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Topic Modeling

* Represents latent topics as probability distributions over words
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Topic Modeling

* Represents latent topics as probability distributions over words

* hard to interpret due to incoherence

* lack of background context
* no grounded semantics
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Topic Modeling

* Represents latent topics as probability distributions over words

* hard to interpret due to incoherence
* lack of background context
* no grounded semantics

* Previous work combines external knowledge
* improves coherence, but topics = word distributions
* imposes one-to-one binding of topics to
pre-defined knowledge base (KB) entities
* Sacrifices flexibility
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This work

* A structured topic representation based on entity taxonomy from KBs
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This work

* A structured topic representation based on entity taxonomy from KBs
* grounded semantics
* improved coherenceness: captures entity correlations encoded in the taxonomy

* A probabilistic model to infer both hidden topics and entities from text
corpora



Document Modeling

* Augments bag-of-word documents with entity mentions
* mentions carry salient semantics of a document

» {co-founder, wealthiest, man, ...}
* {Gates, Microsoft, ...}

Gates, the co-founder
of Microsoft, was the
wealthiest man in the

world.

-

Document

Kobe

k Bryant

Bill Gates DB Basketball) = = =
Inc.
¥

Topic based on KB taxonomy



Document Modeling

e Generative process:
* each mention <- an entity and a topic

* each word <- an index indicating which mention to describe \

____________ [ | Microsoft
A~ i Basketball
Gates, the co-founder allcaies Inc. Ee °
of Microsoft, was the
Y

wealthiest man in the 7
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world.

\/_- \ Brvant

Document Topic based on KB taxonomy
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Topic: Random Walk on Taxonomy

* Entity taxonomy
* |eaf: entity

 internal nodes: category =
T E> )

e Each topic as a root-to-leaf random walk
e a set of parent-to-child transition probabilities

» -> entity/category weights
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Topic: Random Walk on Taxonomy

* Entity taxonomy
* |eaf: entity

 internal nodes: category =
T E> )

e Each topic as a root-to-leaf random walk
e a set of parent-to-child transition probabilities

» -> entity/category weights

|
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y

e Path-sharing:
. of Microsoft, was the
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Entity Modeling

e A distribution over mentions

e captures relatedness between the entity and mentions

* Microsoft Inc. — MS, Gates

e A distribution over words
e characterizes the entity attributes
e Bill Gates - wealthiest

Gates, the co-founder
of Microsoft, was the
wealthiest man in the

world.
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Graphical Model Representation
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Graphical Model Representation
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Experiments

* Knowledge Base: Wikipedia
* Entity Wikipedia pages
* Entity category hierarchy

* Datasets

 TMZ (tmz.com): celebrity gossip news

» celebrity labels
e #doc ~=30K

* New York Times news (LDC)
e #doc ~=330K

* Baselines

https://en.wikipedia.org/wiki/Microsoft

-? BT
\*‘ W A

b a9 o8 } Article  Talk Read
RSB

WIKIPEDIA Microsoft

The Free Encyclopedia From Wikipedia, the free encyclopedia

Main page Microsoft Corporation /' markra spft, -rou-, - so:ft/[¢!

Contents (commonly referred to as Microsoft) is an American

Categories: Companies in the NASDAQ-100 Index
Information technology companies of the United Star
Software companies based in Washington (state)

Features Tasks
Method - -
d i structured topic key entity
wor mention knowledge  extraction  identification
CnptTM V V V V
ETM vV vV Vv
LDA Vi Vv v
ESA y, Y, y,
MA-C Y% % Y% Y%
LGSA-NH vV Vv vV Vv
LGSA v v v v v
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Table 3: Feature and task comparison of different methods



Topic Perplexity
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Key Entity Identification

* Key entity of a document
e E.g., the persons a news article is mainly about

 TMZ dataset: ground truth (celebrity label) available
* LGSA: 6 - distribution over entities for document d
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Key Entity Identification

* Key entity of a document
e E.g., the persons a news article is mainly about

e ESA s—a MA-C[
— LGSA

* TMZ dataset: ground truth | -
 LGSA: 8/ - distribution over
o
%0.9—
= 0.8}
0.7

Rank R
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Example Topics: Sports
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American
Football

Kobe Bryant Absolved in Church Assault Case

San Diego Church: Kobe's Innocent!

Games

Basketball

Kobe Bryant in the Gym with Manny Pacquiao

S o _ ope
Bryant

=
/7
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LeBron
James

L.A.
Lakers

Basketball

NBA

LeBron James Just Jumped over a Guy!
) LeBron Alleged Mishegas at Jewish Basketball Game

Sports
Televisio

ESPN

Baseball

L.A.
Dodgers

Baseball




Example Topics: Kardashian and Humphries’ Divorce
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»  Fraud

Practice
of law

Minnesota Annulment Marriage Lawyer

| i
Kim :

/ , Divorce Lawsuit

;" [ [kardashian - o

I
/ ‘\ Kim: Kris' Parents Hated Me
'Kim: No Reconciliation

]
|

Kris Has Lawyered up for Divorce
The Annulment Documents



Conclusion

* Traditional word-based topic representation lacks interpretability and
grounded semantics

* A structured topic representation based on entity taxonomy from KBs
e A probabilistic model (LGSA) to infer latent grounded topics
* Improved performance on topic perplexity and key entity identification
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