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A Inference via Collapsed Gibbs Sampling

Here we describe the inference algorithm for LGSA based on
collapsed Gibbs Sampling.

Given a document corpus D, the informative priors over
entities {pη,pζ , λη, λζ}, and the hyperparameters {α, β},
LGSA specifies the following full posterior distribution:

p(Λ,η, ζ,θ, z, r, e,y|D,pη,pζ , λη, λζ , α, β) ∝(
p(Λ|β)p(η|pη, λη)p(ζ|pζ , λζ)p(θ|α)p(z|θ)

p(r, e|z,Λ)p(mD|e,η)p(y|MD)p(wD|y, e, ζ)

)
.

(A.1)

where mD and wD are the mentions and words in the docu-
ment collections, respectively; MD = {M1, . . . ,MD} is the
counts of mentions of the documents. The constant of pro-
portionality is the marginal likelihood of the observed data.

The task of posterior inference for LGSA is to determine
the probability distribution of the hidden variables given the
observed mentions and words. However, exact inference is
intractable due to the difficulty of calculating the normalizing
constant in the above posterior distribution.

We use collapsed Gibbs Sampling, a well-established
Markov chain Monte Carlo (MCMC) technique for approx-
imate inference. In collapsed Gibbs Sampling, the distribu-
tions Φ = {Λ,η, ζ,θ} are first marginalized (collapsed), a
Markov chain over the latent indicators {z, r, e,y} is then
constructed, whose stationary distribution is the posterior. We
obtain samples of latent variables from the Markov chain.
Point estimates for the collapsed distributions Φ can then be
computed given the samples, and predictive distributions are
computed by averaging over multiple samples.

Sampling Procedure

Gibbs Sampler repeatedly samples each latent variable con-
ditioned on the current states of other hidden variables and
observations; a configuration of latent states of the system is
then obtained. Next we provide the derivation of the sampling
formulas (i.e. Eqs.(1-4) in the paper).

By marginalizing out Φ in Eq.(A.1), we obtain:
p(z, r, e,y|.)
∝ p(z|α)P (r, e|z, β)p(mD|e,pη, λη)p(y|MD)

· p(wD|y, e,pζ , λζ)

=

∫
p(θ|α)P (z|θ)dθ

∫
p(Λ|β)p(r, e|z,Λ)dΛ

·
∫
p(η|pη, λη)p(mD|e,η)dη · p(y|MD)

·
∫
p(ζ|pζ , λζ)p(wD|y, e, ζ)dζ.

(A.2)

The conditional of zdj can be computed as:

p(zdj = z|edj = e, r−dj , z−dj , .) ∝
p(zdj = z|z−dj , α)p(edj = e|zdj = z, r−dj , .)

(A.3)

The first term of Eq.(A.3) is:

p(zdj = z|z−dj , α) =
p(zdj = z, z−dj |α)

p(z−dj |α)
. (A.4)

As we assume each z is generated from a multinomial dis-
tribution θ, and the hyperparameter for conjugate Dirichlet
prior is α, we have:

p(z|α) =

∫
P (θ|α)P (z|θ)dθ

=

∫ ∏
d

Γ(Kα)∏
z Γ(α)

∏
z

θα−1dz ·
∏
d

∏
z

θ
n
(z)
d

dz dθ

=
∏
d

Γ(Kα)∏
z Γ(α)

·
∏
z Γ(n

(z)
d + α)

Γ(n
(·)
d +Kα)

,

where n(z)d is the number of times that topic z has been as-
sociated with a mention of document d. Marginal counts are
represented with dots (i.e. n(·)d is obtained by marginalizing
n
(z)
d over z). Combining the above equation with Eq.(A.4)

leads to:

p(zdj = z, z−dj |α)

p(z−dj |α)
=

Γ(n
(z)
d + α)Γ(n

(·)
d,−dj +Kα)

Γ(n
(z)
d,−dj + α)Γ(n

(·)
d +Kα)

=
n
(z)
d,−dj + α

n
(·)
d,−dj +Kα

,

(A.5)



where the count with subscript −ij denotes a quantity with
the current instance (i.e. mention mdj) excluded. Here we
use the identity Γ(x+ 1) = xΓ(x).

The second term of Eq.(A.3) is the probability of generat-
ing entity e conditioned on topic z, which requires summing
over the probabilities of all paths in z that could have gener-
ated u:

p(edj = e|zdj = z, r−dj , .) =∑
r(e∈r)

p(r|r−dj , zdj = z, .). (A.6)

The probability of a path r is the product of the topic-specific
transition probabilities along the path from root c0 to leaf
c|r|−1 (i.e. entity e):

p(r|r−dj , zdj = z, .) =

|r|−2∏
h=0

p(ch+1|ch, zdj = z, r−dj .).

Here p(ch+1|ch, zdj = z, r−dj .) can be derived analogously
to Eqs.(A.4-A.5), where the Dirichlet-Multinomial conju-
gates ensure the tractability of the integrals. We then obtain:

p(ch+1|ch, zdj = z, r−dj .) =
n
(z),−dj
ch,ch+1 + β

n
(z),−dj
ch,· + |C(ch)|β

, (A.7)

where n(z),−djch,ch+1 is the number of paths in topic z that go from
ch to ch+1, with the path of mention mdj excluded.

Finally, by combining Eqs.(A.3-A.7) we obtain the sam-
pling formula for zdj as Eq.(1-2) in the paper. Note that we
omit the subscripts/superscripts−ij in Eq.(1-2) to avoid clut-
tering of notation. Eq.(3) and Eq.(4) are derived in a similar
manner.

Distribution Estimation
After a sufficient number of sampling iterations as described
above, we obtain a set of samples. The unknown distribu-
tions can then be computed by integrating across the sam-
ples. Specifically, for any single sample we can estimate
θ,θ′,Λ,η and ζ as:

paths:

φ̂ze =
∑

r(e∈r)

|r|−2∏
h=0

Λ̂zchch+1
,

τ̂zc =
∑

r(e∈r)

ch+1=c∏
h=0

Λ̂zchch+1
.

θ̂dz =
n
(z)
d + α

n
(·)
d +Kα

,

θ̂′de =
n
(e)
d

n
(·)
d

,

Λ̂zcc′ =
n
(z)
c,c′ + β

n
(z)
c,· + |C(c)|β

,

η̂em =
n
(m)
e + ληpηem

n
(·)
e + λη

,

ζ̂ew =
n
(w)
e + λζpζew

n
(·)
e + λζ

.

Finally, based on the estimated Λ̂, we can compute the
topic representations (φ, τ ) by summing over all possible

It is straightforward to see that
∑
e φ̂ze = 1. That is, φ̂z is

a distribution over entities.

Inference on New Documents

Given a new-arriving document d, we can infer its topic distri-
bution θd and entity distribution θ′d to reveal its major themes
and entities. The inference can be carried out using the Gibbs
Sampling described above, but this time with the topic and
entity statistics (i.e. Λ, η and ζ) fixed.


