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Social Media

 Facebook/Twitter/Weibo/ ...
* One in every five people in the world uses Facebook (2014)
* Every day around 500 million tweets are tweeted on Twitter (2015)
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Rich Temporal Dynamics

e Popular topics vary over time
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Background

Rich Temporal Dynamics

e Popular topics vary over time
e Messages forwarded across social networks

Retweet network of #Egypt hashtag
(the Arab Spring and the 2011 uprisings)

http://phys.org/news/2012-04-tweets-die-network-competition-attention.html



Rich Temporal Dynamics

e Popular topics vary over time
e Messages forwarded across social networks

Who says What to Whom in What channel
with What effect?




Rich Temporal Dynamics

e Popular topics vary over time
e Messages forwarded across social networks
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Who says What to Whom in What channel
with What effect?

Online marketing
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Background

Previous Work

e Information propagation across networks
O Models interactions between individuals, and structured topologies

J. Goldenberg et al., Independent cascade model
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Previous Work

e Information propagation across networks
O Models interactions between individuals, and structured topologies
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Previous Work

e Temporal topic modeling
o Captures aggregated temporal trends of online content
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Background

Previous Work

e Temporal topic modeling
o Captures aggregated temporal trends of online content
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Limitations

e Individual-level diffusion
o volatile individual behaviors
O hard to accurately uncover

e Aggregated information dynamics
O cannot reveal detailed dissemination process
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Background

Can we unify these different lines?



Can we unify these different lines?

Community level diffusion extraction
« modeling diffusion patterns of topics across different communities



Community level diffusion extraction

Community
e provides the basis for user engagement in social networks
e Strength of Weak Ties'" theory
O a critical role of inter-community interactions in online diffusion.

e Collective user behaviors
O more predictable than those of individuals




Community level diffusion extraction

Input: interaction network Output: community level diffusion _ _=> temporal variation
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® |nput
O an interaction network among users
O user-generated content over time
e Goal: to uncover
o hidden communities, their interests in different topics
O topic temporal variation within communities
O Influence strength between communities



Community level diffusion extraction

Input: interaction network Output: community level diffusion __=> temporal variation
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Problem Formulation

e Consider an interaction network among users
® Two types of data (user behaviors)
O text data (posting)

o network data (social interaction)

Post: bag of words + time stamp

e Links between users



Problem Formulation (cont.)

Assume:

e ( Communities
O membership: each user i has a multinomial distribution over communities: 1;
O interest: each community ¢ has a multinomial distribution over topics: 0.
e K Topics
O content: a multinomial distribution over words: ¢,
O variation: a multinomial distribution over time stamps in each community c: Y,
e Community level influence strength
O For each topic SkS, the diffusion probability between two communities S¢S and Sc’S: S\zeta_{kcc’}S

_ _=> temporal variation
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COmmunity Level Diffusion (COLD) Model

® Two types of user behaviors: posting & social interaction
® Each user assumes a community membership when taking a behavior
® The behavior is then explained by the corresponding community-specific context
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Approximate Inference
* Gibbs Sampling

e iteractively samples latent variables
e community memberships for posting/interaction
® topics for posts
e constructs the distributions of interest based on the samples
e users’ membership distribution
e communities’ interest distribution
® topics’ temporal distribution
e influence strength between communities

* Time Complexity
o O(#tokens + #links)
e linear to the data size



Parallel Implementation

Implement the Gibbs Sampler based on GraphlLab

O simliar to the GraphLab implementation of LDA

Construct a bipartite graph

O users © time stamps
Sufficient statistics of sampler are stored globally or locally

Gather:
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Prediction/Analysis

Community level diffusion

* Topic-sensitive influence strength of community con c’:
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Prediction/Analysis

Community level diffusion

* Topic-sensitive influence strength of community con ¢’:
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Prediction/Analysis

Diffusion Prediction

* Predict whether a post will propagation from one individual to another

e Given:
e the words of the post d
e jtsauthori
e another user |V’
e Goal:
e infer the probability user i’ retweets the post d from user i

e Previous methods model the individual level probability directly

 volatility of individual's actions
e sparsity of individual's records

e Ours: community members' collective behavior patterns
e stable and predictable



Prediction/Analysis

Diffusion Prediction (cont.)

« Given:
o the words of the post d
O its authori
O another user i’

e Goal:
o infer the probability user i’ retweets the post d from user i: SP(i, i’, d)S

e Infer the topic of post based on its words and author: SP(k | d, i)$
e The influence of user i on useri’ on topic k: SP(i, i’ | k)S
e Combine the above:

o P(i,i’,d)=\sum_kP(k | d,i)P(i, i’ | k)

e Time complexity:
o O(K*|d])
o K: #topics, |d|: length of the post
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Experimental Results



Setup

® Two datasets crawled from Weibo.com

o Data-1: 53K users, 11M posts, 91M words; 2.7M links
o Data-2: 0.52M users, 14M posts, 112M words; 10M links

® Baselines & Tasks

features tasks
. : topic comm tem diff

text  social time exIt) detec modpl) pred
PMTLM [39]] e ° ° °
MMSB [1] ° °
EUTB [37] ° ° ° ° °
Pipeline ° ) ° ° ° °
WTM [31] ° ° °
TT [20] ° ° ° °
COLD ° ° ° . ° ° °

Table 2: Feature and Task Comparison of Different Methods




Task 1: Topic Extraction

® Topic perplexity (the lower the better)

o the predictive power of a probabilistic model
o proportional to the cross-entropy between the word distribution learned by the

model and the actual distribution in test set
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Task 1: Topic Extraction

® Topic perplexity (the lower the better)

o the predictive power of a probabilistic model
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Task 2: Community Detection

e Link Prediction

o widely-used when no ground truth of community memberships is available

O AUC: the higher the better:

m the probability that a randomly chosen true positive link is ranked above a randomly

chosen true negative link
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Task 3: Temporal Modeling

® Time-stamp Prediction
O Estimate the time stamp of a post given its words and author
O Accurarcy: the higher the better
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Task 4: Diffusion Prediction

e Diffusion prediction

O Predict whether a post by a user will be retweeted by another user
O AUC: the higher the better
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Efficiency

® Training time
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Other Application

e identify influential communities
o compute the influence degree of each community
m setting the single community as the seedset
m applying the Independent Cascade on the community-level diffusion graph
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Conclusions

* Novel Perspective
e the problem of community level diffusion

e COLD Model

 a latent model to uncover

» the hidden topics and communities

« the community-specific temporal diffusion.
 parallel implementation

* Prediction & Exploration
 An effective diffusion prediction approach leveraging community level
patterns
« Other tasks, e.g., community detection, influential community identification,
etc.



