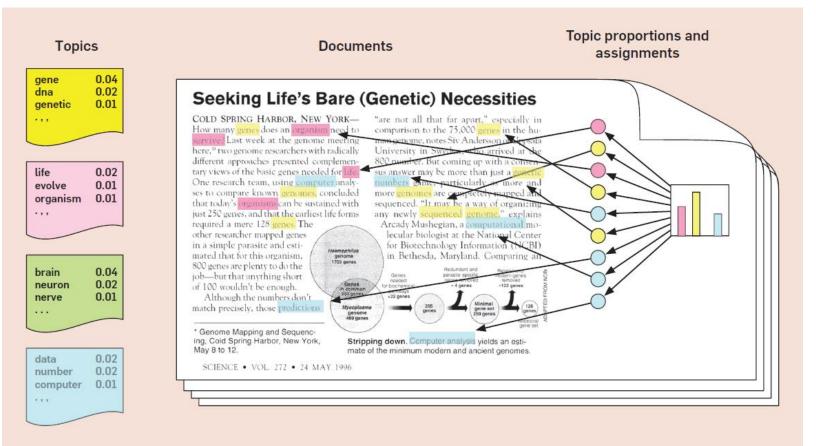
Grounding Topic Models with Knowledge Bases

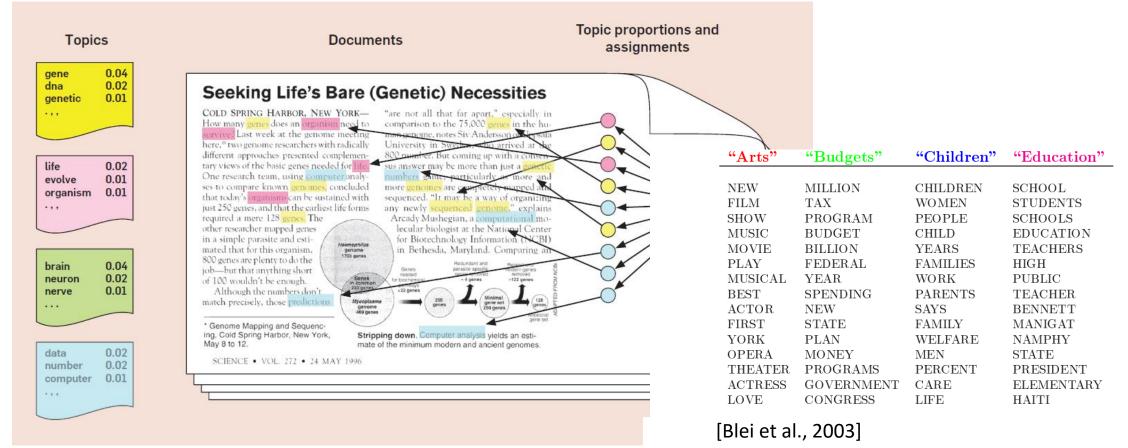
Zhiting Hu^{1*}, Gang Luo², Mrinmaya Sachan¹, Eric Xing¹, Zaiqing Nie³ ¹Carnegie Mellon University ²Microsoft, California, US ³Microsoft Research, Beijing, China

• Represents latent topics as probability distributions over words

• Represents latent topics as probability distributions over words



• Represents latent topics as probability distributions over words



LDA (latent Dirichlet process)

- Represents latent topics as probability distributions over words
 - hard to interpret due to incoherence
 - lack of background context
 - no grounded semantics

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

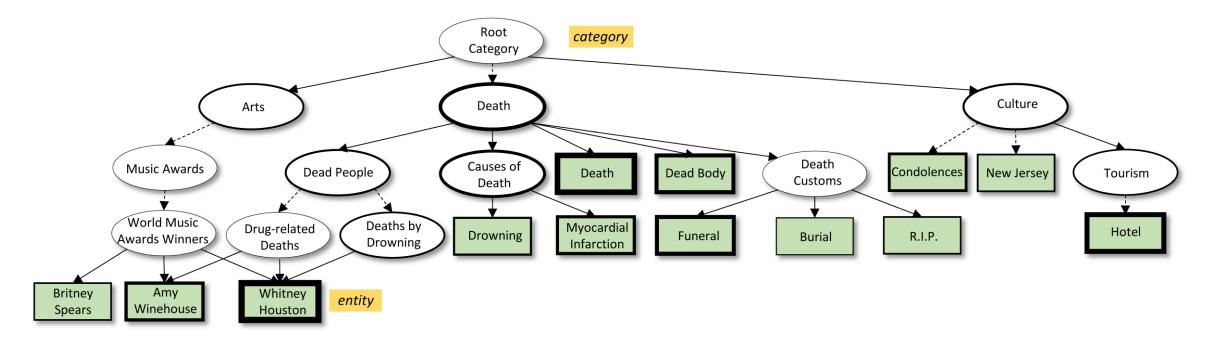
[Blei et al., 2003]

- Represents latent topics as probability distributions over words
 - hard to interpret due to incoherence
 - lack of background context
 - no grounded semantics
- Previous work combines external knowledge
 - improves coherence, but topics = word distributions
 - imposes one-to-one binding of topics to pre-defined knowledge base (KB) entities
 - Sacrifices flexibility

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

• A structured topic representation based on *entity taxonomy* from KBs

• A structured topic representation based on *entity taxonomy* from KBs



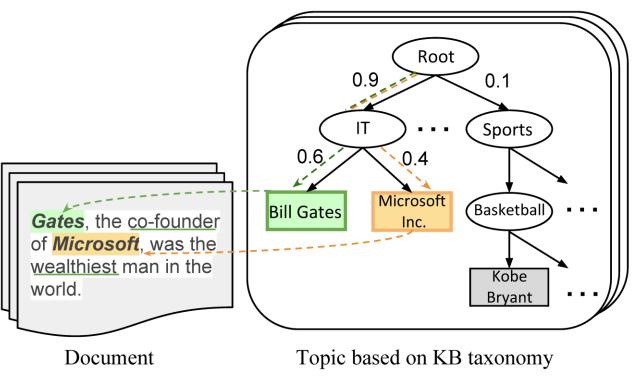
Topic ``Death of Whitney Houston''

- A structured topic representation based on *entity taxonomy* from KBs
 - grounded semantics
 - improved coherenceness: captures entity correlations encoded in the taxonomy

- A structured topic representation based on *entity taxonomy* from KBs
 - grounded semantics
 - improved coherenceness: captures entity correlations encoded in the taxonomy
- A probabilistic model to infer both hidden *topics* and *entities* from text corpora

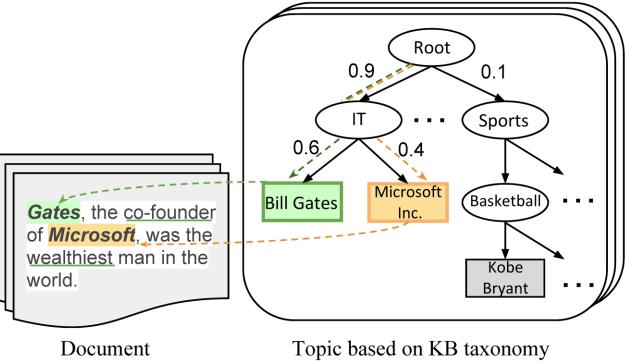
Document Modeling

- Augments bag-of-word documents with *entity mentions*
 - mentions carry salient semantics of a document
- {co-founder, wealthiest, man, ...}
- {Gates, Microsoft, ...}



Document Modeling

- Generative process:
 - each mention <- an entity and a topic
 - each word <- an index indicating which mention to describe

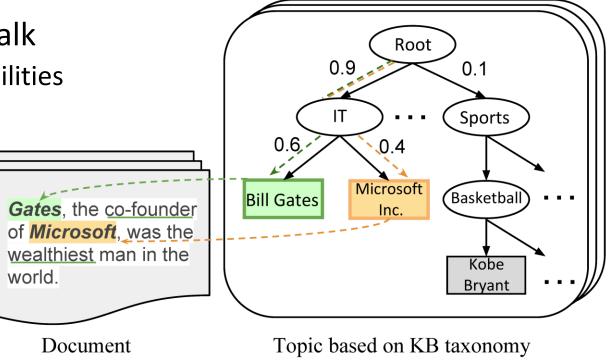


Method

Topic: Random Walk on Taxonomy

• Entity taxonomy

- leaf: entity
- internal nodes: category
- Each topic as a root-to-leaf random walk
 - a set of parent-to-child transition probabilities
 - -> entity/category weights

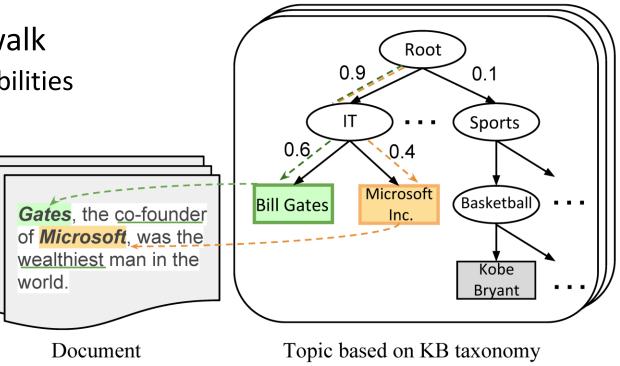


Method

Topic: Random Walk on Taxonomy

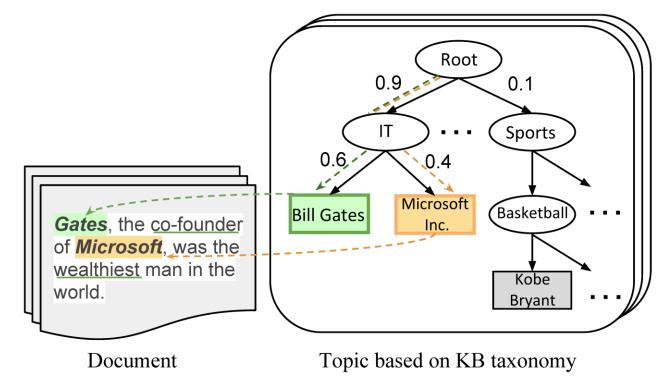
• Entity taxonomy

- leaf: entity
- internal nodes: category
- Each topic as a root-to-leaf random walk
 - a set of parent-to-child transition probabilities
 - -> entity/category weights
- Path-sharing:
 - encourages clustering correlated entities into the same topic

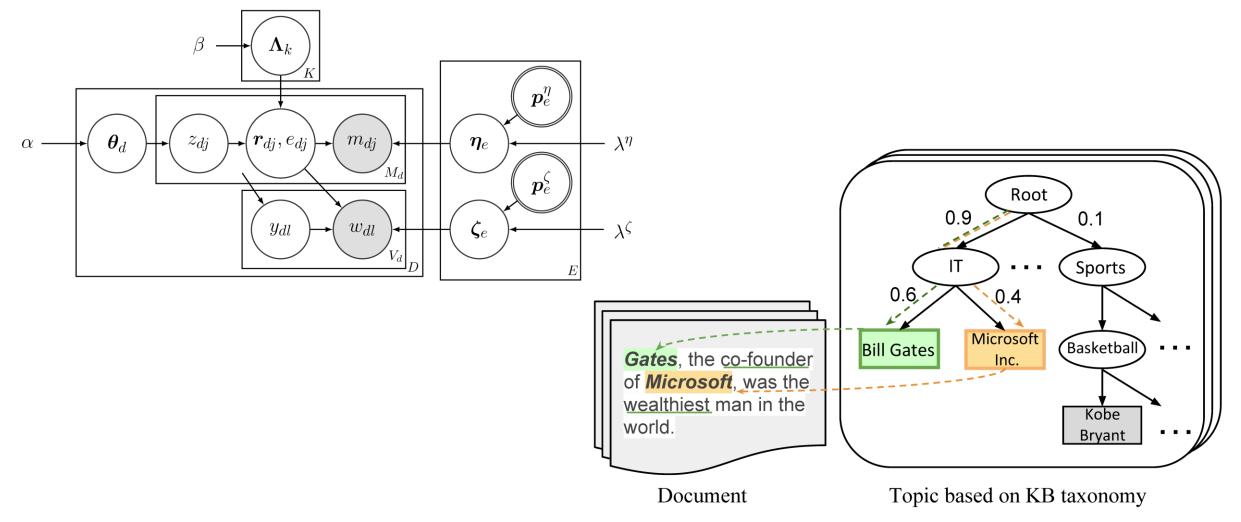


Entity Modeling

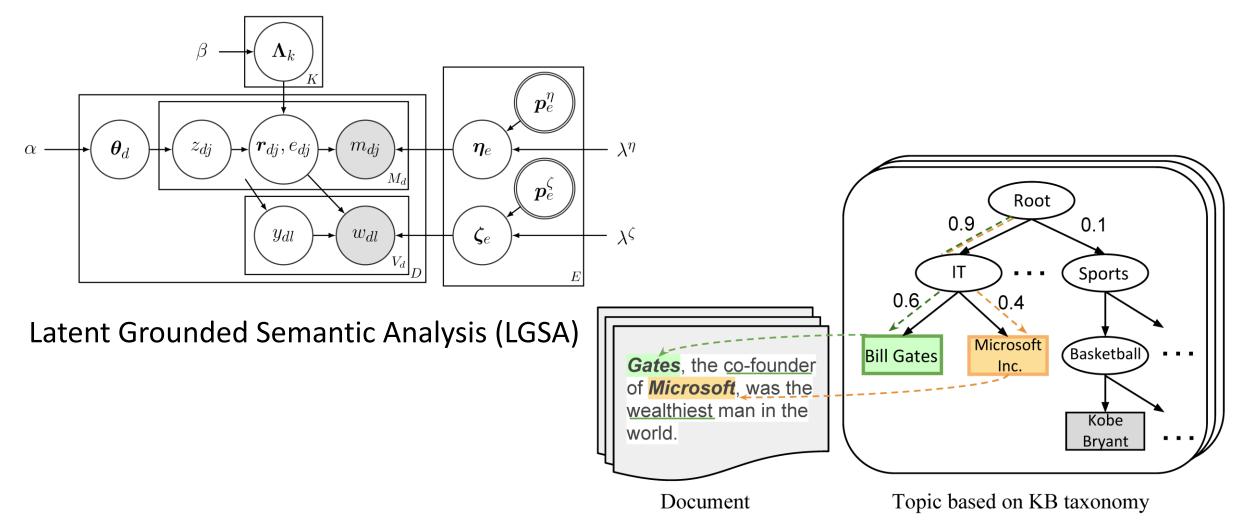
- A distribution over mentions
 - captures relatedness between the entity and mentions
 - Microsoft Inc. MS, Gates
- A distribution over words
 - characterizes the entity attributes
 - Bill Gates wealthiest



Graphical Model Representation



Graphical Model Representation



Experiments

- Knowledge Base: Wikipedia
 - Entity Wikipedia pages
 - Entity category hierarchy
- Datasets
 - TMZ (tmz.com): celebrity gossip news
 - celebrity labels
 - #doc ~= 30K
 - New York Times news (LDC)
 - #doc ~= 330K
- Baselines

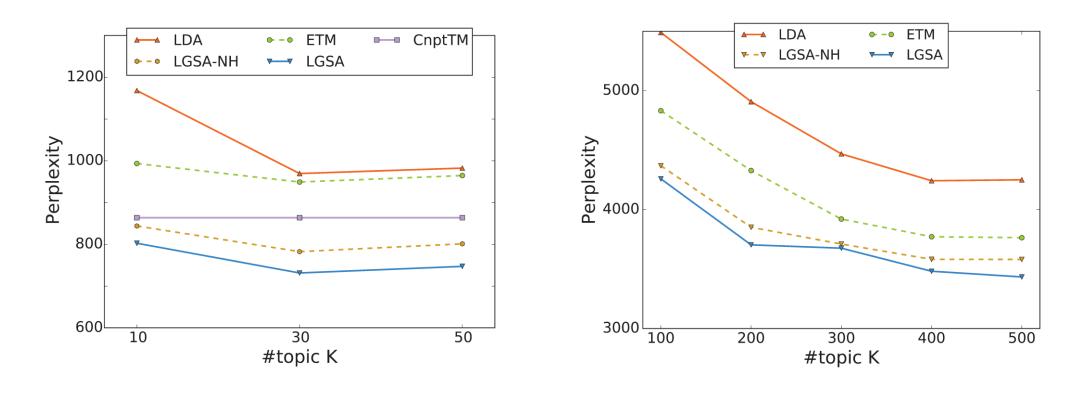
https://en.wikipedia.org/wiki/Microsoft

Categories: Companies in the NASDAQ-100 Index | Information technology companies of the United State Software companies based in Washington (state)

Method	Features		Tasks		
	word	mention	structured knowledge	topic extraction	key entity identification
CnptTM	\checkmark		\checkmark	\checkmark	
ETM		\checkmark			
LDA				\checkmark	\checkmark
ESA			\checkmark		\checkmark
MA-C	\checkmark	\checkmark	\checkmark		\checkmark
LGSA-NH LGSA					$\sqrt{1}$

Table 3: Feature and task comparison of different methods

Topic Perplexity



On the TMZ dataset

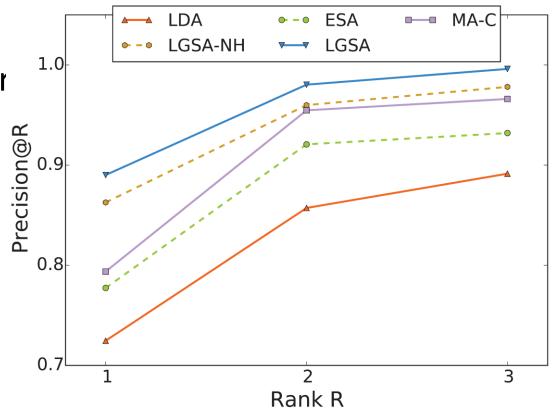
On the NYT dataset

Key Entity Identification

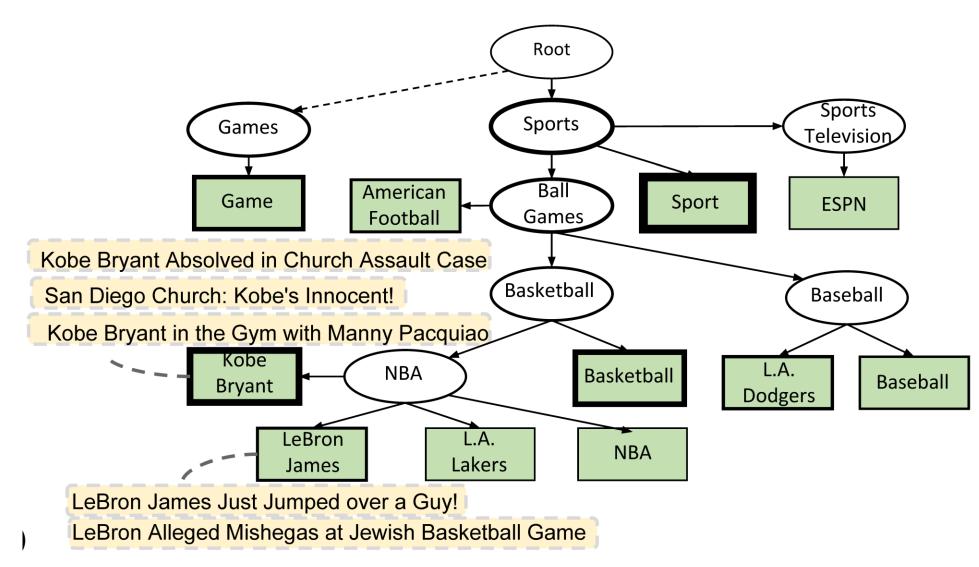
- Key entity of a document
 - E.g., the persons a news article is mainly about
- TMZ dataset: ground truth (celebrity label) available
- LGSA: θ'_d distribution over entities for document d

Key Entity Identification

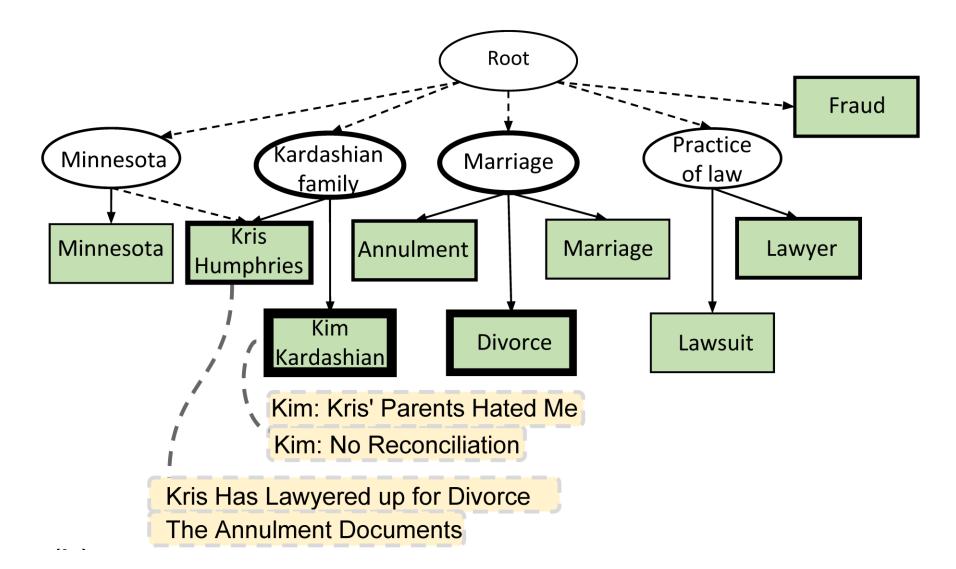
- Key entity of a document
 - E.g., the persons a news article is mainly about
- TMZ dataset: ground truth
- LGSA: θ_d' distribution over



Example Topics: Sports



Example Topics: Kardashian and Humphries' Divorce



Conclusion

- Traditional word-based topic representation lacks interpretability and grounded semantics
- A structured topic representation based on entity taxonomy from KBs
- A probabilistic model (LGSA) to infer latent grounded topics
- Improved performance on topic perplexity and key entity identification

Thanks..