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Recent advances in deep generative models

* Deep generative models (DGMs)
 Variational autoencoders (VAES) [Kingma & Welling, 2013]
e Generative adversarial networks (GANSs) [Goodfellow et al., 2014]
* Auto-regressive models

* Impressive success in vision/text domains
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Legolas and Gimli advanced on the orcs, raising their weapons with a
harrowing war cry.

The orcs’ response was a deafening onslaught of claws, claws, and
claws; even Elrond was forced to retreat. “You are in good hands,
dwarf,” said Gimli, who had been among the first to charge at the orcs;
it took only two words before their opponents were reduced to a blood-
soaked quagmire, and the dwarf took his first kill of the night. The
battle lasted for hours until two of the largest Orcs attempted to
overwhelm Aragorn. When they finally stopped, they lay defeated and
lifeless for miles and miles.

«] take nothing,” said Aragorn. “But I give my word, at my peril and
mine, that I will never forget this day of horror. None of us will
forget. Ever!”

“1°11 never forget it!” cried Gimli, who had been in the thick of the
battle but hadn’t taken part in it. One of the wounded orcs he had
carried off, he was the only one of the survivors who remained
uninjured. “We’ll keep the memory of that day of evil, and the war with
it, alive as long as we live, my friends!”

“Then we’1l keep it alive as long as we live,” added Legolas. “And we
won’t forget the first great battle of the night, even if we may have
forgotten the final defeat.”

“I agree,” Gandalf said, “but we will all remember it as the last
battle in Middle-earth, and the first great battle of the new day.”

Aragorn drew his sword, and the Battle of Fangorn was won. As they
marched out through the thicket the morning mist cleared, and the day
turned to dusk.

The Two Rings were returned to Rivendell. Frodo and Sam woke up alone
in their room, and Frodo found a note on his pillow. He opened it and
read:

May the Power of the Ring be with you always, and may its light never
fade. I am not sure if it matters which of the two rings we accept this
day but, as you asked me, I have chosen mine. I am sorry to leave you,
Frodo, but know that we are very close to the end, and that you are
with us forever. May this letter find you safely in Rivendell; and if
it does not, then I will accept the ring in your stead. If by any
chance you find or give this letter to the enemy, may they learn the
strength of the ring and may the Two Rings never be broken!
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Difficulty in exploit problem structures and
domain knowledge

* Pose Conditional Person Image Generation

* Given a person image and a target pose, generate an image of the person

under the new pose
target true

pose target ——

Structured

consistency
I

e Generative models can be
trained on supervised data

e But fail to use structured
knowledge, i.e., human body
structure

* head, main body, arms, ...
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Existing approaches to adding structured knowledge

* Designing specialized neural architectures to hard-code knowledge

* E.g., ConvNets conv-pooling architecture: translation-invariance of image
classification

* Usually only applicable to specific knowledge, models, or tasks



Existing approaches to adding structured knowledge

 Posterior regularization (PR) [Ganchev etal., 10; Hu et al., 16]
* Imposes knowledge constraints on posterior distributions of probabilistic models
* Many DGM:s lack probabilistic Bayesian formulation / meaningful latent variables
* Require a priori fixed constraints
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This work: DGMs with learnable knowledge

* A general means of incorporating arbitrary structured knowledge with
any types of deep (generative) models in a principled way
* Formal connections between PR and reinforcement learning (RL)
* Extends PR to learn constraints as the extrinsic reward in RL
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Posterior Regularization for DGMs

* Consider a generative model x ~ pg(x)

* Consider a constraint function f(x) € R
* higher f value, better x w.r.t. the knowledge

* PR assumes a variational distribution g, and the objective
ming 4 £(6,q) =KL(q(x)|| pe(x)) — a Eqlf (x)]
* Solve with an EM-style procedure
E-step: q"(y|x) < pg(x)expi af (x) }
M-step: mingKL(q*(x)Hpg (x)) = ming —E,- [log pg(x)] + const.
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Posterior Regularization for DGMs

vanilla PR: constraint f is fixed a priori

* Consider a generative model x ~ pg(x)
We want to allow learnable

e Consider a constraint function f¢ (x) €R .
components, i.e. f

* higher f value, better x w.r.t. the knowledge
* PR assumes a variational distribution g, and the objective
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E-step: g, (¥]x) < pg(x)expf{ af,(x) }

M-step: mingKL (q¢ (x)||pe (x)) = ming —Eg, [log pg(x)] + const.

Optimize ¢ in M-step: maxgpEy_q[fp(X)]
problematic as the generated samples x~q can be of low quality



Entropy-Regularized Policy Optimization (ERPO)

* ERPO:

* Policy gradient with information theoretic regularizers
* E.g., Relative Entropy Policy Search [Peters et al., 2010]

* In RL convention: assume state s, action a, policy p,(al|s), reward
R(s,a) € R; u™ is the stationary state distribution

* Tomap to PR: Let x = (s,a), p(x) = u™(s)p,(als)
* Let g, (x) be policy at iteration t and p,;(x) at iterationt — 1
* Objective

Hc}jtn L(qr) =KL(qr (|| pr (%)) — a Eg[R(x)]



Close resemblance b/w PR and ERPO

PR WinL(8,q) =KL(q(®)|| (%)) — & Eq[fy(x)]
* ERPO min £(4r) =KL(gr(2)|| pn(x)) = @ Eq[R(x)]

PR ERPO
Generative model pg(x) €—> Reference (old) policy p,(x)

Constraint f(x) €—> Reward R(x)
qp(1x) o« pg(x)expl afy(x) } €—> 47 (¥|x) < pr(x)exp{ aR(x) }
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Maximum-Entropy Inverse Reinforcement
Learning (MaxEnt IRL)

* ERPO min L(qr) =KL(qz ()| pz(x)) — a Eq|R(x)]

Az (¥|x) o« pr(x)expl aR(x) }
* MaxEnt IRL learns reward function R4 (x) with unknown parameters ¢

* Assumes reference policy p,(x) as a uniform, so the above KL
regularization becomes an entropy regularization (i.e., MaxEnt)

* The above g, (y|x) now additionally depends on ¢
Grp (Y1) o< exp{ aRyp(x) }

* Learns ¢ by maximizing data log-likelihood

¢ = argmaxgplyp, [log A, (x)]
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Algorithm: PR with learnable constraint

« PR: Mming 4 £(6,q) =KL(q(x)|| pg(x)) — a Eg[f ()]
* (1) Learning the constraint f;

E-step: g, (¥]x) o pg(x)exp{ afy(x) }
* Use the same objective as in MaxEnt IRL

b = argmaxyEy ., [108 40 ()]
* (2) Learning the generative model pg
M-step: mingKL (q¢(x)||p9 (x)) = ming —Eg, [log pg(x)] + const.

* If pg is an implicit model (e.g., GANs), we can approximate by minimizing reverse KL
mingKL (pg (0)]175 (x) )



Experiments — Pose-conditional Human Image
Generation
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Experiments — Pose-conditional Human Image
Generation

Method SSIM Human
1 Maetal. [38] 0.614 —
2 Pumarola et al. [44] 0.747 —
3 Maetal. [37] 0.762 —
4  Base model 0.676  0.03
5 With fixed constraint 0.679 0.12
6  With learned constraint  0.727  0.77

Results of image generation on Structural Similarity
(SSIM) between generated and true images, and human
survey where the full model yields better generations
than the base models (Rows 5-6) on 77% test cases.



Experiments — Pose-conditional Human Image
Generation

Learned Fixed Base
source image target pose target image constraint constraint model

u
M .

Samples generated by the models. The model with learned human
part constraint generates correct poses and preserves human body
structure much better.



Experiments — Template-guided Sentence

Generation

* Task: Given a template, generate a complete sentence following the template

* Constraint: force the match between the infilling content of the generated
sentence with the true content

template.

o

meant to

V24

not to

Generative
model pg

——

true target: Constraint f,
It was meant to_(jg_zg_l_e <.. ----- , Learnable
not to make sense . ' module ¢

_______________ | :
‘| Infilling content |
generated: matching

“It was meant to dazzle <
not to make it ”
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Experiments — Template-guided Sentence

Generation
Model Perplexity Human
1 Base model 30.30 0.19
2 With binary D 30.01 0.20
With constraint updated
3 in M-step (Eq.5) 31.27 0.15
4  With learned constraint  28.69 0.24

Samples by the full model are considered

as of higher quality in 24% cases.

acting
the acting 1s the acting .
the acting 1s also very good .

out of 10 .

10 outof 10.
I will give the movie 7 out of 10.

Two test examples, including the template,
the sample by the base model, and the
sample by the constrained model.



Conclusions

* Formal connections between posterior regularization (PR) and
reinforcement learning (RL)

* Learn the knowledge constraints in PR as reward learning in
(inverse) RL

* The resulting algorithm is:
* generally applicable to any deep generative models
* flexible to learn the constraints and model jointly

* Experiments on image and text generation showed the effectiveness
of the algorithm



