Community Level Topic Diffusion

Zhiting Hu^{1,3}, Junjie Yao², Bin Cui¹, Eric Xing^{1,3} ¹Peking Univ., China ²East China Normal Univ., China ³Carnegie Mellon Univ.

OUTLINE

Background
Model: COLD
Diffusion Prediction & Analysis
Experimental Results
Conclusion

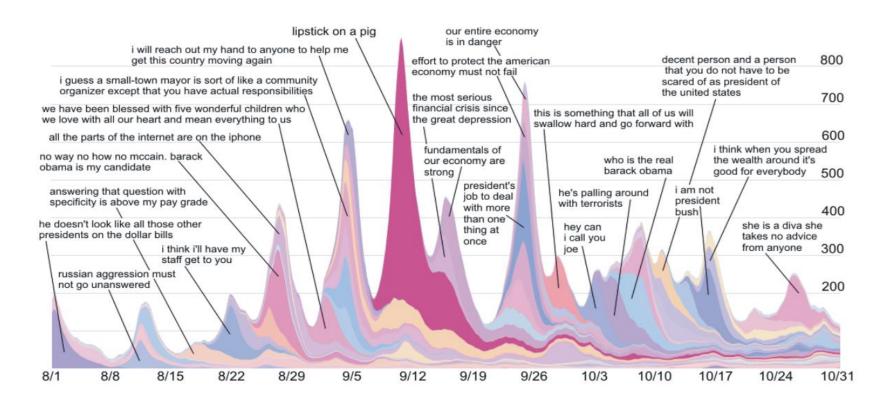
Social Media

- Facebook/Twitter/Weibo/ ...
- One in every five people in the world uses Facebook (2014)
- Every day around *500 million* tweets are tweeted on Twitter (2015)

Background

Rich Temporal Dynamics

• Popular topics vary over time



J. Leskovec et al., "Meme-tracking and the Dynamics of the News Cycle". KDD'09

Rich Temporal Dynamics

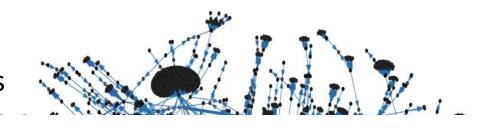
- Popular topics vary over time
- Messages forwarded across social networks

Retweet network of #Egypt hashtag '(the Arab Spring and the 2011 uprisings)

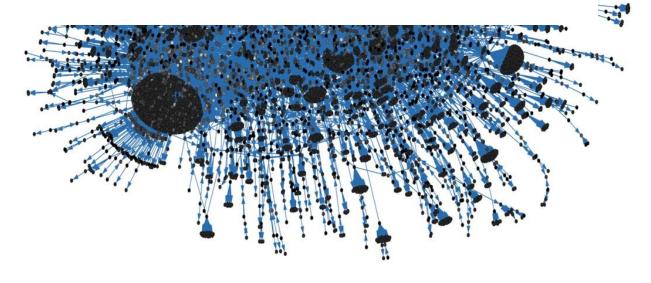
http://phys.org/news/2012-04-tweets-die-network-competition-attention.html

Rich Temporal Dynamics

- Popular topics vary over time
- Messages forwarded across social networks



Who says What to Whom in What channel with What effect?

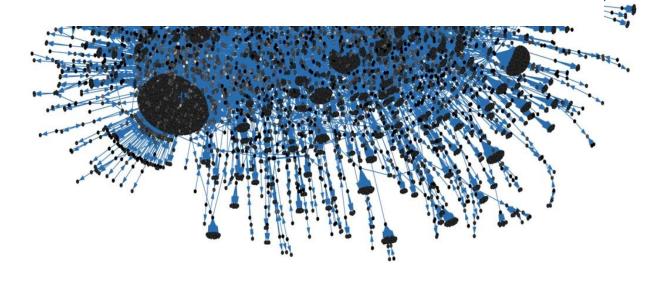


Rich Temporal Dynamics

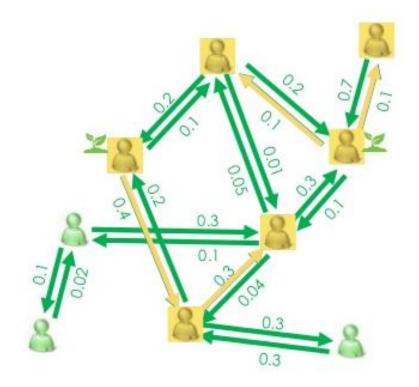
- Popular topics vary over time
- Messages forwarded across social networks

Who says What to Whom in What channel with What effect?

- Online marketing
- Information/friend RecSys
- Search
-

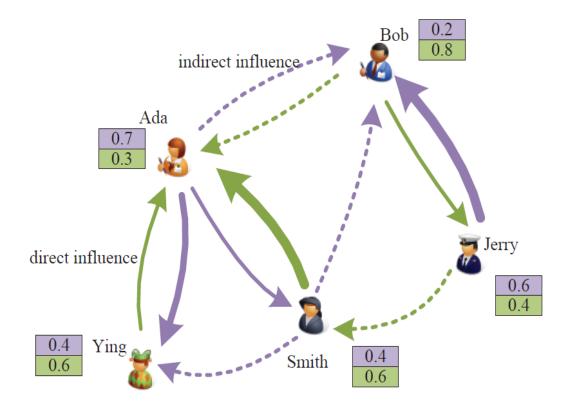


- Information propagation across networks
 - Models interactions between *individuals*, and structured topologies



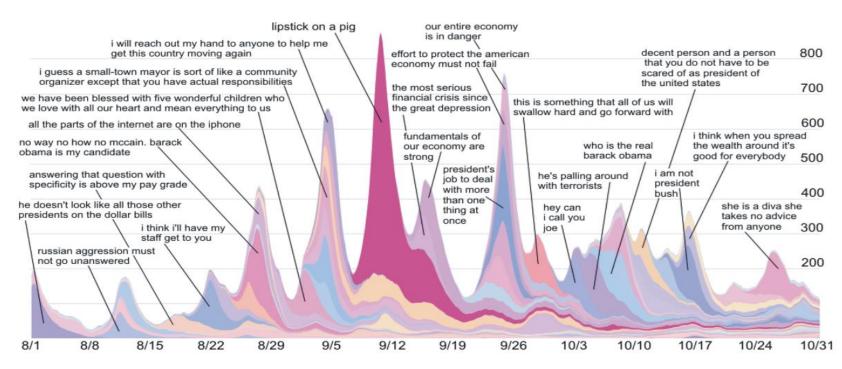
J. Goldenberg et al., Independent cascade model

- Information propagation across networks
 - Models interactions between *individuals*, and structured topologies



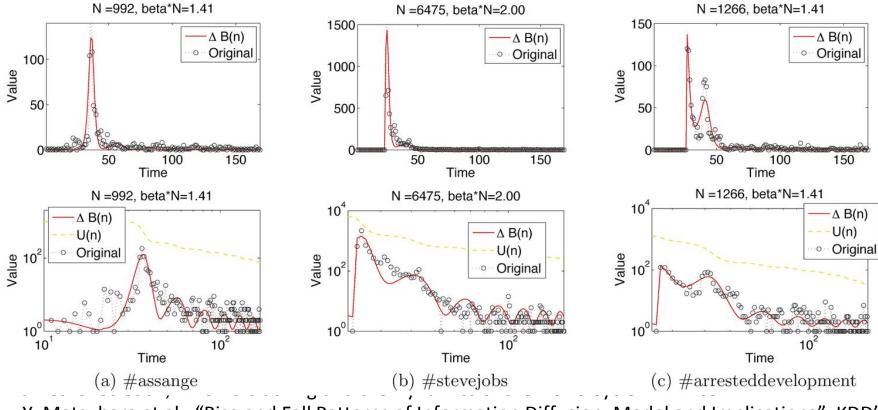
L. Liu. "Mining Topic-level Influence in Heterogeneous Networks". CIKM'10

- Temporal topic modeling
 - Captures *aggregated* temporal trends of online content



J. Leskovec et al., "Meme-tracking and the Dynamics of the News Cycle". KDD'09

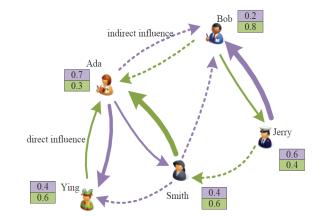
- Temporal topic modeling
 - Captures *aggregated* temporal trends of online content



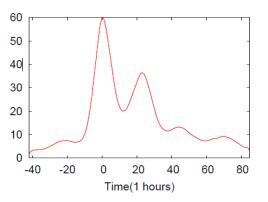
Y. Matsubara et al., "Rise and Fall Patterns of Information Diffusion: Model and Implications". KDD'13

Limitations

- Individual-level diffusion
 - o volatile individual behaviors
 - o hard to accurately uncover



Aggregated information dynamics
 o cannot reveal detailed dissemination process



Can we unify these different lines?

Can we unify these different lines?

Community level diffusion extraction

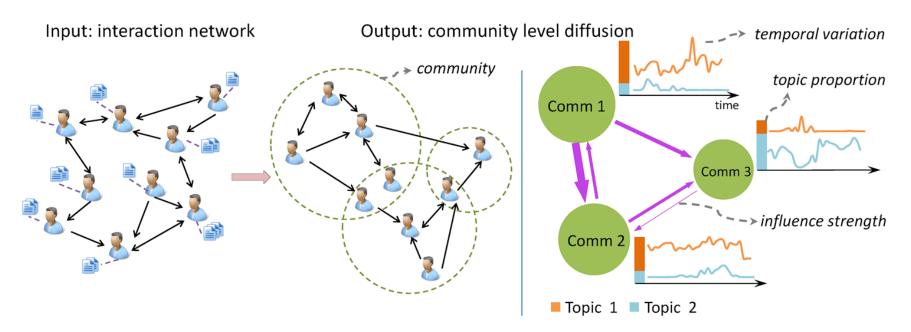
• modeling diffusion patterns of topics across different *communities*

Community level diffusion extraction

Community

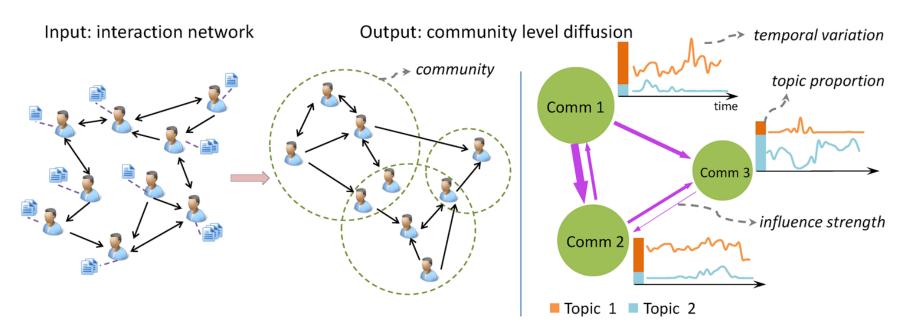
- provides the basis for user engagement in social networks
- ``Strength of Weak Ties'' theory
 - o a critical role of inter-community interactions in online diffusion.
- Collective user behaviors
 - o more predictable than those of individuals

Community level diffusion extraction



- Input
 - o an interaction network among users
 - o user-generated content over time
- Goal: to uncover
 - o hidden communities, their interests in different topics
 - topic temporal variation within communities
 - Influence strength between communities

Community level diffusion extraction



- Input
 - an interaction network among users
 - o user-generated content over time
- Goal: to uncover
 - hidden communities, their interests in different topics
 - topic temporal variation within communities
 - Influence strength between communities

- Compact communitylevel representation
- more accurate prediction and analysis

OUTLINE

Background

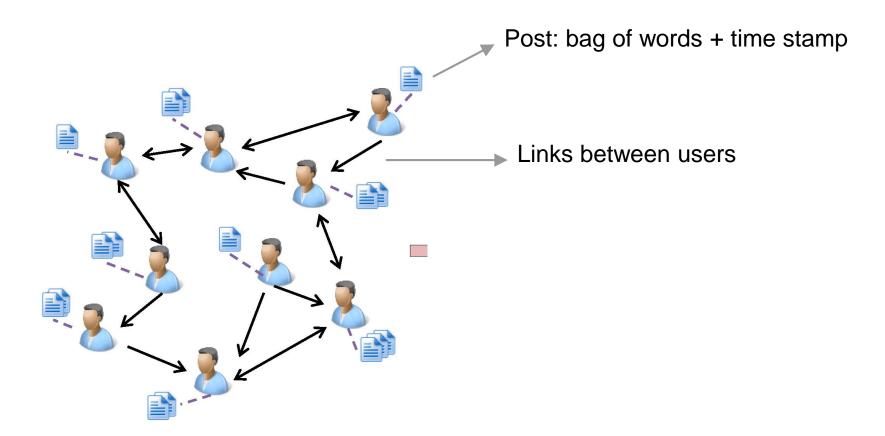
Generation Model: COLD

Diffusion Prediction & Analysis

Experimental Results

Problem Formulation

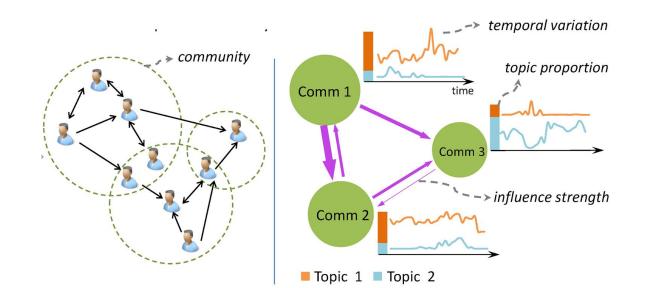
- Consider an interaction network among users
- Two types of data (user behaviors)
 - o text data (posting)
 - o network data (social interaction)



Problem Formulation (cont.)

Assume:

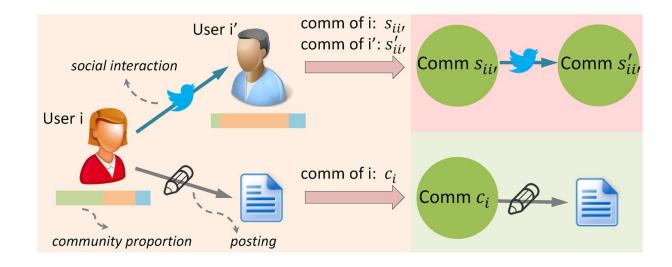
- C Communities
 - membership: each user i has a multinomial distribution over communities: $\boldsymbol{\pi}_i$
 - interest: each community c has a multinomial distribution over topics: θ_c
- *K* Topics
 - content: a multinomial distribution over words: $\boldsymbol{\phi}_k$
 - variation: a multinomial distribution over time stamps in each community $c: \boldsymbol{\psi}_{kc}$
- Community level influence strength
 - For each topic \$k\$, the diffusion probability between two communities \$c\$ and \$c'\$: \$\zeta_{kcc'}\$



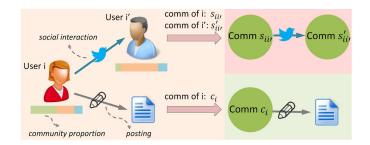
Model

<u>COmmunity Level Diffusion (COLD) Model</u>

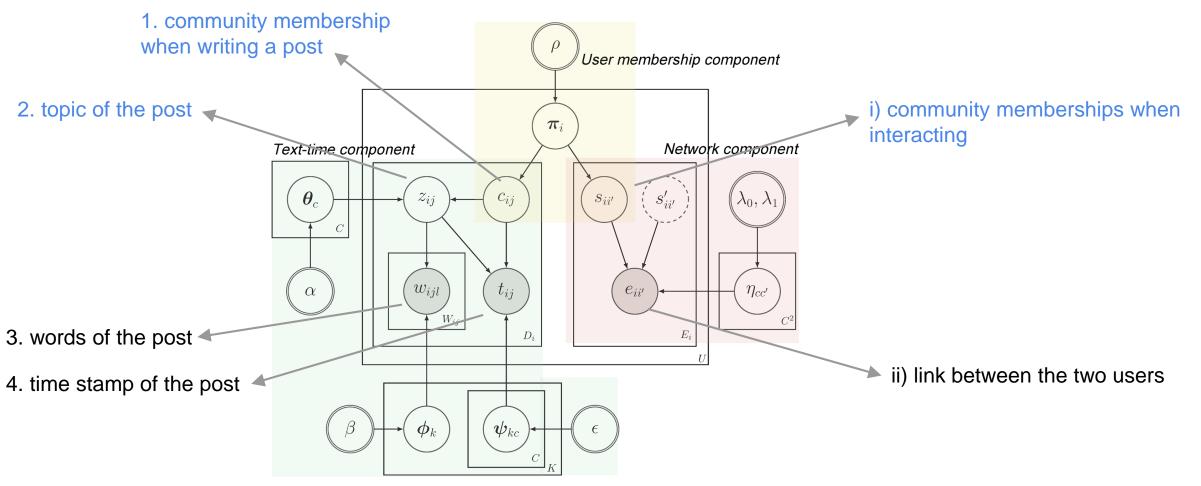
- Two types of user behaviors: posting & social interaction
- Each user assumes a community membership when taking a behavior
- The behavior is then explained by the corresponding community-specific context



Model



Generative Model

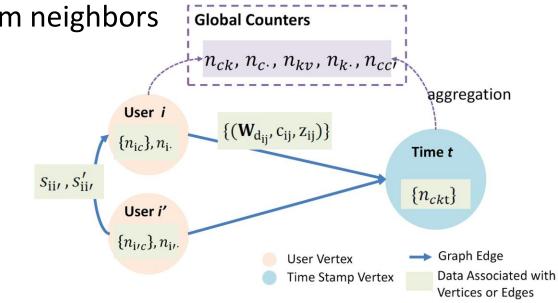


Approximate Inference

- Gibbs Sampling
 - iteractively samples latent variables
 - community memberships for posting/interaction
 - topics for posts
 - constructs the distributions of interest based on the samples
 - users' membership distribution
 - communities' interest distribution
 - topics' temporal distribution
 - influence strength between communities
- Time Complexity
 - O(#tokens + #links)
 - linear to the data size

Parallel Implementation

- Implement the Gibbs Sampler based on GraphLab
 o simliar to the GraphLab implementation of LDA
- Construct a bipartite graph
 - \circ users \Leftrightarrow time stamps
- Sufficient statistics of sampler are stored globally or locally
- Gather:
 - nodes collect sufficient statistics from neighbors
- Apply:
 - o nodes update their own data
- Scatter:
 - o nodes do sampling



OUTLINE

Background Model: COLD Diffusion Prediction & Analysis

Experimental Results

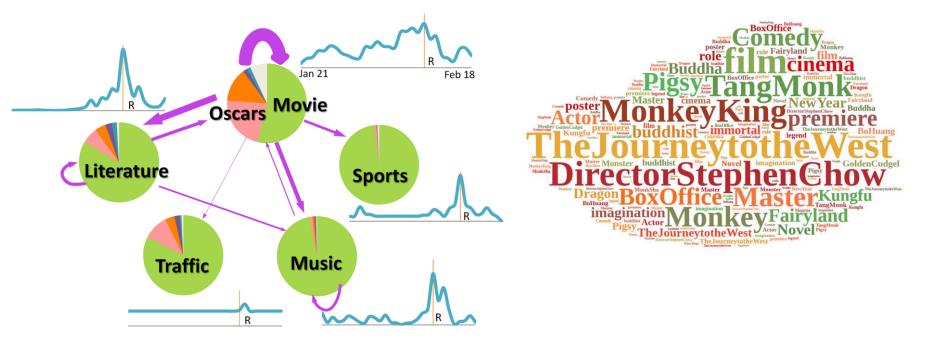
Community level diffusion

• Topic-sensitive influence strength of community c on c':

 $\begin{aligned} \zeta_{kcc'} &= \theta_{ck} \theta_{c'k} \eta_{cc'} \\ \downarrow \\ \text{interest level of } \\ \text{community c on } \\ \text{topic k} \\ \end{aligned} \qquad \begin{array}{l} \text{(general) influence} \\ \text{strength of } \\ \text{community c on c'} \\ \end{array} \end{aligned}$

Community level diffusion

• Topic-sensitive influence strength of community c on c':



Diffusion Prediction

- Predict whether a post will propagation from one individual to another
 - Given:
 - the words of the post d
 - its author i
 - another user i'
 - Goal:
 - infer the probability user i' retweets the post d from user i
- Previous methods model the individual level probability directly
 - · volatility of individual's actions
 - sparsity of individual's records
- Ours: community members' *collective behavior* patterns
 - stable and predictable

Diffusion Prediction (cont.)

- Given:
 - o the words of the post d
 - o its author i
 - o another user i'
- Goal:
 - infer the probability user i' retweets the post d from user i: \$P(i, i', d)\$
- Infer the topic of post based on its words and author: \$P(k | d, i)\$
- The influence of user i on user i' on topic k: \$P(i, i' | k)\$
- Combine the above:
 - $\circ P(i, i', d) = \sum P(k \mid d, i) P(i, i' \mid k)$
- Time complexity:
 - O(K*|d|)
 - K: #topics, |d|: length of the post

OUTLINE

Background
 Model: COLD
 Diffusion Prediction & Analysis

Experimental Results

Setup

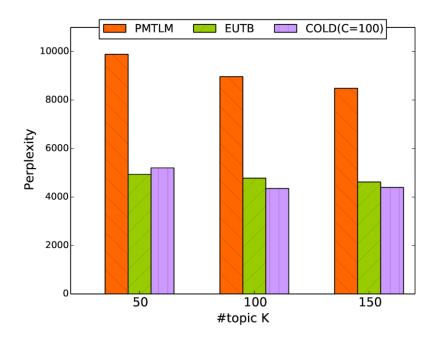
- Two datasets crawled from Weibo.com
 - O Data-1: 53K users, 11M posts, 91M words; 2.7M links
 - O Data-2: 0.52M users, 14M posts, 112M words; 10M links
- Baselines & Tasks

	features			tasks			
	text	social	time	topic	comm	temp	diff
				ext	detec	modl	pred
[PMTLM [39]	•	٠		•	•		
$\mathbf{MMSB} \ [1]$		•			•		
EUTB [37]	•	•	•	•		•	
Pipeline	•	•	•	•	•	•	
WTM [31]	•	•					•
TI [20]	●	•		•			•
COLD	•	٠	•	•	٠	•	•

 Table 2: Feature and Task Comparison of Different Methods

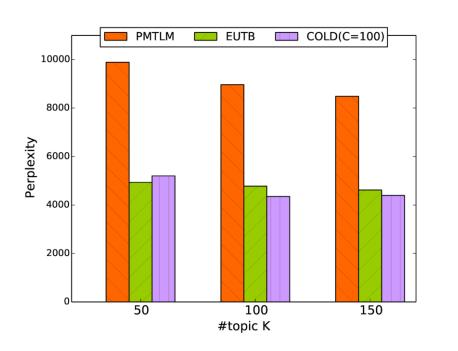
Task 1: Topic Extraction

- Topic perplexity (the lower the better)
 - the predictive power of a probabilistic model
 - proportional to the cross-entropy between the word distribution learned by the model and the actual distribution in test set



Task 1: Topic Extraction

- Topic perplexity (the lower the better)
 - o the predictive power of a probabilistic model
 - proportional to the cross-entropy between the word distribution learned by the model and the actual distribution in test set

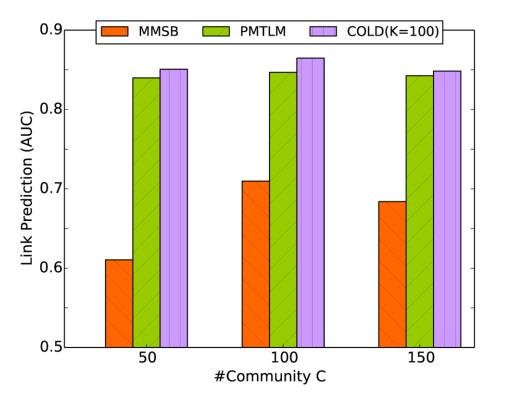


New Year

IT

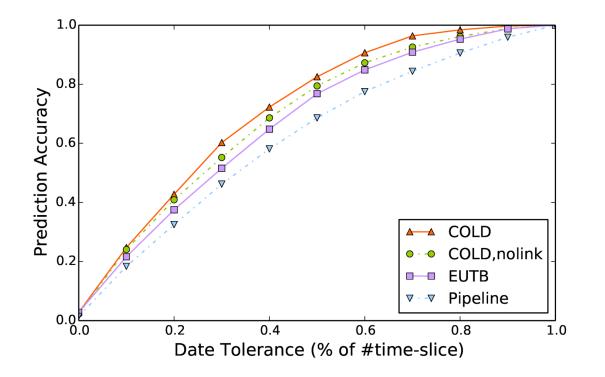
Task 2: Community Detection

- Link Prediction
 - widely-used when no ground truth of community memberships is available
 - AUC: the higher the better:
 - the probability that a randomly chosen true positive link is ranked above a randomly chosen true negative link



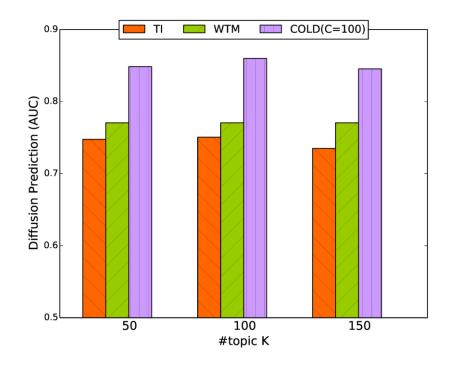
Task 3: Temporal Modeling

- Time-stamp Prediction
 - Estimate the time stamp of a post given its words and author
 - Accurarcy: the higher the better



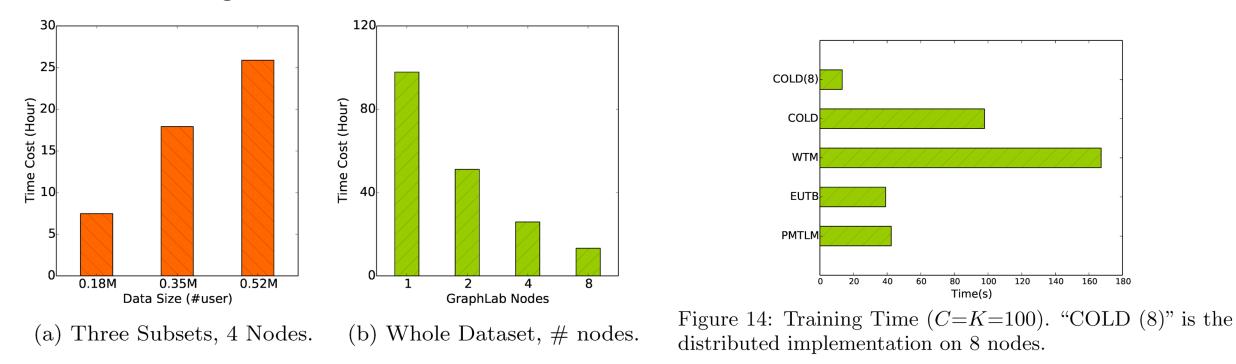
Task 4: Diffusion Prediction

- Diffusion prediction
 - Predict whether a post by a user will be retweeted by another user
 - AUC: the higher the better



Efficiency

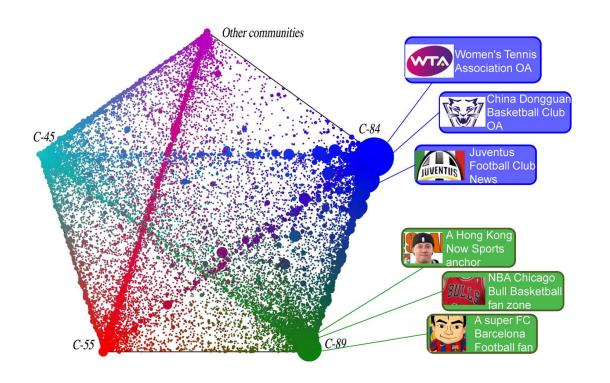
• Training time



A cluster of Linux machines, each with 8 2.4GHz CPU cores and 48G memory.

Other Application

- identify *influential communities*
 - o compute the influence degree of each community
 - setting the single community as the seedset
 - applying the Independent Cascade on the community-level diffusion graph



Conclusions

- Novel Perspective
 - the problem of community level diffusion
- COLD Model
 - a latent model to uncover
 - the hidden topics and communities
 - the community-specific temporal diffusion.
 - parallel implementation
- Prediction & Exploration
 - An effective diffusion prediction approach leveraging community level
 patterns
 - Other tasks, e.g., community detection, influential community identification, etc.