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Recent advances in deep generative models

• Deep generative models (DGMs)

• Variational autoencoders (VAEs) [Kingma & Welling, 2013]

• Generative adversarial networks (GANs) [Goodfellow et al., 2014]

• Auto-regressive models

• Impressive success in vision/text domains
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Difficulty in exploit problem structures and 
domain knowledge 
• Pose Conditional Person Image Generation 
• Given a person image and a target pose, generate an image of the person 

under the new pose 
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trained on supervised data

• But fail to use structured 
knowledge, i.e., human body 
structure
• head, main body, arms, …

Structured 
consistency



Existing approaches to adding structured knowledge

• Designing specialized neural architectures to hard-code knowledge
• E.g., ConvNets conv-pooling architecture: translation-invariance of image 

classification
• Usually only applicable to specific knowledge, models, or tasks
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Existing approaches to adding structured knowledge
• Posterior regularization (PR) [Ganchev et al., 10; Hu et al., 16]

• Imposes knowledge constraints on posterior distributions of probabilistic models 
• Many DGMs lack probabilistic Bayesian formulation / meaningful latent variables
• Require a priori fixed constraints

• Heavy engineering burden / sub-optimal without adaptivity to the data and models 
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This work: DGMs with learnable knowledge

• A general means of incorporating arbitrary structured knowledge with 
any types of deep (generative) models in a principled way
• Formal connections between PR and reinforcement learning (RL)
• Extends PR to learn constraints as the extrinsic reward in RL 
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Posterior Regularization for DGMs

• Consider a generative model ! ∼ #$(!)
• Consider a constraint function ' ! ∈ R
• higher ' value, better ! w.r.t. the knowledge

• PR assumes a variational distribution *, and the objective

• Solve with an EM-style procedure
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vanilla PR: constraint ' is fixed a priori

We want to allow learnable 
components, i.e. '(

Optimize J in M-step: max(9!~0['((!)]
problematic as the generated samples !~+ can be of low quality 



Entropy-Regularized Policy Optimization (ERPO)

• ERPO:
• Policy gradient with information theoretic regularizers
• E.g., Relative Entropy Policy Search [Peters et al., 2010]

• In RL convention: assume state !, action ", policy #$ " ! , reward 
% !, " ∈ R; )$ is the stationary state distribution
• To map to PR: Let * = !, " , #$ * = )$ ! #$("|!)
• Let /$ * be policy at iteration 0 and #$ * at iteration 0 − 1
• Objective

18

min67 ℒ /$ =KL /$(*)|| #$(*) − ; <6 %(*)



Close resemblance b/w PR and ERPO

• PR 
• ERPO
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Maximum-Entropy Inverse Reinforcement 
Learning (MaxEnt IRL) 
• ERPO

• MaxEnt IRL learns reward function !"($) with unknown parameters &

• Assumes reference policy '( $ as a uniform, so the above KL 
regularization becomes an entropy regularization (i.e., MaxEnt)

• The above )(∗ + $ now additionally depends on &

• Learns & by maximizing data log-likelihood

22

)(," + $ ∝ exp 1!" $

min
56

ℒ )( =KL )(($)|| '(($) − 1 =5 !($)

)(∗ + $ ∝ '( $ exp 1! $

&∗ = argmax"=$∼BCDED[log )(,"($)]



Maximum-Entropy Inverse Reinforcement 
Learning (MaxEnt IRL) 
• ERPO

• MaxEnt IRL learns reward function !"($) with unknown parameters &

• Assumes reference policy '( $ as a uniform, so the above KL 
regularization becomes an entropy regularization (i.e., MaxEnt)

• The above )(∗ + $ now additionally depends on &

• Learns & by maximizing data log-likelihood

23

)(," + $ ∝ exp 1!" $

min
56

ℒ )( =KL )(($)|| '(($) − 1 =5 !($)

)(∗ + $ ∝ '( $ exp 1! $

&∗ = argmax"=$∼BCDED[log )(,"($)]
Apply this objective 
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Algorithm: PR with learnable constraint

• PR:
• (1) Learning the constraint !"

• Use the same objective as in MaxEnt IRL

• (2) Learning the generative model #$

• If #$ is an implicit model (e.g., GANs), we can approximate by minimizing reverse KL

24
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Experiments – Pose-conditional Human Image 
Generation
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Experiments – Pose-conditional Human Image 
Generation

26

5 Experiments

We demonstrate the applications and effectiveness of the algorithm in two tasks related to image and
text generation [24], respectively.

Method SSIM Human
1 Ma et al. [38] 0.614 —
2 Pumarola et al. [44] 0.747 —
3 Ma et al. [37] 0.762 —

4 Base model 0.676 0.03
5 With fixed constraint 0.679 0.12

6 With learned constraint 0.727 0.77

Table 2: Results of image generation on Structural
Similarity (SSIM) [52] between generated and true
images, and human survey where the full model
yields better generations than the base models (Rows
5-6) on 77% test cases. See the text for more results
and discussion.

Figure 2: Training losses of the three mod-
els. The model with learned constraint con-
verges smoothly as base models.

Figure 3: Samples generated by the models in Table 2. The model with learned human part constraint
generates correct poses and preserves human body structure much better.

5.1 Pose Conditional Person Image Generation

Given a person image and a new body pose, the goal is to generate an image of the same person under
the new pose (Figure 1, left). The task is challenging due to body self-occlusions and many cloth
and shape ambiguities. Complete end-to-end generative networks have previously failed [37] and
existing work designed specialized generative processes or network architectures [37, 44, 38]. We
show that with an added body part consistency constraint, a plain end-to-end generative model can
also be trained to produce highly competitive results, significantly improving over base models that
do not incorporate the problem structure.

Setup. We follow the previous work [37] and obtain from DeepFashion [35] a set of triples (source
image, pose keypoints, target image) as supervision data. The base generative model p� is an implicit
model that transforms the input source and pose directly to the pixels of generated image (and
hence defines a Dirac-delta distribution). We use the residual block architecture [51] widely-used in
image generation for the generative model. The base model is trained to minimize the L1 distance
loss between the real and generated pixel values, as well as to confuse a binary discriminator that
distinguishes between the generation and the true target image.

Knowledge constraint. Neither the pixel-wise distance nor the binary discriminator loss encode
any task structures. We introduce a structured consistency constraint f� that encourages each of the
body parts (e.g., head, legs) of the generated image to match the respective part of the true image.
Specifically, the constraint f� includes a human parsing module that classifies each pixel of a person
image into possible body parts. The constraint then evaluates cross entropies of the per-pixel part

7
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Samples generated by the models. The model with learned human 
part constraint generates correct poses and preserves human body 
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Given a person image and a new body pose, the goal is to generate an image of the same person under
the new pose (Figure 1, left). The task is challenging due to body self-occlusions and many cloth
and shape ambiguities. Complete end-to-end generative networks have previously failed [37] and
existing work designed specialized generative processes or network architectures [37, 44, 38]. We
show that with an added body part consistency constraint, a plain end-to-end generative model can
also be trained to produce highly competitive results, significantly improving over base models that
do not incorporate the problem structure.

Setup. We follow the previous work [37] and obtain from DeepFashion [35] a set of triples (source
image, pose keypoints, target image) as supervision data. The base generative model p� is an implicit
model that transforms the input source and pose directly to the pixels of generated image (and
hence defines a Dirac-delta distribution). We use the residual block architecture [51] widely-used in
image generation for the generative model. The base model is trained to minimize the L1 distance
loss between the real and generated pixel values, as well as to confuse a binary discriminator that
distinguishes between the generation and the true target image.

Knowledge constraint. Neither the pixel-wise distance nor the binary discriminator loss encode
any task structures. We introduce a structured consistency constraint f� that encourages each of the
body parts (e.g., head, legs) of the generated image to match the respective part of the true image.
Specifically, the constraint f� includes a human parsing module that classifies each pixel of a person
image into possible body parts. The constraint then evaluates cross entropies of the per-pixel part
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Experiments – Template-guided Sentence 
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• Task: Given a template, generate a complete sentence following the template
• Constraint: force the match between the infilling content of the generated 

sentence with the true content 



Experiments – Template-guided Sentence 
Generation

Model Perplexity Human
1 Base model 30.30 0.19
2 With binary D 30.01 0.20

3 With constraint updated 31.27 0.15in M-step (Eq.5)

4 With learned constraint 28.69 0.24

Table 3: Sentence generation results on test set per-
plexity and human survey. Samples by the full model
are considered as of higher quality in 24% cases.

acting
the acting is the acting .
the acting is also very good .

out of 10 .
10 out of 10 .

I will give the movie 7 out of 10 .

Table 4: Two test examples, including the
template, the sample by the base model, and
the sample by the constrained model.

distributions between the generated and true images. The average negative cross entropy serves as
the constraint score. The parsing module is parameterized as a neural network with parameters �,
pre-trained on an external parsing dataset [14], and subsequently adapted within our algorithm jointly
with the generative model.

Results. Table 2 compares the full model (with the learned constraint, Row 6) with the base model
(Row 4) and the one regularized with the constraint that is fixed after pre-training (Row 5). Human
survey is performed by asking annotators to rank the quality of images generated by the three models
on each of 200 test cases, and the percentages of ranked as the best are reported (Tied ranking is
treated as negative result). We can see great improvement by the proposed algorithm. The model
with fixed constraint fails, partially because pre-training on external data does not necessarily fit to
the current problem domain. This highlights the necessity of the constraint learning. Figure 3 shows
examples further validating the effectiveness of the algorithm.

In sec 4, we have discussed the close connection between the proposed algorithm and (energy-based)
GANs. The conventional discriminator in GANs can be seen as a special type of constraint. With this
connection and given that the generator in the task is an implicit generative model, here we can also
apply and learn the structured consistency constraint using GANs, which is equivalent to replacing
q(x) in Eq.(8) with p✓(x). Such a variant produces a SSIM score of 0.716, slightly inferior to the
result of the full algorithm (Row 6). We suspect this is because fake samples by q (instead of p) can
help with better constraint learning. It would be interesting to explore this in more applications.

To give a sense of the state of the task, Table 2 also lists the performance of previous work. It is worth
noting that these results are not directly comparable, as discussed in [44], due to different settings
(e.g., the test splits) between each of them. We follow [37, 38] mostly, while our generative model is
much simpler than these work with specialized, multi-stage architectures. The proposed algorithm
learns constraints with moderate approximations. Figure 2 validates that the training is stable and
converges smoothly as the base models.

5.2 Template Guided Sentence Generation

The task is to generate a text sentence x that follows a given template t (Figure 1, right). Each missing
part in the template can contain arbitrary number of words. This differs from previous sentence
completion tasks [9, 57] which designate each masked position to have a single word. Thus directly
applying these approaches to the task can be problematic.

Setup. We use an attentional sequence-to-sequence (seq2seq) [3] model p✓(x|t) as the base
generative model for the task. Paired (template, sentence) data is obtained by randomly masking out
different parts of sentences from the IMDB corpus [8]. The base model is trained in an end-to-end
supervised manner, which allows it to memorize the words in the input template and repeat them
almost precisely in the generation. However, the main challenge is to generate meaningful and
coherent content to fill in the missing parts.

Knowledge constraint. To tackle the issue, we add a constraint that enforces matching between
the generated sentence and the ground-truth text in the missing parts. Specifically, let t� be the
masked-out true text. That is, plugging t� into the template t recovers the true complete sentence.
The constraint is defined as f�(x, t�) which returns a high score if the sentence x matches t� well.
The actual implementation of the matching strategy can vary. Here we simply specify f� as another
seq2seq network that takes as input a sentence x and evaluates the likelihood of recovering t�—This
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Conclusions

• Formal connections between posterior regularization (PR) and 
reinforcement learning (RL)
• Learn the knowledge constraints in PR as reward learning in 

(inverse) RL
• The resulting algorithm is:
• generally applicable to any deep generative models
• flexible to learn the constraints and model jointly

• Experiments on image and text generation showed the effectiveness 
of the algorithm
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