods are not applicable due to discrete components

• Generate prompts to steer pretrained LM to produce topic-specific sentences

Application (III): Prompt Generation for Controlling LMs

- Steered decoding: PPLM, GeDi
- SQL achieves better overall accuracy+fluency
- Prompt control by SQL, MLE+PG > PPLM, GeDi
 - and much faster at inference!

PPLM	GeDi		MLE (5)	SQ	L (off, 5)
12.69	123.8	8	25.70	25.	77
MLE	+PG (5/1	10/15)	SQL (5/1	0/15, 0	ours)
25.52	/28.16/2	8.71	25.94/26	.95/29	.10
	Lan	guage	perplex	ity	
N	Aodel	PPLM	GeDi	SQL	
S	Seconds	5.58	1.05	0.07	

Time cost for generating one sentence

Summary of SQL for Text Generation

- Learning text generation from reward
- Previous RL for text generation (e.g., policy gradient, Q-learning): Low data efficiency; unstable training; slow updates; sensitive to training data quality
- SQL
 - Objectives based on path consistency
- Stable training from scratch given sparse reward
- Fast updates given large action space
- Opens up enormous opportunities

 - For integrating more advanced RL (replay buffer, model-based RL, hindsight, ...) • To enable massive new applications in text generation

Text Generation with No (Good) Data?

Biased data

Gender - occupation

- He went to law school and became a plaintiffs' attorney

Learning Text Generation from Biased Data A Causal Lens

Zhiting Hu

Erran Li

Controllable Text Generation

- Generates text *x* that contains desired properties *a*
 - Attributes, e.g., sentiment, tense, politeness, formality, ...
 - Structures, e.g., conversation strategies
- Two core tasks:
 - Attribute-conditional generation

Sentiment = negative \Rightarrow "The film is strictly routine."

• Text attribute (style) transfer

- Applications:
 - Emotional chatbot [e.g. Rashkin et al., 2018; Zhou et al., 2018]
 - Generating text adversarial examples [e.g. Zhao et al., 2018]
 - Data augmentation [e.g. Verma et al., 2018; Malandrakis et al., 2019]

"The film is strictly routine." \Rightarrow "The film is full of imagination."

Common Methods of Controllable

- Separate solutions for the two tasks
 - Attribute-conditional generation: $p(\mathbf{x}|a)$
 - Text attribute transfer: p(x'|x, a')
- ML-based models that learn **correlations** in the data
 - Joint/marginal/conditional distributions
 - Also inherits bias from data

female She previously worked as a nurse practitioner in ...

male — He went to law school and became a plaintiffs' attorney.

• Limited generalization

Controllable Text Generation from Causal Perspective

- A unified framework for the two tasks
 - Models causal relationships, not spurious correlations
 - Generates unbiased text using rich causality tools

Controllable Text Generation from Causal Perspective

- A unified framework for the two tasks
 - Models causal relationships, not spurious correlations
 - Generates unbiased text using rich causality tools
- Attribute-conditional generation: $p(\mathbf{x}|do(a))$
 - Intervention
 - **do**-operation: removes dependence b/w a and confounders

Controllable Text Generation from Causal Perspective

- A unified framework for the two tasks
 - Models causal relationships, not spurious correlations
 - Generates unbiased text using rich causality tools
- Attribute-conditional generation: $p(\mathbf{x}|do(a))$
 - Intervention
 - **do**-operation: removes dependence b/w *a* and confounders
- Text attribute transfer: p(x'|x, a(x), a')
 - Counterfactual
 - "What would the text be if the attribute had taken a different value?"

The Basis: Structural Causal Model (SCM)

• Describes causal relationships between variables

(Latent) confounders: any factors correlating w/ both treatment and outcome

outcome: text, e.g., restaurant reviews

- Often available for only a small **subset** of data, e.g., by human annotation
- Previous unbiased generation work usually assumes full unbiased proxy labels

proxy: observed information of confounders, e.g., food type

> $p_{\theta}(\boldsymbol{x}, a, \boldsymbol{z}, \boldsymbol{c}) = p_{\theta}(\boldsymbol{x}|a, \boldsymbol{z})p_{\theta}(a|\boldsymbol{z})p_{\theta}(\boldsymbol{c}|\boldsymbol{z})p_{0}(\boldsymbol{z})$ Variational distribution $q_{\phi}(\boldsymbol{z}|\boldsymbol{x}, a, \boldsymbol{c})$

Inference (I): Intervention for Attribute-Conditional Generation

• Association (correlation): $p(\mathbf{x}|a)$

$$p(\boldsymbol{x}|a) = \sum_{z} p_{\theta}(\boldsymbol{x}|a, \boldsymbol{z})$$

- Intervention: $p(\mathbf{x}|do(a))$
 - Sets a to a given value independently of z

$$p(\boldsymbol{x}|do(a)) = \sum_{z} p_{\theta}(\boldsymbol{x}|z)$$

 $p_{\theta}(\mathbf{z}|a)$

Inference (I): Intervention for Attribute-Conditional Generation

• Association (correlation): $p(\mathbf{x}|a)$

$$p(\boldsymbol{x}|a) = \sum_{z} p_{\theta}(\boldsymbol{x}|a, \boldsymbol{z})$$

- Intervention: $p(\mathbf{x}|do(a))$
 - Sets a to a given value independently of z

$$p(\boldsymbol{x}|do(a)) = \sum_{z} p_{\theta}(\boldsymbol{x}|z)$$

 $p_{\theta}(\mathbf{z}|a)$

Inference (II): Counterfactual for Text Attribute Transfer

- What would the text be if the attribute had taken a different value?
- Counterfactuals as a standard three-step procedure [Pearl 2000] 1) Abduction: predicts z given $x: z \sim q_{\phi}(z|x, a, c)$ 2) Action: performs intervention, do(a = a')

3) Prediction: generates x' given z and a' following the SCM: $x' \sim p_{\theta}(x'|a', z)$

Learning of the SCM

 $p_{\theta}(\boldsymbol{x}, a, \boldsymbol{z}, \boldsymbol{c}) = p_{\theta}(\boldsymbol{x}|a, \boldsymbol{z}) p_{\theta}(a|\boldsymbol{z}) p_{\theta}(\boldsymbol{c}|\boldsymbol{z}) p_{0}(\boldsymbol{z})$ Variational distribution $q_{\phi}(\boldsymbol{z}|\boldsymbol{x}, a, \boldsymbol{c})$

GPT-2 Variational autoencoder (VAE) objective $\mathcal{L}_{vae}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}} \left[\log p_{\theta}(\boldsymbol{x}|a, \boldsymbol{z}) + \lambda_{a} \log p_{\theta}(a|\boldsymbol{z}) + \lambda_{c} \log p_{\theta}(\boldsymbol{c}|\boldsymbol{z}) \right] - \lambda_{kl} \mathrm{KL} \left(q_{\phi} \| p_{0} \right)$

- Counterfactual objectives
 - Draws inspirations from causality, disentangled representations & controllable generation
 - Intuition: counterfactual x' must entail a' and preserve the original z and c

Experiments

- Two challenging datasets with strong spurious correlations
 - Yelp customer reviews:
 - Attribute *a*: sentiment (1:positive, 0:negative)
 - Confounding proxy *c*: category (1:restaurant, 0:others)
 - **Correlation: 90%** data have the same sentiment and category labels
 - Size: 510K for training, wherein **10K** have category labels lacksquare
 - Bios: online biographies
 - Attribute *a*: gender (1:female, 0:male) \bullet
 - Confounding proxy *c* : occupation (1:nurse etc, 0:rapper etc)
 - Correlation: 95%
 - Size: 43K for training, wherein **3K** have occupation labels \bullet

a = 1, c = 1Soup and salad came out quickly !

a = 0, c = 0I texted and called Phil several times and he never responded

a = 1, c = 1She previously worked as a nurse practitioner

a = 0, c = 0He went to law school and became a plaintiffs' attorney

_	-	

(I) Attribute-Conditional Generation

 Causal model improves control accuracy and reduces bias

	Methods	Control a
	Conditional LM	7
VELD	Conditional LM (full)	8
IELP	GeDi [33]	8
	Ablation: Ours w/o cf - z/c	ç
	Ours	9

Automatic evaluation

(I) A

• Cau and

ttrib	ute-Conditional C		attribute —	Conditional L GPT-2	$\int \rightarrow \text{text}$	
usal model improves control accuracy d reduces bias			attribute, (confoundir	Co predicted) ng proxy	nditional LM GPT-2	(full)
	Methods	Control accuracy (†)	Bias (↓)	Fluency (\downarrow)	Diversity (†)	
Yelp	Conditional LM Conditional LM (full) GeDi [33]	79.1 80.3 80.9	78.7 78.9 74.3	50.4 50.8 83.2	41.4 41.9 41.7	
	Ablation: Ours w/o cf - z/c Ours	91.1 96.3	89.2 59.8	54.1 51.3	40.4 39.1	
BIOS	Conditional LM Conditional LM (full) GeDi [33]	95.51 93.28 86.0	84.73 72.34 75.2	17.0 18.5 27.8	46.5 48.5 43.5	
	Ablation: Ours w/o cf - z/c Ours	97.3 99.2	70.1 62.4	29.4 32.0	42.1 40.6	

Automatic evaluation

(I) Attribute-Conditional Generation

 Causal model improves control accuracy and reduces bias

	Methods	Control accuracy (†)	Bias (\downarrow)	Fluency (†)
Yelp	Conditional LM (full)	80.0	73.0	3.90
	Ours	97.0	56.0	3.85
BIOS	Conditional LM (full)	96.0	82.0	4.43
	Ours	99.0	60.0	4.25

Human evaluation

(I) Attribute-Conditional Generation

restaurant

CONDITIONAL LM (FULL)

```
a = 0 (sentiment negative)
this was the worst experience i 've ever had at a glazier .
i even asked him if they could play on the tv channel .
this was pretty fun the first time i went . "
waited in line once but almost never reached the floor .
if you are ever up in chandler , tony will stop by .
a = 1 (sentiment positive)
very good and long wait time .
we loved our favorite harrah 's night ! "
i would love to try this restaurant again when they open . "
this place is great .
everything you will find in this restaurant !
```

OURS a = 0 (sentiment negative) no , it 's obvious that they were overcooked . the seats were poorly done and basically sucked up . it was n't enough to ask us if it was okay . very disappointed with my food order yesterday . i declined to replace it tho they were bad . a = 1 (sentiment positive) great for a relaxed evening out . i 'm beyond impressed with the passion fruit and unbeatable service it 's a true pleasure to meet andrew . jacksville became my go-to spot for dessert thank you for the technique , i am quite impressed .

(II) Text Attribute Transfer

- Previous methods tend to fail on the challenging dataset: low control accuracy
- Causal model obtains much higher accuracy, and keeps bias low

Methods	Control accuracy (†)	Bias (↓)	Preservation (†)	Fluency (†)
Hu et al. [22]	44.1	68.4	77.7	-132.7
He et al. [20]	35.3	60.2	80.1	-57.7
Ablation: Ours w/o cf - z/c	75.0	67.8	36.3	-34.2
Ours	77.0	61.4	42.3	- 29.6

Results on *biased* Yelp dataset

llenging dataset: low control accuracy accy, and keeps bias low

(II) Text Attribute Transfer

- Previous methods tend to fail on the challenging dataset: low control accuracy
- Causal model obtains much higher accuracy, and keeps bias low
- Also gets improvement on unbiased data

Methods	Control accuracy (†)	Preserva self-BLEU	tion (†) ref-BLEU	Fluency (†)
Hu et al. [22]	86.7	58.4	-	-177.7
Shen et al. [65]	73.9	20.7	7.8	-72.0
He et al. [20]	87.9	48.4	18.7	-31.7
Dai et al. [7]	87.7	54.9	20.3	-73.0
Ablation: Ours w/o cf - z/c	87.1	57.2	24.3	-46.6
Ours	91.9	57.3	25.5	-47.1

Results on *unbiased* Yelp dataset (commonly used in previous study)

Summary of Causal Controllable Generation

- Causality + ML for unified unbiased controllable generation
 - Intervention
 - Counterfactual
- Causal modeling for more general NLP?
 - Dialog, summarization, ...
 - Understanding
 - Reasoning

Evaluating Text Generation without References **A Unified Framework**

Mingkai Deng* Bowen Tan*

Hector Liu

Eric P. Xing

Zhiting Hu

Text generation tasks have diverse goals

Summarization

two men standing on the beach. the sign is black and white. a girl holding a frisbee. a wooden sign. white sign with black writing. man holding a white frisbee. white frisbee in the air. the shorts are blue. a metal pole holding a sign. the sign is yellow.

Image Captioning

Story Generation

Poetry Generation

George Mikell (born Jurgis Mikelaitis; 4 April 929) is a Lithuanian-Australian actor and write st known for his performances in *The Guns o* (1961) and The Great Escape (1963)

Data-to-Text

And the list is growing...

Automatic evaluation is challenging

- Comparing generation with human-written references
 - Expensive to annotate references
 - Incomprehensive evaluation
- Different tasks care about different aspects
 - 100s of tasks, 1000s of metrics

Categorize tasks based on information change from input (X) to output (Y)

Summarization Image captioning Data-to-text

• • •

Machine translation Paraphrasing Attribute transfer

• • •

Dialog Story generation

• • •

2. Transduction (X = Y)

Example aspects to evaluate:

Consistency: all Y's info must align with X **Relevance:** all Y's info must align with X's crucial info

 Categorize tasks based on information change from input (X) to output (Y) • (Pre-)train an info-alignment model to measure the information change

Example aspects to evaluate:

Consistency Relevance

 Categorize tasks based on information change from input (X) to output (Y) • (Pre-)train an info-alignment model to measure the information change

Preservation: Y and X must align with each other, fully

Example aspects to evaluate:

Consistency Relevance

Preservation

2. Transduction (X = Y)

Categorize tasks based on information change from input (X) to output (Y) • (Pre-)train an info-alignment model to measure the information change

Groundedness: Created info must align with external sources

• Summarization: consistency

0.60 **OursD** Baselines 0.50 0.40 0.30 0.20 0.10 0.00 SummaQA-f BLANC prob SUPERT OUTS (E) OUTS (D) ROUGE-1 UGE-L BLEU METEOR NoverScore Chr

Consistency (CNN/DM – SummEval)

Human correlation

• Summarization: relevance

Human correlation

Relevance (CNN/DM – SummEval)

Attribute transfer: preservation

Human correlation

• Dialog: groundedness

Human correlation

Groundedness (TopicalChat)

• Dialog: engagingness

Human correlation

Summary of Unified Text Generation Evaluation

- Information change/alignment characterizes text generation tasks
- (Pre-)trained info-alignment model creates "intermediate representations" for defining desired metrics
- Consistently stronger human correlation compared to specialized metrics

Thanks !