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Deep generative models
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Deep generative models

•Define probabilistic distributions over a set of variables
• "Deep" means multiple layers of hidden variables!
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Early forms of deep generative models

•Hierarchical Bayesian models
• Sigmoid brief nets [Neal 1992] !"($) = 0,1 *
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Early forms of deep generative models

•Hierarchical Bayesian models
• Sigmoid brief nets [Neal 1992]

•Neural network models
• Helmholtz machines [Dayan et al.,1995]

inference 
weights

[Dayan et al. 1995]
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Early forms of deep generative models

•Hierarchical Bayesian models
• Sigmoid brief nets [Neal 1992]

•Neural network models
•Helmholtz machines [Dayan et al.,1995]

• Predictability minimization [Schmidhuber 1995]

Figure courtesy: Schmidhuber 1996
DATA



Early forms of deep generative models

•Training of DGMs via an EM style framework
• Sampling / data augmentation

• Variational inference

• Wake sleep

log	% & ≥ E)* + & log	%, &, + 	− KL(23 + & 	||	%(+)) ≔ ℒ(8,9; &)	

max8,9ℒ(8,9; &)	

+ = +?, +@
+?
ABC~% +? +@, &
+@
ABC~% +@ +?

ABC, &

Wake: 	min,G)*(H|I) log	%, J K
Sleep: 	min3GLM(I|H) log	23 K J



Resurgence of deep generative models

• Variational autoencoders (VAEs) [Kingma & Welling, 2014]
/ Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 

2014]

generative modelinference model

Figure courtesy: Kingma & Welling, 2014
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Resurgence of deep generative models

• Variational autoencoders (VAEs) [Kingma & Welling, 2014]
/ Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 

2014]
• Generative adversarial networks (GANs)

!": generative model
#$: discriminator



Outline

•Theoretical Basis of deep generative models
•Wake sleep algorithm
• Variational autoencoders
•Generative adversarial networks

•A unified view of deep generative models
•New formulations of deep generative models
• Symmetric modeling of latent and visible variables



Synonyms in the literature 

• Posterior Distribution -> Inference model
• Variational approximation
• Recognition model
• Inference network (if parameterized as neural networks)
• Recognition network (if parameterized as neural networks)
• (Probabilistic) encoder

• "The Model" (prior + conditional, or joint) -> Generative model
• The (data) likelihood model
• Generative network (if parameterized as neural networks)
• Generator
• (Probabilistic) decoder
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Recap: Variational Inference

•Consider a generative model !" #|% , and prior ! %
• Joint distribution: !" #, % = !" #|% ! %

• Assume variational distribution () %|#
•Objective: Maximize lower bound for log likelihood

• Equivalently, minimize free energy

log	! #
= ./ () % # 	||	!0 % # + 2()	 % # 	log !" #, %() % # 	

%

≥ 2() % # 	log !" #, %()	 % #
	

%
≔ ℒ(0,7; #)	

: 0, ;; # = −log	! # + ./(() % # 	||	!0(%|#))



Recap: Variational Inference

Maximize the variational lower bound ℒ(#,%; ')	
• E-step: maximize ℒ wrt. * with #	fixed 

• If with closed form solutions

• M-step: maximize ℒ wrt. # with * fixed 

max.ℒ #,%; ' = 012(3|5) log	9: ; < + >?(@.	 < ; ||9(<))

max:ℒ #,%; ' = 012 < ; log	9: ; < + >?(@. < ; ||9(<))

@.∗ (<|;) ∝ exp[log	9:(;, <)]
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Wake Sleep Algorithm
• [Hinton et al., Science 1995]
• Train a separate inference model along with the generative model
• Generally applicable to a wide range of generative models, e.g., Helmholtz machines

• Consider a generative model !" # $ and prior ! $
• Joint distribution !" #, $ = !" # $ ! $
• E.g., multi-layer brief nets

• Inference model '( $ #
• Maximize data log-likelihood with two steps of loss relaxation:
• Maximize the lower bound of log-likelihood, or equivalently, minimize the free 

energy

• Minimize a different objective (reversed KLD) wrt 	*	to ease the optimization
• Disconnect to the original variational lower bound loss

+ ,,-; # = −log	! # + 45('( $ # 	||	!,($|#))

+′ ,,-; # = −log	! # + 45(!" $ # 	||	'(($|#))



Wake Sleep Algorithm

• Free energy:

• Minimize the free energy wrt. ! of	#$ à wake phase

• Get samples from  %&((|*) through inference on hidden variables
• Use the samples as targets for updating the generative model #$(,|-)
• Correspond to the variational M step

. !,0; - = −log	# - + 89(%0 , - 	||	#!(,|-))

max!	E>?(,|-)	 log	#!(-, ,)

R1

R2

-

[Figure courtesy: Maei’s slides]



Wake Sleep Algorithm

!"# $, &; ( = ⋯+ !",-.(0|2) log	89(:, () + ⋯

!",-. log	89 = ∫ !"<"log	89 = ∫ <"log	89	!"log	<" = ,-.[log	89	!"log	<"]

<?
∗ A B =

CD(A, B)

∫CD A, B 	EA

!",-. log	89 ≈ ,0G∼-.[log	89((, :I)	!"<" :I|( ]

# D,?; B = −log	8 B + KL(<? A B 	||	8D(A|B))

• Free energy:

• Minimize the free energy wrt. & of	<" A B

• Correspond to the variational E step
• Difficulties:

• Optimal                                     intractable
• High variance of direct gradient estimate

• Gradient estimate with the log-derivative trick:

• Monte Carlo estimation:

• The scale factor log	89 of the derivative 	!"log	<" can have arbitrary 
large magnitude



Wake Sleep Algorithm

• Free energy:

• WS works around the difficulties with the sleep phase approximation
• Minimize the following objective à sleep phase

• “Dreaming” up samples from  !" # $ through top-down pass 
• Use the samples as targets for updating the inference model

• (Recent approaches other than sleep phase is to reduce the variance of 
gradient estimate: slides later)

%′ ',); # = −log	! # + 23(!" $ # 	||	67($|#))
max)	E=>($,#)	 log	67 $ #

G1

G2

R1

R2

#

[Figure courtesy: Maei’s slides]
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Wake Sleep Algorithm

Wake sleep
• Parametrized inference model !" # $
• Wake phase:

• minimize	&'(!" # $ 	||	*+(#|$)) wrt. -
• E/0(#|$)	 12log	*+ $ #

• Sleep phase:
• minimize &'(*2 # $ 	||	!6(#|$)) wrt. 7
• E89(#,$)	 16log	!6(#, $)
• low variance
• Learning with generated samples of $

• Two objective, not guaranteed to converge

Variational EM
• Variational distribution !6 # $
• Variational M step:

• minimize	&'(!6 # $ 	||	*+(#|$)) wrt. -
• E/"(#|$)	 12log	*+ $ #

• Variational E step:
• minimize &'(!6 # $ 	||	*+(#|$)) wrt. 7
• !6∗ ∝ exp[log	*2] if with closed-form
• 16B/0 log	*2(C, D)

• need variance-reduce in practice
• Learning with real data $

• Single objective, guaranteed to converge



Variational Autoencoders (VAEs)

• [Kingma & Welling, 2014]

• Use variational inference with an inference model
• Enjoy similar applicability with wake-sleep algorithm

• Generative model !" # $ , and prior !($)
• Joint distribution !" #, $ = !" # $ ! $

• Inference model )* $ #
generative modelinference model

Figure courtesy: Kingma & Welling, 2014
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Variational Autoencoders (VAEs)

• Variational lower bound 

•Optimize ℒ(#,%; ')	wrt. * of +, ' -
• The same with the wake phase

•Optimize ℒ(#,%; ')	wrt. . of /0 - '

• Use reparameterization trick to reduce variance
• Alternatives: use control variates as in reinforcement learning [Mnih & Gregor, 2014; 

Paisley et al., 2012]

ℒ #,%; ' = 	E34 - ' log	+, ', - 	− KL(/0 - ' 	||	+(-))

<0ℒ *, .; = = ⋯+ <0@34(A|B) log	+, = C +⋯



Reparametrized gradient

•Optimize ℒ ",$; & wrt. ' of () * &
• Recap: gradient estimate with log-derivative trick:

• High variance:
• The scale factor log	/0(2, 34) of the derivative 	6)log	() can have arbitrary large 

magnitude

• gradient estimate with reparameterization trick

• (Empirically) lower variance of the gradient estimate
• E.g., 	* ∼ 8 9 & , : & : & ; 		⇔ 		= ∼ 8 0,1 , * = 9 & + :(&)=

6)ECD * & log	/0 &, * = E=∼E(F) 6)log	/0 &, *) =

* ∼ () * & 			⇔ 			G = g) =, & , 	= ∼ /(=)

6)HCD log	/0 &, * = HCD[log	/0 &, * 	6)log	()]
6)HCD log	/0 ≈ HLM∼CD[log	/0(2, 34)	6)() 34|2 ]



VAEs: example results

Celebrity faces [Radford 2015] 

• VAEs tend to generate blurred 

images due to the mode covering 

behavior (more later) 

• Latent code interpolation and 

sentences generation from VAEs 

[Bowman et al., 2015]. 

input we looked out at the setting sun . i went to the kitchen . how are you doing ?

mean they were laughing at the same time . i went to the kitchen . what are you doing ?

samp. 1 ill see you in the early morning . i went to my apartment . “ are you sure ?

samp. 2 i looked up at the blue sky . i looked around the room . what are you doing ?

samp. 3 it was down on the dance floor . i turned back to the table . what are you doing ?

Table 7: Three sentences which were used as inputs to the vae, presented with greedy decodes from the
mean of the posterior distribution, and from three samples from that distribution.

“ i want to talk to you . ”

“i want to be with you . ”

“i do n’t want to be with you . ”

i do n’t want to be with you .

she did n’t want to be with him .

he was silent for a long moment .

he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .

Table 8: Paths between pairs of random points in
vae space: Note that intermediate sentences are
grammatical, and that topic and syntactic struc-
ture are usually locally consistent.

ments). Here we see that the sentences are far less
typical, but for the most part are grammatical and
maintain a clear topic, indicating that the latent
variable is capturing a rich variety of global fea-
tures even for rare sentences.

6.2 Sampling from the posterior

In addition to generating unconditional samples,
we can also examine the sentences decoded from
the posterior vectors p(z|x) for various sentences
x. Because the model is regularized to produce dis-
tributions rather than deterministic codes, it does
not exactly memorize and round-trip the input. In-
stead, we can see what the model considers to be
similar sentences by examining the posterior sam-
ples in Table 7. The codes appear to capture in-
formation about the number of tokens and parts
of speech for each token, as well as topic informa-
tion. As the sentences get longer, the fidelity of
the round-tripped sentences decreases.

6.3 Homotopies

The use of a variational autoencoder allows us to
generate sentences using greedy decoding on con-
tinuous samples from the space of codes. Addi-
tionally, the volume-filling and smooth nature of
the code space allows us to examine for the first
time a concept of homotopy (linear interpolation)
between sentences. In this context, a homotopy be-
tween two codes ~z1 and ~z2 is the set of points on the
line between them, inclusive, ~z(t) = ~z1⇤(1�t)+~z2⇤t
for t 2 [0, 1]. Similarly, the homotopy between two

sentences decoded (greedily) from codes ~z1 and ~z2
is the set of sentences decoded from the codes on
the line. Examining these homotopies allows us to
get a sense of what neighborhoods in code space
look like – how the autoencoder organizes infor-
mation and what it regards as a continuous defor-
mation between two sentences.

While a standard non-variational rnnlm does
not have a way to perform these homotopies, a
vanilla sequence autoencoder can do so. As men-
tioned earlier in the paper, if we examine the ho-
motopies created by the sequence autoencoder in
Table 1, though, we can see that the transition be-
tween sentences is sharp, and results in ungram-
matical intermediate sentences. This gives evi-
dence for our intuition that the vae learns repre-
sentations that are smooth and “fill up” the space.

In Table 8 (and in additional tables in the ap-
pendix) we can see that the codes mostly contain
syntactic information, such as the number of words
and the parts of speech of tokens, and that all in-
termediate sentences are grammatical. Some topic
information also remains consistent in neighbor-
hoods along the path. Additionally, sentences with
similar syntax and topic but flipped sentiment va-
lence, e.g. “the pain was unbearable” vs. “the
thought made me smile”, can have similar embed-
dings, a phenomenon which has been observed with
single-word embeddings (for example the vectors
for “bad” and “good” are often very similar due to
their similar distributional characteristics).

7 Conclusion

This paper introduces the use of a variational
autoencoder for natural language sentences. We
present novel techniques that allow us to train
our model successfully, and find that it can e↵ec-
tively impute missing words. We analyze the la-
tent space learned by our model, and find that it
is able to generate coherent and diverse sentences
through purely continuous sampling and provides
interpretable homotopies that smoothly interpo-
late between sentences.

We hope in future work to investigate factoriza-
tion of the latent variable into separate style and
content components, to generate sentences condi-
tioned on extrinsic features, to learn sentence em-
beddings in a semi-supervised fashion for language
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Generative Adversarial Nets (GANs)

• [Goodfellow et al., 2014] 
•Generative model ! = #$ % , 	% ∼ )(%)
• Map noise variable % to data space !
• Define an implicit distribution over !: )-.(!)

• a stochastic process to simulate data !
• Intractable to evaluate likelihood

•Discriminator /0 !
• Output the probability that ! came from the data rather than the generator

• No explicit inference model
• No obvious connection to previous models with inference networks like VAEs
• We will build formal connections between GANs and VAEs later



Generative Adversarial Nets (GANs)

• Learning
• A minimax game between the generator and the discriminator

• Train ! to maximize the probability of assigning the correct label to both 
training examples and generated samples

• Train " to fool the discriminator

[Figure courtesy: Kim’s slides]

GAN plays the role of z1 as above. The space S0 is now implicit and we directly sample real image
x from data distribution pdata(x). The distribution in Eq.(1) is thus rewritten as:

p(x|z, y) =
⇢
pdata(x) y = 0

pg(x|z) y = 1,
(5)

where pg(x|z) = G(z) is the generative distribution. Note that pdata(x) is the empirical data
distribution which is free of parameters. The discriminator is defined in the same way as above, i.e.,
D(x) = p(y = 0|x). Then the objective of GAN is precisely defined in Eq.(2). To make this clearer,
we again transform the objective into its conventional form:

maxD LD = E
x⇠pdata(x) [logD(x)] + E

x⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG LG = E
x⇠pdata(x) [log(1�D(x))] + E

x⇠G(z),z⇠p(z) [logD(x)]

= E
x⇠G(z),z⇠p(z) [logD(x)] .

(6)

maxD LD = E
x⇠pdata(x) [logD(x)] + E

x⇠G(z),z⇠p(z) [log(1�D(x))] ,

minG LG = E
x⇠G(z),z⇠p(z) [log(1�D(x))] .

maxD LD = E
x⇠pdata(x) [logD(x)] + E

x⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG LG = E
x⇠G(z),z⇠p(z) [logD(x)] .

Note that for learning the generator we are using the adapted objective, i.e., maximizing
E
x⇠G(z),z⇠p(z) [logD(x)], as is usually used in practice (Goodfellow et al., 2014), rather than

minimizing E
x⇠G(z),z⇠p(z) [log(1�D(x))].

KL Divergence Interpretation
Now we take a closer look into Eq.(2). Assume uniform prior distribution p(y) where p(y = 0) =

p(y = 1) = 0.5. For optimizing p(x|z, y), we have
Theorem 1. Let p✓(x|z, y) be the conditional distribution in Eq.(1) parameterized with ✓. Denote

p✓0(x|z) = Ep(y)[p✓0(x|z, y)] with fixed parameter ✓0. Denote q0(x|z, y) / q(1� y|x)p✓0(x|z).
Therefore,

Ep(z,y)

⇥
�r✓Ep✓(x|z,y) [log q(1� y|x)] |✓=✓0

⇤
=

r✓Ep(z,y) [KL (p✓(x|z, y)kq0(x|z, y))� JSD (p✓(x|z, y = 0)kp✓(x|z, y = 1)) |✓=✓0 ]
(7)

Proof.

Ep(z,y)

⇥
�Ep✓(x|z,y) [log q(1� y|x)]

⇤
=

Ep(z,y) [KL (p✓(x|z, y)kq0(x|z, y))� KL(p✓(x|z, y)kp✓0(x|z))] ,
(8)

where
Ep(z,y) [KL(p✓(x|z, y)kp✓0(x|z))] =

Ep(z)


p(y = 0)KL

✓
p✓(x|z, y = 0)kp✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

◆
+

p(y = 1)KL
✓
p✓(x|z, y = 1)kp✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

◆�
.

(9)

Taking derivatives w.r.t ✓ at ✓0 we get
r✓Ep(z,y) [KL(p✓(x|z, y)kp✓0(x|z))] |✓=✓0

= Ep(z)


1

2

Z

x

r✓p✓(x|z, y = 0)

p✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

+

1

2

Z

x

r✓p✓(x|z, y = 1)

p✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

�
|✓=✓0

= Ep(z) [r✓JSD(p✓(x|z, y = 0)kp✓(x|z, y = 1)) |✓=✓0 ] .

(10)

Taking derivatives of the both sides of Eq.(8) at w.r.t ✓ at ✓0 and plugging the last equation of Eq.(10),
we obtain our desired result.
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GANs: example results

Generated bedrooms [Radford et al., 2016]
25



The Zoo of DGMs

• Variational autoencoders (VAEs) [Kingma & Welling, 2014]
• Adversarial autoencoder [Makhzani et al., 2015]
• Importance weighted autoencoder [Burda et al., 2015]
• Implicit variational autoencoder [Mescheder., 2017]

•Generative adversarial networks (GANs) [Goodfellos et al., 2014]
• InfoGAN [Chen et al., 2016]
• CycleGAN [Zhu et al., 2017]
• Wasserstein GAN [Arjovsky et al., 2017]

• Autoregressive neural networks
• PixelRNN / PixelCNN [Oord et al., 2016]
• RNN (e.g., for language modeling)

•Generative moment matching networks (GMMNs) [Li et al., 2015; Dziugaite et al., 
2015]

• Retricted Boltzmann Machines (RBMs) [Smolensky, 1986]



Alchemy Vs Chemistry
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Outline

•Theoretical backgrounds of deep generative models
• Wake sleep algorithm
• Variational autoencoders
• Generative adversarial networks

•A unified view of deep generative models
• New formulations of deep generative models
• Symmetric modeling of latent and visible variables

Z Hu, Z YANG, R Salakhutdinov, E Xing, 
“On Unifying Deep Generative Models”, arxiv 1706.00550



Generative Adversarial Nets (GANs):

• Implicit distribution over ! ∼ #$(!|')

•! ∼ #)* ! ⟺ ! = -$ . , . ∼ # . ' = 0

•! ∼ #1232 ! 	
• the code space of . is degenerated
• sample directly from data  

maximize the binary classification accuracy of recognizing the feature domains:

max

�

L� = E
x=G✓(z),z⇠p(z|y=1) [logD�(x)] + E

x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] . (1)

The feature extractor G✓ is then trained to fool the discriminator:

max

✓

L✓ = E
x=G✓(z),z⇠p(z|y=1) [log(1�D�(x))] + E

x=G✓(z),z⇠p(z|y=0) [logD�(x)] . (2)

Here we omit the additional loss on ✓ that fits the features to the data label pairs of source domain
(see the supplementary materials for the details).

With the background of the conventional formulation, we now frame our new interpretation of ADA.
The data distribution p(z|y) and deterministic transformation G✓ together form an implicit distribution
over x, denoted as p✓(x|y), which is intractable to evaluate likelihood but easy to sample from. Let
p(y) be the prior distribution of the domain indicator y, e.g., a uniform distribution as in Eqs.(1)-(2).
The discriminator defines a conditional distribution q�(y|x) = D�(x). Let qr�(y|x) = q�(1� y|x)
be the reversed distribution over domains. The objectives of ADA are therefore rewritten as (up to a
constant scale factor 2):

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y)
⇥
log q

r
�(y|x)

⇤
.

(3)

The above objectives can be interpreted as maximizing the log likelihood of y (or 1 � y) with the
“generative distribution” q�(y|x) conditioning on the latent code x inferred by p✓(x|y). Note that the
only (but critical) difference of the objectives of ✓ from � is the replacement of q(y|x) with q

r
(y|x).

This is where the adversarial mechanism comes about.

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y) [log q�(y|x)] .
(4)

Graphical model representation Figure 1(c) illustrates the graphical model of the formulation
in Eq.(4), where, in the new view, solid-line arrows denote the generative process while dashed-
line arrows denote the inference process. We introduce new visual elements, e.g., hollow arrows
for expressing implicit distributions, and blue arrows for adversarial mechanism. As noted above,
adversarial modeling is achieved by swapping between q(y|x) and q

r
(y|x) when training respective

modules.

3.2 Generative Adversarial Networks (GANs)

GANs [16] can be seen as a special case of ADA. Taking image generation for example, intuitively,
we want to transfer the properties of the source domain (real images) to the target domain (generated
images), making them indistinguishable to the discriminator. Figure 1(b) shows the conventional
view of GANs.

Formally, x now denotes a real example or a generated sample, z is the respective latent code. For
the generated sample domain (y = 0), the implicit distribution p✓(x|y = 0) is defined by the prior of
z and the generator G✓(z), which is also denoted as pg✓ (x) in the literature. For the real example
domain (y = 1), the code space and generator are degenerated, and we are directly presented with a
fixed distribution p(x|y = 1), which is just the real data distribution pdata(x). Note that pdata(x) is
also an implicit distribution allowing efficient empirical sampling. In summary, the distribution over
x is constructed as

p✓(x|y) =
⇢
pg✓ (x) y = 0

pdata(x) y = 1.

(5)

Here, free parameters ✓ are only associated with pg✓ (x) of the generated sample domain, while
pdata(x) is constant. As in ADA, discriminator D� is simultaneously trained to infer the probability
that x comes from the real data domain. That is, q�(y = 1|x) = D�(x).

With the established correspondence between GANs and ADA, we can see that the objectives of
GANs are precisely expressed as Eq.(4) and as the graphical model in Figure 1(c). To make this

4

(distribution of generated images)

(distribution of real images)



A new formulation

• Rewrite GAN objectives in the ”variational-EM” format
• Recap: conventional formulation:

• Rewrite in the new form
• Implicit distribution over ! ∼ #$(!|')

! = *$ + , + ∼ # + '
• Discriminator distribution -.('|!)

-./ ' ! = -.(1 − '|!)

ADA GANs VAEs

x features data/generations data/generations
y domain indicator real/fake indicator (degenerated) real/fake indicator
z data examples code vector code vector
p✓(x|y) feature distr. generation distr., Eq.2 p✓(x|z, y), generation distr., Eq.9
q�(y|x) discriminator discriminator q⇤(y|x), degenerated discriminator
p⌘(z|x, y) — infer net (InfoGAN) infer net
p✓0(x) = Ep(y)[p✓0(x|y)] — prior of x prior of x

Table 1: Correspondence between different approaches in the proposed formulation.

[Eric: There should be a quick description of the wake-sleep algorithm here to start the
section.] In GANs, the generative model is trained by passing generated samples to a discriminator
and minimizing the resulting error evaluated by the discriminator. Intuitively, the reliance on fake
samples for learning resembles the sleep phase in the wake-sleep algorithm. In contrast, VAEs train
the generative model by reconstructing observed real examples, sharing similarity to the wake phase.
This section formally explores these connections.

For ease of presentation and to establish a systematic notation for the paper, we start with a new
interpretation of Adversarial Domain Adaptation (ADA) [Eric: please add the earliest citation
for this name?] within our proposed formulation. We then show that GANs are a special case of
ADA with a degenerated source domain, and reveal close relations to VAEs and wake-sleep algorithm
through KL divergence interpretation of the objectives. Table 1 lists the correspondence of each
components in these approaches.

3.1 Adversarial Domain Adaptation (ADA)

ADA aims to transfer prediction knowledge learned from a source domain with labeled data to a
target domain without labels, by learning domain-invariant features [13, 42, 43, 7]. That is, it learns a
feature extractor whose output cannot be distinguished by a discriminator between the source and
target domains.

We frame our new interpretation of ADA, and review conventional formulations in the supplementary
materials. To make clear notational correspondence to other models in the sequel, [Eric: Please add
a figure drawing a graphical model here for ADA.] let z be a data example either in the source
or target domain, and y 2 {0, 1} be the domain indicator with y = 0 indicating the target domain
and y = 1 the source domain. The data distributions conditioning on the domain are then denoted
as p(z|y). Let p(y) be the prior distribution (e.g., uniform) of the domain indicator. The feature
extractor maps z to representations x = G✓(z) with parameters ✓. The data distributions over z and
deterministic transformation G✓ together form an implicit distribution over x, denoted as p✓(x|y),
which is intractable to evaluate likelihood but easy to sample from:

To enforce domain invariance of feature x, a discriminator is trained to adversarially distinguish
between the two domains, which defines a conditional distribution q�(y|x) with parameters �, and
the feature extractor is optimized to fool the discriminator. Let qr�(y|x) = q�(1�y|x) be the reversed
distribution over domains. The objectives of ADA are therefore given as:
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where we omit the additional loss of ✓ to fit to the data label pairs of source domain (see supplements
for more details). In conventional view, the first equation minimizes the discriminator binary cross
entropy with respect to discriminative parameter �, while the second trains the feature extractor
to maximize the cross entropy with respect to the transformation parameter ✓. [Eric: I think for
self-containedness, it would be better to explain both of the cross-entropy notion above.]
Alternatively, we can interpret the objectives as optimizing the reconstruction of the domain variable
y conditioned on feature x. [Eric: I can not understand this point.] We explore this perspective
more in the next section. Note that the only (but critical) difference between the objective of ✓ from
� is the replacement of q(y|x) with q

r
(y|x). This is where the adversarial mechanism comes about.
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Figure 2: One optimization step of the parameter ✓ through Eq.(7) at point ✓0. The posterior
q

r
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clearer, we recover the classical form by unfolding over y and plugging in conventional notations.
For instance, the objective of the generative parameters ✓ is translated into
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where the prior p(y) is uniform as is widely set, resulting in the constant scale factor 1/2. Note that
here the generator is trained using the unsaturated objective [16] which is commonly used in practice.
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We now take a closer look at the form of Eq.(4) which is essentially reconstructing the real/fake
indicator y (or its reverse 1� y) conditioned on x. Further, for each optimization step of p✓(x|y) at
point (✓0,�0) in the parameter space, we have

Lemma 1 Let p(y) be the uniform distribution. Let p✓0(x) = Ep(y)[p✓0(x|y)], and q
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(7)

where KL(·k·) and JSD(·k·) are the KL and Jensen-Shannon Divergences, respectively.

We provide the proof in the supplement materials. Eq.(7) offers several insights into the generator
learning in GANs.

• Resemblance to variational inference. If we treat y as visible and x as latent (as in ADA), it is
straightforward to see the connections to the variational inference algorithm where q

r
(x|y) plays

the role of the posterior, p✓0(x) the prior, and p✓(x|y) the variational distribution that approximates
the posterior. Optimizing the generator G✓ is equivalent to minimizing the KL divergence between
the variational distribution and the posterior, minus a JSD between the distributions pg✓ (x) and
pdata(x). The Bayesian interpretation further reveals the connections to VAEs, as we discuss in
the next section.
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• Interpret %&("|)) as the generative model
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p✓(x|y) feature distr. generation distr., Eq.2 p✓(x|z, y), generation distr., Eq.9
q�(y|x) discriminator discriminator q⇤(y|x), degenerated discriminator
p⌘(z|x, y) — infer net (InfoGAN) infer net
p✓0(x) = Ep(y)[p✓0(x|y)] — prior of x prior of x

Table 1: Correspondence between different approaches in the proposed formulation.

[Eric: There should be a quick description of the wake-sleep algorithm here to start the
section.] In GANs, the generative model is trained by passing generated samples to a discriminator
and minimizing the resulting error evaluated by the discriminator. Intuitively, the reliance on fake
samples for learning resembles the sleep phase in the wake-sleep algorithm. In contrast, VAEs train
the generative model by reconstructing observed real examples, sharing similarity to the wake phase.
This section formally explores these connections.

For ease of presentation and to establish a systematic notation for the paper, we start with a new
interpretation of Adversarial Domain Adaptation (ADA) [Eric: please add the earliest citation
for this name?] within our proposed formulation. We then show that GANs are a special case of
ADA with a degenerated source domain, and reveal close relations to VAEs and wake-sleep algorithm
through KL divergence interpretation of the objectives. Table 1 lists the correspondence of each
components in these approaches.

3.1 Adversarial Domain Adaptation (ADA)

ADA aims to transfer prediction knowledge learned from a source domain with labeled data to a
target domain without labels, by learning domain-invariant features [13, 42, 43, 7]. That is, it learns a
feature extractor whose output cannot be distinguished by a discriminator between the source and
target domains.

We frame our new interpretation of ADA, and review conventional formulations in the supplementary
materials. To make clear notational correspondence to other models in the sequel, [Eric: Please add
a figure drawing a graphical model here for ADA.] let z be a data example either in the source
or target domain, and y 2 {0, 1} be the domain indicator with y = 0 indicating the target domain
and y = 1 the source domain. The data distributions conditioning on the domain are then denoted
as p(z|y). Let p(y) be the prior distribution (e.g., uniform) of the domain indicator. The feature
extractor maps z to representations x = G✓(z) with parameters ✓. The data distributions over z and
deterministic transformation G✓ together form an implicit distribution over x, denoted as p✓(x|y),
which is intractable to evaluate likelihood but easy to sample from:

To enforce domain invariance of feature x, a discriminator is trained to adversarially distinguish
between the two domains, which defines a conditional distribution q�(y|x) with parameters �, and
the feature extractor is optimized to fool the discriminator. Let qr�(y|x) = q�(1�y|x) be the reversed
distribution over domains. The objectives of ADA are therefore given as:
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where we omit the additional loss of ✓ to fit to the data label pairs of source domain (see supplements
for more details). In conventional view, the first equation minimizes the discriminator binary cross
entropy with respect to discriminative parameter �, while the second trains the feature extractor
to maximize the cross entropy with respect to the transformation parameter ✓. [Eric: I think for
self-containedness, it would be better to explain both of the cross-entropy notion above.]
Alternatively, we can interpret the objectives as optimizing the reconstruction of the domain variable
y conditioned on feature x. [Eric: I can not understand this point.] We explore this perspective
more in the next section. Note that the only (but critical) difference between the objective of ✓ from
� is the replacement of q(y|x) with q

r
(y|x). This is where the adversarial mechanism comes about.
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We frame our new interpretation of ADA, and review conventional formulations in the supplementary
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a figure drawing a graphical model here for ADA.] let z be a data example either in the source
or target domain, and y 2 {0, 1} be the domain indicator with y = 0 indicating the target domain
and y = 1 the source domain. The data distributions conditioning on the domain are then denoted
as p(z|y). Let p(y) be the prior distribution (e.g., uniform) of the domain indicator. The feature
extractor maps z to representations x = G✓(z) with parameters ✓. The data distributions over z and
deterministic transformation G✓ together form an implicit distribution over x, denoted as p✓(x|y),
which is intractable to evaluate likelihood but easy to sample from:

To enforce domain invariance of feature x, a discriminator is trained to adversarially distinguish
between the two domains, which defines a conditional distribution q�(y|x) with parameters �, and
the feature extractor is optimized to fool the discriminator. Let qr�(y|x) = q�(1�y|x) be the reversed
distribution over domains. The objectives of ADA are therefore given as:
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where we omit the additional loss of ✓ to fit to the data label pairs of source domain (see supplements
for more details). In conventional view, the first equation minimizes the discriminator binary cross
entropy with respect to discriminative parameter �, while the second trains the feature extractor
to maximize the cross entropy with respect to the transformation parameter ✓. [Eric: I think for
self-containedness, it would be better to explain both of the cross-entropy notion above.]
Alternatively, we can interpret the objectives as optimizing the reconstruction of the domain variable
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Figure 2: One optimization step of the parameter ✓ through Eq.(7) at point ✓0. The posterior
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mixing weights induced from q
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(y|x). Minimizing the KL divergence of Eq.(7) w.r.t ✓ drives

p✓(x|y = 0) towards the respective mixture q
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(x|y = 0) (green), resulting in a new state where
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g (x) gets closer to p✓0(x|y = 1) = pdata(x). Due to the asymmetry of

KL divergence, pnewg (x) missed the smaller mode of the mixture q
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pdata(x).

clearer, we recover the classical form by unfolding over y and plugging in conventional notations.
For instance, the objective of the generative parameters ✓ is translated into
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where the prior p(y) is uniform as is widely set, resulting in the constant scale factor 1/2. Note that
here the generator is trained using the unsaturated objective [16] which is commonly used in practice.
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We now take a closer look at the form of Eq.(4) which is essentially reconstructing the real/fake
indicator y (or its reverse 1� y) conditioned on x. Further, for each optimization step of p✓(x|y) at
point (✓0,�0) in the parameter space, we have

Lemma 1 Let p(y) be the uniform distribution. Let p✓0(x) = Ep(y)[p✓0(x|y)], and q
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(7)

where KL(·k·) and JSD(·k·) are the KL and Jensen-Shannon Divergences, respectively.

We provide the proof in the supplement materials. Eq.(7) offers several insights into the generator
learning in GANs.
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where the prior p(y) is uniform as is widely set, resulting in the constant scale factor 1/2. Note that
here the generator is trained using the unsaturated objective [16] which is commonly used in practice.
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where KL(·k·) and JSD(·k·) are the KL and Jensen-Shannon Divergences, respectively.
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where the prior p(y) is uniform as is widely set, resulting in the constant scale factor 1/2. Note that
here the generator is trained using the unsaturated objective [16] which is commonly used in practice.
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We now take a closer look at the form of Eq.(4) which is essentially reconstructing the real/fake
indicator y (or its reverse 1� y) conditioned on x. Further, for each optimization step of p✓(x|y) at
point (✓0,�0) in the parameter space, we have

Lemma 1 Let p(y) be the uniform distribution. Let p✓0(x) = Ep(y)[p✓0(x|y)], and q
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(7)

where KL(·k·) and JSD(·k·) are the KL and Jensen-Shannon Divergences, respectively.

We provide the proof in the supplement materials. Eq.(7) offers several insights into the generator
learning in GANs.
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• Lemma 1

• Missing mode phenomena of GANs
• Asymmetry of KLD

• Concentrates !" # $ = 0 to large modes 
of '( # $
⇒ !*+ # misses modes of !,-.-(#)

• Symmetry of JSD
• Does not affect the behavior of mode 

missing

Figure 2: One optimization step of the parameter ✓ through Eq.(7) at point ✓0. The posterior
q

r
(x|y) is a mixture of p✓0(x|y = 0) (blue) and p✓0(x|y = 1) (red in the left panel) with the

mixing weights induced from q

r
�0
(y|x). Minimizing the KL divergence of Eq.(7) w.r.t ✓ drives

p✓(x|y = 0) towards the respective mixture q

r
(x|y = 0) (green), resulting in a new state where

p✓new
(x|y = 0) = p

new
g (x) gets closer to p✓0(x|y = 1) = pdata(x). Due to the asymmetry of

KL divergence, pnewg (x) missed the smaller mode of the mixture q

r
(x|y = 0) which is a mode of

pdata(x).

where the prior p(y) is uniform as is widely set, resulting in the constant scale factor 1/2. Note that
here the generator is trained using the unsaturated objective [16] which is commonly used in practice.
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We now take a closer look at the form of Eq.(3) which is essentially reconstructing the real/fake
indicator y (or its reverse 1� y) conditioned on x. Further, for each optimization step of p✓(x|y) at
point (✓0,�0) in the parameter space, we have

Lemma 1 Let p(y) be the uniform distribution. Let p✓0(x) = Ep(y)[p✓0(x|y)], and q
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(7)

where KL(·k·) and JSD(·k·) are the KL and Jensen-Shannon Divergences, respectively.

We provide the proof in the supplement materials. Eq.(7) offers several insights into the generator
learning in GANs.

• Resemblance to variational inference. If we treat y as visible and x as latent (as in ADA), it is
straightforward to see the connections to the variational inference algorithm where q

r
(x|y) plays

the role of the posterior, p✓0(x) the prior, and p✓(x|y) the variational distribution that approximates
the posterior. Optimizing the generator G✓ is equivalent to minimizing the KL divergence between
the variational distribution and the posterior, minus a JSD between the distributions pg✓ (x) and
pdata(x). The Bayesian interpretation further reveals the connections to VAEs, as we discuss in
the next section.

• Training dynamics. By definition, p✓0(x) = (pg✓0
(x)+pdata(x))/2 is a mixture of pg✓0 (x) and

pdata(x) with uniform mixing weights, and the “posterior” qr(x|y) smooths p✓0(x) by combining
the uncertainty of discriminator qr�0

(y|x). Thus, minimizing the KL divergence between p✓(x|y)
and q

r
(x|y) in effect drives pg✓ (x) (i.e., p✓(x|y = 0)) to a mixture of pg✓0 (x) and pdata(x).

Since pdata(x) is fixed, pg✓ (x) gets closer to pdata(x). Figure 2 illustrates the training dynamics
schematically.

• Reasons of the missing mode issue. The negative JSD term is due to the introduction of the
“prior” p✓0(x) at current point ✓0. As JSD is symmetric, the missing mode phenomena widely
observed in GAN generator [37, 6] is explained by the asymmetry of the KL divergence which
tends to concentrate p✓(x|y) to large modes of qr(x|y) and ignore smaller ones. See Figure 2 for
the example.
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• Lemma 1: The updates of ! at !" have

•No assumption on optimal discriminator #$% " & '
• Previous results usually rely on (near) optimal discriminator
• #∗ & = 1 ' = +,-.- ' /(+,-.- ' + +2('))

• Optimality assumption is impractical: limited expressiveness of 4$ [Arora et al 
2017]
• Our result is a generalization of the previous theorem [Arjovsky & Bottou 2017]

• Plug the optimal discriminator into the above equation, we recover the theorem

• Give insights on the generator training when discriminator is optimal

Figure 2: One optimization step of the parameter ✓ through Eq.(7) at point ✓0. The posterior
q
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(x|y) is a mixture of p✓0(x|y = 0) (blue) and p✓0(x|y = 1) (red in the left panel) with the

mixing weights induced from q
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(y|x). Minimizing the KL divergence of Eq.(7) w.r.t ✓ drives

p✓(x|y = 0) towards the respective mixture q
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(x|y = 0) (green), resulting in a new state where

p✓new
(x|y = 0) = p

new
g (x) gets closer to p✓0(x|y = 1) = pdata(x). Due to the asymmetry of
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pdata(x).

where the prior p(y) is uniform as is widely set, resulting in the constant scale factor 1/2. Note that
here the generator is trained using the unsaturated objective [16] which is commonly used in practice.
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indicator y (or its reverse 1� y) conditioned on x. Further, for each optimization step of p✓(x|y) at
point (✓0,�0) in the parameter space, we have
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where KL(·k·) and JSD(·k·) are the KL and Jensen-Shannon Divergences, respectively.

We provide the proof in the supplement materials. Eq.(7) offers several insights into the generator
learning in GANs.

• Resemblance to variational inference. If we treat y as visible and x as latent (as in ADA), it is
straightforward to see the connections to the variational inference algorithm where q
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(x|y) plays

the role of the posterior, p✓0(x) the prior, and p✓(x|y) the variational distribution that approximates
the posterior. Optimizing the generator G✓ is equivalent to minimizing the KL divergence between
the variational distribution and the posterior, minus a JSD between the distributions pg✓ (x) and
pdata(x). The Bayesian interpretation further reveals the connections to VAEs, as we discuss in
the next section.

• Training dynamics. By definition, p✓0(x) = (pg✓0
(x)+pdata(x))/2 is a mixture of pg✓0 (x) and

pdata(x) with uniform mixing weights, and the “posterior” qr(x|y) smooths p✓0(x) by combining
the uncertainty of discriminator qr�0

(y|x). Thus, minimizing the KL divergence between p✓(x|y)
and q
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(x|y) in effect drives pg✓ (x) (i.e., p✓(x|y = 0)) to a mixture of pg✓0 (x) and pdata(x).

Since pdata(x) is fixed, pg✓ (x) gets closer to pdata(x). Figure 2 illustrates the training dynamics
schematically.

• Reasons of the missing mode issue. The negative JSD term is due to the introduction of the
“prior” p✓0(x) at current point ✓0. As JSD is symmetric, the missing mode phenomena widely
observed in GAN generator [37, 6] is explained by the asymmetry of the KL divergence which
tends to concentrate p✓(x|y) to large modes of qr(x|y) and ignore smaller ones. See Figure 2 for
the example.
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Figure 3: (a) Graphical model of InfoGAN (Eq.9), which, compared to GANs (Figure 1(c)), adds
conditional generation of code z with distribution q⌘(z|x, y). See the captions of Figure 1 for the
meaning of different types of arrows. (b) VAEs (Eq.12), which is obtained by swapping the generation
and inference processes of InfoGAN, i.e., in terms of the graphical model, swapping solid-line arrows
(generative process) and dashed-line arrows (inference) of (a). (c) Adversarial Autoencoder (AAE),
which is obtained by swapping data x and code z in InfoGAN (see the supplements for more details).

generalization of the previous theorem [1]: plugging Eq.(7) into Eq.(6) we obtain

r✓

h
� Ep✓(x|y)p(y)

⇥
log qr�0

(y|x)
⇤ i���

✓=✓0

= r✓


1

2

KL (pg✓kpdata)� JSD (pg✓kpdata)
� ���

✓=✓0

, (8)

which gives simplified explanations of the training dynamics and the missing mode issue only when
the discriminator meets certain optimality criteria. Our generalized result enables understanding
of broader situations. For instance, when the discriminator distribution q�0(y|x) gives uniform
guesses, or when pg✓ = pdata that is indistinguishable by the discriminator, the gradients of the
KL and JSD terms in Eq.(6) cancel out, which stops the generator learning.

InfoGAN Chen et al. [8] developed InfoGAN for disentangled representation learning which
additionally recovers (part of) the latent code z given example x. This can be straightforwardly
formulated in our framework by introducing an extra conditional q⌘(z|x, y) parameterized by ⌘. As
discussed above, GANs assume a degenerated code space for real examples, thus q⌘(z|x, y = 1)

is fixed without free parameters to learn, and ⌘ is only associated to y = 0. The InfoGAN is then
recovered by combining q⌘(z|x, y) with q(y|x) in Eq.(3) to perform full reconstruction of both z

and y:
max

�

L� = Ep✓(x|y)p(y) [log q⌘(z|x, y)q�(y|x)]
max

✓,⌘ L✓,⌘ = Ep✓(x|y)p(y)
⇥
log q⌘(z|x, y)qr�(y|x)

⇤
,

(9)

where the ground-truth z to reconstruct is sampled from the prior p(z|y) and encapsulated in the
implicit distribution p✓(x|y). The model is expressed as graphical model in Figure 3(a). Let
q

r
(x|z, y) / q⌘0(z|x, y)qr�0

(y|x)p✓0(x), the result in the form of Eq.(6) still holds by replacing
q

r
�0
(y|x) with q⌘0(z|x, y)qr�0

(y|x), and q

r
(x|y) with q

r
(x|z, y):

Ep(y)

⇥
r✓Ep✓(x|y)

⇥
log q⌘0(z|x, y)qr�0

(y|x)
⇤
|
✓=✓0

⇤
=

� Ep(y) [r✓KL (p✓(x|y)kqr(x|z, y))� JSD (p✓(x|y = 0)kp✓(x|y = 1)) |
✓=✓0 ] ,

(10)

AAE/PM/CycleGAN As a side result, the idea of interpreting data space x as latent immediately
discovers relations between InfoGAN with Adversarial Autoencoder (AAE) [35] and Predictability
Minimization (PM) [50]. That is, InfoGAN is precisely an AAE that treats the data space x as
latent and to be adversarially regularized while the code space z as visible. Figure 3(c) shows the
graphical model of AAE obtained by simply swapping x and z in InfoGAN. We defer the detailed
formulations of AAE to the supplementary materials. Further, instead of considering x and z as data
and code spaces respectively, if we instantiate x and z as data spaces of two modalities, and combine
the objectives of InfoGAN and AAE as a joint model, we recover the cycleGAN model [56] which
performs transformation between the two modalities. More details are provided in the supplements.

3.3 Variational Autoencoders (VAEs)

We next explore the second family of deep generative model learning algorithms. The resemblance of
GAN generator learning to variational inference as shown in Eq.(6) suggests strong relations between
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In summary:
•Reveal connection to variational inference
• Build connections to VAEs (slides soon)
• Inspire new model variants based on the connections

•Offer insights into the generator training
• Formal explanation of the missing mode behavior of GANs
• Still hold when the discriminator does not achieve its optimum at each 

iteration



GANs vs InfoGAN

mixed distribution mixture of pg(x) and pdata(x). Since pdata(x) is fixed, pg(x) gets close to
pdata(x).

• The negative JSD term is due to the extra prior regularization [Eric: what does prior regulariza-
tion mean?] in the KL divergence. As JSD is symmetric, the missing mode phenomena widely
observed in GAN generator [34, 5] is explained by the asymmetry of the KL divergence which
tends to concentrate p✓(x|y) to large modes of qr(x|y) and ignore smaller ones.

Arjovsky and Bottou [1] derive a similar result of minimizing the KL divergence between pg(x) and
pdata(x). Our result does not rely on assumptions of (near) optimal discriminator, thus is more close
to the practice [2]. Indeed, when the discriminator distribution q�0(y|x) gives uniform guesses, the
gradients of the KL and JSD terms in Eq.(4) cancel out, disabling the learning of generator. Moreover,
the Bayesian interpretation [Eric: In earlier explanations, you never say it was a "Bayesian
interpretation", and now you suddenly say it was. Please claim Bayesian interpretation
earlier where you provided some interpretation.] of our result enables us to discover connections
to VAEs, as we discuss in the next section.

InfoGAN Chen et al. [6] developed InfoGAN for disentangled representation learning which
additionally recovers (part of) the latent code z given example x. This can be straightforwardly
formulated in our framework by introducing an extra conditional q⌘(z|x, y) parameterized by ⌘. As
discussed above, GANs assume a degenerated code space for real examples, thus q⌘(z|x, y = 1)

is fixed without free parameters to learn, and ⌘ is only associated to y = 0. The InfoGAN is then
recovered by combining q⌘(z|x, y) with q(y|x) in Eq.(1) to perform full reconstruction of both z

and y:
max

�

L� = Ep✓(x|y)p(y) [log q⌘(z|x, y)q�(y|x)]
max

✓,⌘ L✓,⌘ = Ep✓(x|y)p(y)
⇥
log q⌘(z|x, y)qr�(y|x)

⇤
,

(5)

where the ground-truth z to reconstruct is sampled from the prior p(z|y) and encapsulated in the
implicit distribution p✓(x|y). Let qr(x|z, y) / q⌘0(z|x, y)qr�0

(y|x)p✓0(x), the result in the form of
Eq.(4) still holds by replacing q

r
�0
(y|x) with q⌘0(z|x, y)qr�0

(y|x), and q

r
(x|y) with q

r
(x|z, y):

Ep(y)

⇥
r✓Ep✓(x|y)

⇥
log q⌘0(z|x, y)qr�0

(y|x)
⇤
|
✓=✓0

⇤
=

� Ep(y) [r✓KL (p✓(x|y)kqr(x|z, y))� JSD (p✓(x|y = 0)kp✓(x|y = 1)) |
✓=✓0 ] ,

(6)

As a side result, the idea of interpreting x as latent variables immediately discovers relations between
InfoGAN with Adversarial Autoencoder (AAE) [32] and Predictability Minimization [46]. That
is, InfoGAN is precisely an AAE which treats x as latents and z as visibles. [Eric: I feel such
swapping of latent and visible can be best illustrated in a graphical model alongside with the
GM for AAE.]

3.3 Variational Autoencoders (VAEs)

We next explore the second class [Eric: "second class" sounds bad, how about say "another
family" or "second family"?] of deep generative model learning algorithms. The resemblance of
GAN generator learning to variational inference as shown in Eq.(4) suggests strong relations between
VAEs [25] and GANs. We build correspondence between the two approaches, and show that VAEs
are basically minimizing a KL divergence with an opposite direction, with a degenerated adversarial
discriminator.

The conventional definition of VAEs is written as:

max

✓,⌘ Lvae
✓,⌘ = Epdata(x)

⇥
Eq̃⌘(z|x) [log p̃✓(x|z)]� KL(q̃⌘(z|x)kp̃(z))

⇤
, (7)

where p̃✓(x|z) is the generator, q̃⌘(z|x) the inference network, and p̃(z) the prior over z. The
parameters to learn are intentionally denoted with the notations of corresponding modules in GANs.
At first glance, VAEs appear to differ from GANs greatly as they use only real examples and lack
adversarial mechanism. However, our interpretation shows VAEs indeed include a degenerated
adversarial discriminator that blocks out generated samples from contributing to training.

Specifically, we again introduce the real/fake variable y, and assume a perfect discriminator q⇤(y|x)
which always predicts y = 1 with probability 1 given real examples, and y = 0 given generated
samples. Again, for notational simplicity, let qr⇤(y|x) = q⇤(1� y|x) be the reversed distribution.
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ADA GANs VAEs

x features data/generations data/generations
y domain indicator real/fake indicator (degenerated) real/fake indicator
z data examples code vector code vector
p✓(x|y) feature distr. generation distr., Eq.2 p✓(x|z, y), generation distr., Eq.9
q�(y|x) discriminator discriminator q⇤(y|x), degenerated discriminator
p⌘(z|x, y) — infer net (InfoGAN) infer net
p✓0(x) = Ep(y)[p✓0(x|y)] — prior of x prior of x

Table 1: Correspondence between different approaches in the proposed formulation.

[Eric: There should be a quick description of the wake-sleep algorithm here to start the
section.] In GANs, the generative model is trained by passing generated samples to a discriminator
and minimizing the resulting error evaluated by the discriminator. Intuitively, the reliance on fake
samples for learning resembles the sleep phase in the wake-sleep algorithm. In contrast, VAEs train
the generative model by reconstructing observed real examples, sharing similarity to the wake phase.
This section formally explores these connections.

For ease of presentation and to establish a systematic notation for the paper, we start with a new
interpretation of Adversarial Domain Adaptation (ADA) [Eric: please add the earliest citation
for this name?] within our proposed formulation. We then show that GANs are a special case of
ADA with a degenerated source domain, and reveal close relations to VAEs and wake-sleep algorithm
through KL divergence interpretation of the objectives. Table 1 lists the correspondence of each
components in these approaches.

3.1 Adversarial Domain Adaptation (ADA)

ADA aims to transfer prediction knowledge learned from a source domain with labeled data to a
target domain without labels, by learning domain-invariant features [13, 42, 43, 7]. That is, it learns a
feature extractor whose output cannot be distinguished by a discriminator between the source and
target domains.

We frame our new interpretation of ADA, and review conventional formulations in the supplementary
materials. To make clear notational correspondence to other models in the sequel, [Eric: Please add
a figure drawing a graphical model here for ADA.] let z be a data example either in the source
or target domain, and y 2 {0, 1} be the domain indicator with y = 0 indicating the target domain
and y = 1 the source domain. The data distributions conditioning on the domain are then denoted
as p(z|y). Let p(y) be the prior distribution (e.g., uniform) of the domain indicator. The feature
extractor maps z to representations x = G✓(z) with parameters ✓. The data distributions over z and
deterministic transformation G✓ together form an implicit distribution over x, denoted as p✓(x|y),
which is intractable to evaluate likelihood but easy to sample from:

To enforce domain invariance of feature x, a discriminator is trained to adversarially distinguish
between the two domains, which defines a conditional distribution q�(y|x) with parameters �, and
the feature extractor is optimized to fool the discriminator. Let qr�(y|x) = q�(1�y|x) be the reversed
distribution over domains. The objectives of ADA are therefore given as:

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y)
⇥
log q

r
�(y|x)

⇤
,

(1)

where we omit the additional loss of ✓ to fit to the data label pairs of source domain (see supplements
for more details). In conventional view, the first equation minimizes the discriminator binary cross
entropy with respect to discriminative parameter �, while the second trains the feature extractor
to maximize the cross entropy with respect to the transformation parameter ✓. [Eric: I think for
self-containedness, it would be better to explain both of the cross-entropy notion above.]
Alternatively, we can interpret the objectives as optimizing the reconstruction of the domain variable
y conditioned on feature x. [Eric: I can not understand this point.] We explore this perspective
more in the next section. Note that the only (but critical) difference between the objective of ✓ from
� is the replacement of q(y|x) with q

r
(y|x). This is where the adversarial mechanism comes about.
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Relates VAEs with GANs

• Resemblance of GAN generator learning to variational inference
• Suggest strong relations between VAEs and GANs

• Indeed, VAEs are basically minimizing KLD with an opposite direction, 
and with a degenerated adversarial discriminator

Figure 3: (a) Graphical model of InfoGAN (Eq.10), which, compared to GANs (Figure 1(c)), adds
conditional generation of code z with distribution q⌘(z|x, y). See the captions of Figure 1 for the
meaning of different types of arrows. (b) VAEs (Eq.13), which is obtained by swapping the generation
and inference processes of InfoGAN, i.e., in terms of the graphical model, swapping solid-line arrows
(generative process) and dashed-line arrows (inference) of (a). (c) Adversarial Autoencoder (AAE),
which is obtained by swapping data x and code z in InfoGAN (see the supplements for more details).

latent and to be adversarially regularized while the code space z as visible. Figure 3(c) shows the
graphical model of AAE obtained by simply swapping x and z in InfoGAN. We defer the detailed
formulations of AAE to the supplementary materials. Further, instead of considering x and z as data
and code spaces respectively, if we instantiate x and z as data spaces of two modalities, and combine
the objectives of InfoGAN and AAE as a joint model, we recover the cycleGAN model [56] which
performs transformation between the two modalities. More details are provided in the supplements.

3.3 Variational Autoencoders (VAEs)

We next explore the second family of deep generative model learning algorithms. The resemblance of
GAN generator learning to variational inference as shown in Eq.(7) suggests strong relations between
VAEs [28] and GANs. We build correspondence between the two approaches, and show that VAEs
are basically minimizing a KL divergence in an opposite direction, with a degenerated adversarial
discriminator.

max

✓,⌘ Lvae
✓,⌘ = Eq⌘(z|x)pdata(x) [log p✓(x|z)]�Epdata(x) [KL(q⌘(z|x)kp(z))]

The conventional definition of VAEs is written as:

max

✓,⌘ Lvae
✓,⌘ = Epdata(x)

⇥
Eq̃⌘(z|x) [log p̃✓(x|z)]� KL(q̃⌘(z|x)kp̃(z))

⇤
, (12)

where p̃✓(x|z) is the generator, q̃⌘(z|x) the inference model, and p̃(z) the prior over z. The
parameters to learn are intentionally denoted with the notations of corresponding modules in GANs.
At first glance, VAEs appear to differ from GANs greatly as they use only real examples and lack
adversarial mechanism. However, our interpretation shows VAEs indeed include a degenerated
adversarial discriminator that blocks out generated samples from contributing to training.

Specifically, we again introduce the real/fake variable y. Further assume a perfect discriminator
q⇤(y|x) which always predicts y = 1 with probability 1 given real examples, and y = 0 given
generated samples. Again, for notational simplicity, let qr⇤(y|x) = q⇤(1 � y|x) be the reversed
distribution.

Lemma 2 Let p✓(z, y|x) / p✓(x|z, y)p(z|y)p(y). Therefore,

Lvae

✓,⌘ = 2 · Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))

⇤

= 2 · Ep✓0 (x)
[�KL (q⌘(z|x, y)qr⇤(y|x)kp✓(z, y|x))] .

(13)

Here most of the components have exact correspondences (and the same definitions) in GANs and
InfoGAN, except that the generation distribution p✓(x|z, y) differs slightly from its counterpart
p✓(x|y) in Eq.(5) to additionally account for the uncertainty of generating x given z:

p✓(x|z, y) =
⇢
p✓(x|z) y = 0

pdata(x) y = 1.

(14)
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Lemma 2. Let p✓(z, y|x) / p✓(x|z, y)p(z|y)p(y). Therefore,

Lvae

✓,⌘ = 2 · Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))

⇤

= 2 · Ep✓0 (x)
[�KL (q⌘(z|x, y)qr⇤(y|x)kp✓(z, y|x))] .

(8)

Here most of the components have exact correspondences (and the same definitions) in GANs
and InfoGAN (Table 1), except that the generation distribution p✓(x|z, y) differs slightly from its
counterpart p✓(x|y) in Eq.(2) to additionally account for the uncertainty of generating x given z:

p✓(x|z, y) =
⇢
p✓(x|z) y = 0

pdata(x) y = 1.

(9)

The resulting KL divergence closely relates to that in GANs (Eq.4) and InfoGAN (Eq.6), with
the generative module p✓(x|z, y) and inference networks q⌘(z|x, y)qr(y|x) placed in the opposite
directions, and with inverted hidden/visible treatments of (z, y) and x. In section 6, we give a general
discussion that the difference between GANs and VAEs in hidden/visible treatments is relatively
minor.

The proof is provided in the supplementary materials. Intuitively, recall that for the real example
domain with y = 1, both q⌘(z|x, y = 1) and p✓(x|z, y = 1) are constant distributions. Therefore,
with fake sample x generated from p✓0(x), the reversed perfect discriminator qr⇤(y|x) always gives
prediction y = 1, making the reconstruction loss on fake samples degenerated to a constant. Hence
only real examples, where q

r
⇤ predicts y = 0 with probability 1, are effective for learning, which is

identical to Eq.(7). We extend VAEs to also leverage fake samples in section 4.

VAE/GAN Joint Models Previous work has explored combination of VAEs and GANs for im-
proved generation. This can be naturally motivated by the asymmetric behaviors of the KL divergences
that the two algorithms aim to optimize respectively. Specifically, the VAE/GAN model [29] that
improves the sharpness of VAE generated images can be alternatively motivated by remedying the
mode covering behavior of the KL in VAEs. That is, the KL tends to drive the generative model
to cover all modes of the data distribution as well as regions with small values of pdata, resulting
in implausible samples. Incorporation of GAN objectives alleviates the issue as the inverted KL
enforces the generator to focus on meaningful data modes. From the other perspective, augmenting
GANs with VAE objectives helps addressing the mode missing problem, which justifies the intuition
of [5].

3.4 Wake Sleep Algorithm (WS)

We next discuss the connections of GANs and VAEs to the classic wake-sleep algorithm [18] which
was proposed for learning deep generative models such as Helmholtz machines [9]. WS consists of
wake phase and sleep phase, which optimize the generative network and inference network [Eric:
you have been using "model" and "network" interchangeably earlier, please stay consistent,
maybe just call both "model".], respectively. We follow the above notations, and introduce new
notations h to denote general latents [Eric: what do you mean by "latents", latent variables?]
and � for general parameters. The wake-sleep algorithm is thus written as:

Wake : max

✓

Eq�(h|x)pdata(x) [log p✓(x|h)]
Sleep : max

�

Ep✓(x|h)p(h) [log q�(h|x)]
(10)

The relations between VAEs and WS are clear in previous discussions [3, 25]. Indeed, WS was
originally proposed to minimize the variational lower bound as in VAEs (Eq.7) with sleep phase
approximation [18]. Alternatively, VAEs can be seen as extending the wake phase. Specifically, if
we instantiate h with z and � with ⌘, the wake phase objective recovers VAEs (Eq.7) in terms of
generator optimization (i.e., optimizing ✓). Therefore, we can see VAEs as generalizing the wake
phase by also optimizing the inference network q⌘ , with additional prior regularization on latents z.

On the other hand, our interpretation of GANs reveals close resemblance to the sleep phase. To
make this clearer, we instantiate h with y and � with �, resulting in a sleep phase objective identical
to that of optimizing the discriminator q� in Eq.(1), which is to reconstruct y given sample x. We
thus can view GANs as generalizing the sleep phase by also optimizing the generative network p✓
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maximize the binary classification accuracy of recognizing the feature domains:

max

�

L� = E
x=G✓(z),z⇠p(z|y=1) [logD�(x)] + E

x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] . (1)

The feature extractor G✓ is then trained to fool the discriminator:

max

✓

L✓ = E
x=G✓(z),z⇠p(z|y=1) [log(1�D�(x))] + E

x=G✓(z),z⇠p(z|y=0) [logD�(x)] . (2)

Here we omit the additional loss on ✓ that fits the features to the data label pairs of source domain
(see the supplementary materials for the details).

With the background of the conventional formulation, we now frame our new interpretation of ADA.
The data distribution p(z|y) and deterministic transformation G✓ together form an implicit distribution
over x, denoted as p✓(x|y), which is intractable to evaluate likelihood but easy to sample from. Let
p(y) be the prior distribution of the domain indicator y, e.g., a uniform distribution as in Eqs.(1)-(2).
The discriminator defines a conditional distribution q�(y|x) = D�(x). Let qr�(y|x) = q�(1� y|x)
be the reversed distribution over domains. The objectives of ADA are therefore rewritten as (up to a
constant scale factor 2):

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y)
⇥
log q

r
�(y|x)

⇤
.

(3)

The above objectives can be interpreted as maximizing the log likelihood of y (or 1 � y) with the
“generative distribution” q�(y|x) conditioning on the latent code x inferred by p✓(x|y). Note that the
only (but critical) difference of the objectives of ✓ from � is the replacement of q(y|x) with q

r
(y|x).

This is where the adversarial mechanism comes about.

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y) [log q�(y|x)] .
(4)

Graphical model representation Figure 1(c) illustrates the graphical model of the formulation
in Eq.(4), where, in the new view, solid-line arrows denote the generative process while dashed-
line arrows denote the inference process. We introduce new visual elements, e.g., hollow arrows
for expressing implicit distributions, and blue arrows for adversarial mechanism. As noted above,
adversarial modeling is achieved by swapping between q(y|x) and q

r
(y|x) when training respective

modules.

3.2 Generative Adversarial Networks (GANs)

GANs [16] can be seen as a special case of ADA. Taking image generation for example, intuitively,
we want to transfer the properties of the source domain (real images) to the target domain (generated
images), making them indistinguishable to the discriminator. Figure 1(b) shows the conventional
view of GANs.

Formally, x now denotes a real example or a generated sample, z is the respective latent code. For
the generated sample domain (y = 0), the implicit distribution p✓(x|y = 0) is defined by the prior of
z and the generator G✓(z), which is also denoted as pg✓ (x) in the literature. For the real example
domain (y = 1), the code space and generator are degenerated, and we are directly presented with a
fixed distribution p(x|y = 1), which is just the real data distribution pdata(x). Note that pdata(x) is
also an implicit distribution allowing efficient empirical sampling. In summary, the distribution over
x is constructed as

p✓(x|y) =
⇢
pg✓ (x) y = 0

pdata(x) y = 1.

(5)

Here, free parameters ✓ are only associated with pg✓ (x) of the generated sample domain, while
pdata(x) is constant. As in ADA, discriminator D� is simultaneously trained to infer the probability
that x comes from the real data domain. That is, q�(y = 1|x) = D�(x).

With the established correspondence between GANs and ADA, we can see that the objectives of
GANs are precisely expressed as Eq.(4) and as the graphical model in Figure 1(c). To make this

4



• Asymmetry of KLDs inspires combination of GANs and VAEs
• GANs: min$KL(($||*) tends to missing mode
• VAEs: min$KL(*||($) tends to cover regions with small values of ,-./.
• Augment VAEs with GAN loss [Larsen et al., 2016]

• Alleviate the mode covering issue of VAEs
• Improve the sharpness of VAE generated images

• Augment GANs with VAE loss [Che et al., 2017]
• the mode missing issue
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10.1. Variational Inference 469

(a) (b) (c)

Figure 10.3 Another comparison of the two alternative forms for the Kullback-Leibler divergence. (a) The blue
contours show a bimodal distribution p(Z) given by a mixture of two Gaussians, and the red contours correspond
to the single Gaussian distribution q(Z) that best approximates p(Z) in the sense of minimizing the Kullback-
Leibler divergence KL(p∥q). (b) As in (a) but now the red contours correspond to a Gaussian distribution q(Z)
found by numerical minimization of the Kullback-Leibler divergence KL(q∥p). (c) As in (b) but showing a different
local minimum of the Kullback-Leibler divergence.

from regions of Z space in which p(Z) is near zero unless q(Z) is also close to
zero. Thus minimizing this form of KL divergence leads to distributions q(Z) that
avoid regions in which p(Z) is small. Conversely, the Kullback-Leibler divergence
KL(p∥q) is minimized by distributions q(Z) that are nonzero in regions where p(Z)
is nonzero.

We can gain further insight into the different behaviour of the two KL diver-
gences if we consider approximating a multimodal distribution by a unimodal one,
as illustrated in Figure 10.3. In practical applications, the true posterior distri-
bution will often be multimodal, with most of the posterior mass concentrated in
some number of relatively small regions of parameter space. These multiple modes
may arise through nonidentifiability in the latent space or through complex nonlin-
ear dependence on the parameters. Both types of multimodality were encountered in
Chapter 9 in the context of Gaussian mixtures, where they manifested themselves as
multiple maxima in the likelihood function, and a variational treatment based on the
minimization of KL(q∥p) will tend to find one of these modes. By contrast, if we
were to minimize KL(p∥q), the resulting approximations would average across all
of the modes and, in the context of the mixture model, would lead to poor predictive
distributions (because the average of two good parameter values is typically itself
not a good parameter value). It is possible to make use of KL(p∥q) to define a useful
inference procedure, but this requires a rather different approach to the one discussed
here, and will be considered in detail when we discuss expectation propagation.Section 10.7

The two forms of Kullback-Leibler divergence are members of the alpha family

Mode covering Mode missing[Figure courtesy: PRML]



• Asymmetry of KLDs inspires combination of GANs and VAEs
• GANs: min$KL(($||*) tends to missing mode
• VAEs: min$KL(*||($) tends to cover regions with small values of ,-./.
• Augment VAEs with GAN loss [Larsen et al., 2016]

• Alleviate the mode covering issue of VAEs
• Improve the sharpness of VAE generated images

• Augment GANs with VAE loss [Che et al., 2017]
• Alleviate the mode missing issue of GAN

Mutual exchanges of ideas: augment the loss
GANs (InfoGAN) VAEs
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• Activate the adversarial mechanism in VAEs
• Enable adaptive incorporation of fake samples for learning
• Straightforward derivation by making symbolic analog to GANs

Mutual exchanges of ideas: augment the model
GANs (InfoGAN) VAEs

Discriminator 
distribution !"($|&) !∗($|&), perfect, degenerated

Figure 3: (a) Graphical model of InfoGAN (Eq.10), which, compared to GANs (Figure 1(c)), adds
conditional generation of code z with distribution q⌘(z|x, y). See the captions of Figure 1 for the
meaning of different types of arrows. (b) VAEs (Eq.13), which is obtained by swapping the generation
and inference processes of InfoGAN, i.e., in terms of the graphical model, swapping solid-line arrows
(generative process) and dashed-line arrows (inference) of (a). (c) Adversarial Autoencoder (AAE),
which is obtained by swapping data x and code z in InfoGAN (see the supplements for more details).

latent and to be adversarially regularized while the code space z as visible. Figure 3(c) shows the
graphical model of AAE obtained by simply swapping x and z in InfoGAN. We defer the detailed
formulations of AAE to the supplementary materials. Further, instead of considering x and z as data
and code spaces respectively, if we instantiate x and z as data spaces of two modalities, and combine
the objectives of InfoGAN and AAE as a joint model, we recover the cycleGAN model [56] which
performs transformation between the two modalities. More details are provided in the supplements.

3.3 Variational Autoencoders (VAEs)

We next explore the second family of deep generative model learning algorithms. The resemblance of
GAN generator learning to variational inference as shown in Eq.(7) suggests strong relations between
VAEs [28] and GANs. We build correspondence between the two approaches, and show that VAEs
are basically minimizing a KL divergence in an opposite direction, with a degenerated adversarial
discriminator.

max

✓,⌘ Lvae
✓,⌘ = Eq⌘(z|x)pdata(x) [log p✓(x|z)]�Epdata(x) [KL(q⌘(z|x)kp(z))]

The conventional definition of VAEs is written as:

max

✓,⌘ Lvae
✓,⌘ = Epdata(x)

⇥
Eq̃⌘(z|x) [log p̃✓(x|z)]� KL(q̃⌘(z|x)kp̃(z))

⇤
, (12)

where p̃✓(x|z) is the generator, q̃⌘(z|x) the inference model, and p̃(z) the prior over z. The
parameters to learn are intentionally denoted with the notations of corresponding modules in GANs.
At first glance, VAEs appear to differ from GANs greatly as they use only real examples and lack
adversarial mechanism. However, our interpretation shows VAEs indeed include a degenerated
adversarial discriminator that blocks out generated samples from contributing to training.

Specifically, we again introduce the real/fake variable y. Further assume a perfect discriminator
q⇤(y|x) which always predicts y = 1 with probability 1 given real examples, and y = 0 given
generated samples. Again, for notational simplicity, let qr⇤(y|x) = q⇤(1 � y|x) be the reversed
distribution.

Lemma 2 Let p✓(z, y|x) / p✓(x|z, y)p(z|y)p(y). Therefore,

Lvae

✓,⌘ = 2 · Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))

⇤

= 2 · Ep✓0 (x)
[�KL (q⌘(z|x, y)qr⇤(y|x)kp✓(z, y|x))] .

(13)

Here most of the components have exact correspondences (and the same definitions) in GANs and
InfoGAN, except that the generation distribution p✓(x|z, y) differs slightly from its counterpart
p✓(x|y) in Eq.(5) to additionally account for the uncertainty of generating x given z:

p✓(x|z, y) =
⇢
p✓(x|z) y = 0

pdata(x) y = 1.

(14)
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Adversary Activated VAEs (AAVAE)

•Vanilla VAEs:

•Replace !∗($|&) with learnable one !(($|&) with parameters )
• As usual, denote reversed distribution !(* $ + = !( $ +

a general discussion that the difference between GANs and VAEs in latent/visible treatments is
relatively minor.

max

✓,⌘ Lvae
✓,⌘ = Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))

⇤

The proof of Lemma 2 is provided in the supplementary materials. Intuitively, recall that for the
real example domain with y = 1, both q⌘(z|x, y = 1) and p✓(x|z, y = 1) are constant distributions.
Therefore, with fake sample x generated from p✓0(x), the reversed perfect discriminator qr⇤(y|x)
always gives prediction y = 1, making the reconstruction loss on fake samples degenerated to a
constant. Hence only real examples, where q

r
⇤ predicts y = 0 with probability 1, are effective for

learning, which is identical to Eq.(12). We extend VAEs to also leverage fake samples in section 4.

VAE/GAN Joint Models Previous works have explored combination of VAEs and GANs. This can
be naturally motivated by the asymmetric behaviors of the KL divergences that the two algorithms
aim to optimize respectively. Specifically, the VAE/GAN model [32] that improves the sharpness of
VAE generated images can be alternatively motivated by remedying the mode covering behavior of
the KL in VAEs. That is, the KL tends to drive the generative model to cover all modes of the data
distribution as well as regions with small values of pdata, resulting in blurred, implausible samples.
Incorporation of GAN objectives alleviates the issue as the inverted KL enforces the generator to
focus on meaningful data modes. From the other perspective, augmenting GANs with VAE objectives
helps addressing the mode missing problem, which justifies the intuition of [6].

3.4 Wake Sleep Algorithm (WS)

We next discuss the connections of GANs and VAEs to the classic wake-sleep algorithm [21] which
was proposed for learning deep generative models such as Helmholtz machines [11]. WS consists of
wake phase and sleep phase, which optimize the generative model and inference model, respectively.
We follow the above notations, and introduce new notations h to denote general latent variables and
� for general parameters. The wake-sleep algorithm is thus written as:

Wake : max

✓

Eq�(h|x)pdata(x) [log p✓(x|h)]
Sleep : max

�

Ep✓(x|h)p(h) [log q�(h|x)] .
(15)

The wake phase updates the generator parameters ✓ by fitting p✓(x|h) to the real data and hidden
code inferred by the inference model q�(h|x). On the other hand, the sleep phase updates the
parameters � based on the generated samples from the generator.

The relations between WS and VAEs are clear in previous discussions [4, 28]. Indeed, WS was
originally proposed to minimize the variational lower bound as in VAEs (Eq.12) with sleep phase
approximation [21]. Alternatively, VAEs can be seen as extending the wake phase. Specifically, if
we instantiate h with z and � with ⌘, the wake phase objective recovers VAEs (Eq.12) in terms of
generator optimization (i.e., optimizing ✓). Therefore, we can see VAEs as generalizing the wake
phase by also optimizing the inference model q⌘ , with additional prior regularization on code z.

On the other hand, our interpretation of GANs reveals close resemblance to the sleep phase. To make
this clearer, we instantiate h with y and � with �, resulting in a sleep phase objective identical to that
of optimizing the discriminator q� in Eq.(4), which is to reconstruct y given sample x. We thus can
view GANs as generalizing the sleep phase by also optimizing the generative model p✓ to reconstruct
reversed y. InfoGAN (Eq.10) further extends the correspondence to reconstruction of latents z.

3.5 Summary

We have established close relations between ADA, GANs, VAEs, WS, and many model variants
through the proposed formulations. Table 1 summarizes the correspondence of each components
in the approaches. In particular, the symmetry of GANs and VAEs in terms of minimizing KL
divergences in opposite directions strongly relates to the symmetry of the sleep and wake phases
in the wake-sleep algorithm. Besides, the opposite KL divergences formally explain common
observations when training GANs and VAEs, such as the mode missing and mode covering behaviors
that have led to different practical issues and motivated various model extensions. Also, our analysis

8

In analog to the standard GANs which omit priors by subtracting the JSD term (Eq.7), we also
omit the second term in the derivative relevant to the prior p✓0(x). The resulting update rule for the
generator is thus of the following form:

r✓Lk(y) = E
z1,...,zk⇠p(z|y)

Xk

i=1
fwir✓ log q

r
�0
(y|x(zi,✓))

�
. (21)

As in GANs, only y = 0 (i.e., generated samples) is effective for learning the parameters ✓. Intu-
itively, the algorithm assigns higher weights to those samples that are more realistic and fool the
discriminator better, which is consistent to IWAE that emphasizes more on code states providing
better reconstructions. Hjelm et al. [22], Che et al. [7] developed a similar sample weighting scheme
for maximum likelihood training of the generator. In practice, the k samples in Eq.(21) correspond
to a minibatch of samples in standard GAN update. Thus the only computational cost added by the
importance weighting method is evaluating the weight for each sample, which is generally negligible.
The discriminator is trained in the same way as in the standard GANs.

4.2 Adversary Activated VAEs (AAVAE)

In our formulation, VAEs include a degenerated adversarial discriminator which blocks out generated
samples from contributing to model learning. We enable adaptive incorporation of fake samples by
activating the adversarial mechanism. Again, derivations are straightforward by making symbolic
analog to GANs.

We replace the perfect discriminator q⇤(y|x) in vanilla VAEs with the discriminator network q�(y|x)
parameterized with � as in GANs, resulting in an adapted objective of Eq.(13):

max

✓,⌘ Laavae
✓,⌘ = Ep✓0 (x)

h
Eq⌘(z|x,y)qr�(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr�(y|x)kp(z|y)p(y))

i
.

(22)

The form of Eq.(22) is precisely symmetric to the objective of InfoGAN in Eq.(10) with the additional
KL prior regularization. Before analyzing the effect of adding the learnable discriminator, we first
look at how the discriminator is learned. In analog to GANs as in Eqs.(4) and (10), the objective of
optimizing � is obtained by simply replacing the inverted distribution q

r
�(y|x) with q�(y|x):

max

�

Laavae
� = Ep✓0 (x)

h
Eq⌘(z|x,y)q�(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)q�(y|x)kp(z|y)p(y))

i
. (23)

Intuitively, the discriminator is trained to distinguish between real and fake instances by predicting
appropriate y that selects the components of q⌘(z|x, y) and p✓(x|z, y) to best reconstruct x. The
difficulty of Eq.(23) is that p✓(x|z, y = 1) = pdata(x) is an implicit distribution which is intractable
for likelihood evaluation. We thus use the alternative objective as in GANs to train a binary classifier:

max

�

Laavae
� = Ep✓(x|z,y)p(z|y)p(y) [log q�(y|x)] . (24)

The activated discriminator enables an effective data selection mechanism. First, AAVAE uses not
only real examples, but also generated samples for training. Each sample is weighted by the inverted
discriminator qr�(y|x), so that only those samples that resemble real data and successfully fool the
discriminator will be incorporated for training. This is consistent with the importance weighting
strategy in IWGAN. Second, real examples are also weighted by q

r
�(y|x). An example receiving

large weight indicates it is easily recognized by the discriminator, which further indicates the example
is hard to be simulated from the generator. That is, AAVAE emphasizes more on harder examples.

5 Experiments

We perform extensive quantitative experiments to evaluate the importance weighting method for
GANs and the adversary activating method for VAEs. To show the generality of the imported ideas,
we apply the extensions to vanilla models as well as several popular variants, and obtain greatly
improved results.
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AAVAE: empirical results

• Applied the adversary activating method on 
• vanilla VAEs
• class-conditional VAEs (CVAE) 
• semi-supervised VAEs (SVAE)

• Evaluated test-set variational lower bound on MNIST
• The higher the better

• X-axis: the ratio of training data for learning: (1%, 10%, 100%)
• Y-axis: value of test-set lower bound

Hu, Yang, Salakhutdinov, and Xing

GAN IWGAN

MNIST 8.34±.03 8.45±.04
SVHN 5.18±.03 5.34±.03

CIFAR10 7.86±.05 7.89± .04

CGAN IWCGAN

MNIST 0.985±.002 0.987±.002
SVHN 0.797±.005 0.798±.006

SVAE AASVAE

1% 0.9412 0.9425
10% 0.9768 0.9797

Table 2: Left: Inception scores of GANs and the importance weighted extension. Middle: Classi-
fication accuracy of the generations by conditional GANs and the IW extension. Right:
Classification accuracy of semi-supervised VAEs and the AA extension on MNIST test
set, with 1% and 10% real labeled training data.

Train Data Size VAE AA-VAE CVAE AA-CVAE SVAE AA-SVAE

1% -122.89 -122.15 -125.44 -122.88 -108.22 -107.61
10% -104.49 -103.05 -102.63 -101.63 -99.44 -98.81

100% -92.53 -92.42 -93.16 -92.75 — —

Table 3: Variational lower bounds on MNIST test set, trained on 1%, 10%, and 100% training
data, respectively. In the semi-supervised VAE (SVAE) setting, remaining training data
are used for unsupervised training.

The activated discriminator enables an e↵ective data selection mechanism. First, AAVAE
uses not only real examples, but also generated samples for training. Each sample is
weighted by the inverted discriminator q

r

�

(y|x), so that only those samples that resem-
ble real data and successfully fool the discriminator will be incorporated for training. This
is consistent with the importance weighting strategy in IWGAN. Second, real examples are
also weighted by q

r

�

(y|x). An example receiving large weight indicates it is easily recognized
by the discriminator, which means the example is hard to be simulated from the generator.
That is, AAVAE emphasizes more on harder examples.

5. Experiments

We conduct preliminary experiments to demonstrate the generality and e↵ectiveness of
the importance weighting (IW) and adversarial activating (AA) techniques. In this paper
we do not aim at achieving state-of-the-art performance, but leave it for future work. In
particular, we show the IW and AA extensions improve the standard GANs and VAEs,
as well as several of their variants, respectively. We present the results here, and provide
details of experimental setups in the supplements.

5.1 Importance Weighted GANs

We extend both vanilla GANs and class-conditional GANs (CGAN) with the IW method.
The base GAN model is implemented with the DCGAN architecture and hyperparameter
setting (Radford et al., 2015). Hyperparameters are not tuned for the IW extensions. We
use MNIST, SVHN, and CIFAR10 for evaluation. For vanilla GANs and its IW extension,
we measure inception scores (Salimans et al., 2016) on the generated samples. For CGANs
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AAVAE: empirical results

• Evaluated classification accuracy of SVAE and AA-SVAE

• Used 1% and 10% data labels in MNIST

where we have denoted wi =
qr(y|xi)p✓0 (xi)

p✓(xi|y) . We recover the lower bound of Eq.(27) when setting
k = 1.

To maximize the importance weighted lower bound, we compute the gradient:

r✓Lk(y) = r✓Ex1,...,xk

"
log

1

k
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#
= E
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"
r✓ log

1
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i=1

w(y,x(zi,✓))

#

= E
z1,...,zk

"
kX

i=1

fwir✓ logw(y,x(zi,✓))

#
,

(29)

where fwi = wi/
Pk

i=1 wi are the normalized importance weights. We expand the weight at ✓ = ✓0

wi|✓=✓0 =

qr(y|xi)p✓0(xi)

p✓(xi|y)
= qr(y|xi)

1
2p✓0(xi|y = 0) +

1
2p✓0(xi|y = 1)

p✓0(xi|y)
|✓=✓0 . (30)

The ratio of p✓0(xi|y = 0) and p✓0(xi|y = 1) is intractable. Using the Bayes’ rule and approximating
with the discriminator distribution, we have

p(x|y = 0)

p(x|y = 1)

=

p(y = 0|x)p(y = 1)

p(y = 1|x)p(y = 0)

⇡ q(y = 0|x)
q(y = 1|x) . (31)

Plug Eq.(31) into the above we have

wi|✓=✓0 ⇡ qr(y|xi)

q(y|xi)
. (32)

In Eq.(29), the derivative r✓ logwi is

r✓ logw(y,x(zi,✓)) = r✓ log q
r
(y|x(zi,✓)) +r✓ log

p✓0(xi)

p✓(xi|y)
. (33)

Similar to GAN, we omit the second term on the RHS of the equation. Therefore, the resulting update
rule of p✓(x|y) is

r✓Lk(y) = E
z1,...,zk

"
kX

i=1

qr(y|xi)

q(y|xi)
r✓ log q

r
(y|x(zi,✓))

#
(34)

E Experimental Results of SVAE

Table 3 shows the results.

1% 10%
SVAE 0.9412±.0039 0.9768±.0009

AASVAE 0.9425±.0045 0.9797±.0010
Table 3: Classification accuracy of semi-supervised VAEs and the adversary activated extension on
the MNIST test set, with varying size of real labeled training examples.
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Importance weighted GANs (IWGAN)

•Generator learning in vanilla GANs

•Generator learning in IWGAN

• Assigns higher weights to samples that are more realistic and fool the 
discriminator better

max

✓

E
x⇠p✓(x|y)p(y)

⇥
log q

r
�0
(y|x)

⇤
.

max

✓

E
x1,...,xk⇠p✓(x|y)p(y)

Xk

i=1

q

r
�0
(y|xi)

q�0(y|xi)
log q

r
�0
(y|xi)

�
.

As in GANs, only y = 0 (i.e., generated samples) is effective for learning the parameters ✓. Intu-
itively, the algorithm assigns higher weights to those samples that are more realistic and fool the
discriminator better, which is consistent to IWAE that emphasizes more on code states providing
better reconstructions. In practice, the k samples in Eq.(15) correspond to a minibatch of samples in
standard GAN update. Thus the only computational cost added by the importance weighting method
is evaluating the weight for each sample, which is generally negligible. The discriminator is trained
in the same way as in the standard GANs.

4.2 Adversary Activated VAEs (AAVAE)

In our formulation, VAEs include a degenerated adversarial discriminator which blocks out generated
samples from contributing to model learning. We enable adaptive incorporation of fake samples by
activating the adversarial mechanism. Again, derivations are straightforward by making literal [Eric:
maybe the word "symbolic" is better here?] analog to GANs.

We replace the perfect discriminator q⇤(y|x) in vanilla VAEs with the discriminator network q�(y|x)
parameterized with � as in GANs, resulting in an adapted objective of Eq.(8):

max

✓,⌘ Laavae
✓,⌘ = Ep✓0 (x)

h
Eq⌘(z|x,y)qr�(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr�(y|x)kp(z|y)p(y))

i
.

(16)

The form of Eq.(16) is precisely symmetric to the objective of InfoGAN in Eq.(5) with the additional
KL prior regularization. Before analyzing the effect of adding the learnable discriminator, we first
look at how the discriminator is learned. In analog to GANs as in Eqs.(1) and (5), the objective of
optimizing � is obtained by simply replacing the inverted distribution q

r
�(y|x) with q�(y|x):

max

�

Laavae
� = Ep✓0 (x)

h
Eq⌘(z|x,y)q�(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)q�(y|x)kp(z|y)p(y))

i
. (17)

Intuitively, the discriminator is trained to distinguish between real and fake instances by predicting
appropriate y that selects the components of q⌘(z|x, y) and p✓(x|z, y) to best reconstruct x. The
difficulty of Eq.(17) is that p✓(x|z, y = 1) = pdata(x) is an implicit distribution which is intractable
for likelihood evaluation. We thus use the alternative objective as in GANs to train a binary classifier:

max

�

Laavae
� = Ep✓(x|z,y)p(z|y)p(y) [log q�(y|x)] . (18)

The activated discriminator enables an effective data selection mechanism. First, AAVAE uses not
only real examples, but also generated samples for training. Each sample is weighted by the inverted
discriminator qr�(y|x), so that only those samples that resemble real data and successfully fool the
discriminator will be incorporated for training. This is consistent with the importance weighting
strategy in IWGAN. Second, real examples are also weighted by q

r
�(y|x). An example receiving

large weight indicates it is easily recognized by the discriminator, which further indicates the example
is hard to be simulated from the generator. That is, AAVAE emphasizes more on harder examples.

5 Experiments

We perform extensive quantitative experiments to evaluate the importance weighting method for
GANs and the adversary activating method for VAEs. To show the generality of the imported ideas,
we apply the extensions to vanilla models as well as several popular variants, and obtain greatly
improved results.
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As in GANs, only y = 0 (i.e., generated samples) is effective for learning the parameters ✓. Intu-
itively, the algorithm assigns higher weights to those samples that are more realistic and fool the
discriminator better, which is consistent to IWAE that emphasizes more on code states providing
better reconstructions. In practice, the k samples in Eq.(15) correspond to a minibatch of samples in
standard GAN update. Thus the only computational cost added by the importance weighting method
is evaluating the weight for each sample, which is generally negligible. The discriminator is trained
in the same way as in the standard GANs.

4.2 Adversary Activated VAEs (AAVAE)

In our formulation, VAEs include a degenerated adversarial discriminator which blocks out generated
samples from contributing to model learning. We enable adaptive incorporation of fake samples by
activating the adversarial mechanism. Again, derivations are straightforward by making literal [Eric:
maybe the word "symbolic" is better here?] analog to GANs.

We replace the perfect discriminator q⇤(y|x) in vanilla VAEs with the discriminator network q�(y|x)
parameterized with � as in GANs, resulting in an adapted objective of Eq.(8):

max

✓,⌘ Laavae
✓,⌘ = Ep✓0 (x)

h
Eq⌘(z|x,y)qr�(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr�(y|x)kp(z|y)p(y))

i
.

(16)

The form of Eq.(16) is precisely symmetric to the objective of InfoGAN in Eq.(5) with the additional
KL prior regularization. Before analyzing the effect of adding the learnable discriminator, we first
look at how the discriminator is learned. In analog to GANs as in Eqs.(1) and (5), the objective of
optimizing � is obtained by simply replacing the inverted distribution q

r
�(y|x) with q�(y|x):

max

�

Laavae
� = Ep✓0 (x)

h
Eq⌘(z|x,y)q�(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)q�(y|x)kp(z|y)p(y))

i
. (17)

Intuitively, the discriminator is trained to distinguish between real and fake instances by predicting
appropriate y that selects the components of q⌘(z|x, y) and p✓(x|z, y) to best reconstruct x. The
difficulty of Eq.(17) is that p✓(x|z, y = 1) = pdata(x) is an implicit distribution which is intractable
for likelihood evaluation. We thus use the alternative objective as in GANs to train a binary classifier:

max

�

Laavae
� = Ep✓(x|z,y)p(z|y)p(y) [log q�(y|x)] . (18)

The activated discriminator enables an effective data selection mechanism. First, AAVAE uses not
only real examples, but also generated samples for training. Each sample is weighted by the inverted
discriminator qr�(y|x), so that only those samples that resemble real data and successfully fool the
discriminator will be incorporated for training. This is consistent with the importance weighting
strategy in IWGAN. Second, real examples are also weighted by q

r
�(y|x). An example receiving

large weight indicates it is easily recognized by the discriminator, which further indicates the example
is hard to be simulated from the generator. That is, AAVAE emphasizes more on harder examples.

5 Experiments

We perform extensive quantitative experiments to evaluate the importance weighting method for
GANs and the adversary activating method for VAEs. To show the generality of the imported ideas,
we apply the extensions to vanilla models as well as several popular variants, and obtain greatly
improved results.
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IWGAN: empirical results

• Evaluated on MNIST and SVHN
•Used pretrained NN to evaluate:
• Inception scores of samples from GANs and IW-GAN

• Confidence of a pre-trained classifier on generated samples + diversity of generated 
samples

• Classification accuracy of samples from CGAN and IW-CGAN

MNIST SVHN

GAN 8.34±.03 5.18±.03
IWGAN 8.45±.04 5.34±.03

MNIST SVHN

CGAN 0.985±.002 0.797±.005
IWCGAN 0.987±.002 0.798±.006

1% 10%

SVAE 0.9412 0.9768
AASVAE 0.9425 0.9797

Table 2: Left: Inception scores of vanilla GANs and the importance weighted extension. Middle:
Classification accuracy of the generations by class-conditional GANs and the IW extension. Right:
Classification accuracy of semi-supervised VAEs and the adversary activated extension on the MNIST
test set, with varying size of real labeled training examples.

Figure 1: Lower bound values on the MNIST test set. X-axis represents the ratio of training data
used for learning (0.01, 0.1, and 1.). Y-axis represents the value of lower bound. Solid lines represent
the base models; dashed lines represent the adversary activated models. Left: VAE vs. AA-VAE.
Middle: CVAE vs. AA-CVAE. Right: SVAE vs. AA-SVAE, where remaining training data are used
as unsupervised data.

5.1 Importance Weighted GANs

We extend both vanilla GANs and class-conditional GANs (CGAN) with the importance weighting
method. The base GAN model is implemented with the DCGAN architecture and hyperparameter
setting [44]. We do not tune the hyperparameters for the importance weighted extensions. We use
MNIST and SVHN for evaluation. For vanilla GANs and its IW extension, we measure inception
scores [45] on the generated samples. We train deep residual networks [16] provided in the tensorflow
library as evaluation networks, which achieve inception scores of 9.09 and 6.55 on the test sets of
MNIST and SVHN, respectively. For conditional GANs we evaluate the accuracy of conditional
generation [21]. That is, we generate samples given class labels, and then use the pre-trained classifier
to predict class labels of the generated samples. The accuracy is calculated as the percentage of the
predictions that match the conditional labels. The evaluation networks achieve accuracy of 0.990 and
0.902 on the test sets of MNIST and SVHN, respectively.

Table 2, left panel, shows the inception scores of GANs and IW-GAN, and the middle panel gives the
classification accuracy of the conditional GANs and its importance weighted extension IW-CGAN.
We report the averaged results ± one standard deviation over 5 runs. We see that the importance
weighting strategy gives consistent improvements over the base models.

5.2 Adversary Activated VAEs

We apply the adversary activating method on vanilla VAEs, class-conditional VAEs (CVAE), and
semi-supervised VAEs (SVAE) [26]. We evaluate on the MNIST data. The generative networks have
the same architecture as the generators in GANs in the above experiments, with sigmoid activation
functions on the last layer to compute the means of Bernoulli distributions over pixels. The inference
networks, discriminators, and the classifier in SVAE share the same architecture as the discriminators
in the GAN experiments.

We evaluate the lower bound value on the test set, with varying number of real training examples.
For each minibatch of real examples we generate equal number of fake samples for training. In the
experiments we found it is generally helpful to smooth the discriminator distributions by setting the
temperature of the output sigmoid function larger than 1. This basically encourages the use of fake
data for learning. We select the best temperature from {1, 1.5, 3, 5} through cross-validation. We do
not tune other hyperparameters for the adversary activated extensions. Figure 1 shows the results of
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method. The base GAN model is implemented with the DCGAN architecture and hyperparameter
setting [44]. We do not tune the hyperparameters for the importance weighted extensions. We use
MNIST and SVHN for evaluation. For vanilla GANs and its IW extension, we measure inception
scores [45] on the generated samples. We train deep residual networks [16] provided in the tensorflow
library as evaluation networks, which achieve inception scores of 9.09 and 6.55 on the test sets of
MNIST and SVHN, respectively. For conditional GANs we evaluate the accuracy of conditional
generation [21]. That is, we generate samples given class labels, and then use the pre-trained classifier
to predict class labels of the generated samples. The accuracy is calculated as the percentage of the
predictions that match the conditional labels. The evaluation networks achieve accuracy of 0.990 and
0.902 on the test sets of MNIST and SVHN, respectively.

Table 2, left panel, shows the inception scores of GANs and IW-GAN, and the middle panel gives the
classification accuracy of the conditional GANs and its importance weighted extension IW-CGAN.
We report the averaged results ± one standard deviation over 5 runs. We see that the importance
weighting strategy gives consistent improvements over the base models.

5.2 Adversary Activated VAEs

We apply the adversary activating method on vanilla VAEs, class-conditional VAEs (CVAE), and
semi-supervised VAEs (SVAE) [26]. We evaluate on the MNIST data. The generative networks have
the same architecture as the generators in GANs in the above experiments, with sigmoid activation
functions on the last layer to compute the means of Bernoulli distributions over pixels. The inference
networks, discriminators, and the classifier in SVAE share the same architecture as the discriminators
in the GAN experiments.

We evaluate the lower bound value on the test set, with varying number of real training examples.
For each minibatch of real examples we generate equal number of fake samples for training. In the
experiments we found it is generally helpful to smooth the discriminator distributions by setting the
temperature of the output sigmoid function larger than 1. This basically encourages the use of fake
data for learning. We select the best temperature from {1, 1.5, 3, 5} through cross-validation. We do
not tune other hyperparameters for the adversary activated extensions. Figure 1 shows the results of
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Symmetric modeling of latent & visible variables

Empirical distributions over visible 
variables
• Impossible to be explicit distribution

• The only information we have is 
the observe data examples
• Do not know the true parametric 

form of data distribution

• Naturally an implicit distribution
• Easy to sample from, hard to 

evaluate likelihood

Prior distributions over latent variables

• Traditionally defined as explicit distributions, e.g.,
Gaussian prior distribution
• Amiable for likelihood evaluation
• We can assume the parametric form 

according to our prior knowledge 

• New tools to allow implicit priors and models
• GANs, density ratio estimation, approximate 

Bayesian computations 
• E.g., adversarial autoencoder [Makhzani et al., 2015] 

replaces the Gaussian prior of vanilla VAEs 
with implicit priors



Symmetric modeling of latent & visible variables

•No difference in terms of formulations 
• with implicit distributions and black-box NN models
• just swap the symbols ! and "

Generation
model

prior	distr.

Inference
model

data	distr.
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Figure 5: Symmetric view of generation and inference. There is little difference of the two processes
in terms of formulation: with implicit distribution modeling, both processes only need to perform
simulation through black-box neural transformations between the latent and visible spaces.

signals for student networks of interest. It will be intriguing to build formal connections between
these approaches and enable incorporation of structured knowledge in deep generative modeling.

Symmetric view of generation and inference Traditional modeling approaches usually distin-
guish between latent and visible variables clearly and treat them in very different ways. One of the
key thoughts in our formulation is that it is not necessary to make clear boundary between the two
types of variables (and between generation and inference), but instead, treating them as a symmetric
pair helps with modeling and understanding. For instance, we treat the generation space x in GANs as
latent, which immediately reveals the connection between GANs and adversarial domain adaptation,
and provides a variational inference interpretation of the generation. A second example is the classic
wake-sleep algorithm, where the wake phase reconstructs visibles conditioned on latents, while the
sleep phase reconstructs latents conditioned on visibles (i.e., generated samples). Hence, visible and
latent variables are treated in a completely symmetric manner.

Furthermore, the newly emerging tools such as implicit distribution modeling and black-box neural
transformations have enabled undifferentiated formulation of generation and inference (Figure 5).
Generally, we have prior distributions over latent space, and empirical data distributions over visible
space. Both are pre-defined and can be easily sampled from. There are two major differences.

• Empirical data distributions are usually implicit, i.e., easy to sample from but intractable for
evaluating likelihood. In contrast, priors are usually defined as explicit distributions, amiable for
likelihood evaluation.

• The complexity of the two distributions are different. Visible space is usually complex while latent
space tends (or is designed) to be simpler.

However, the adversarial approach in GANs and other techniques such as density ratio estimation [39]
and approximate Bayesian computation [3] have provided useful tools to bridge the gap in the first
point. For instance, implicit generative models such as GANs require only simulation of the generative
process without explicit likelihood evaluation, hence the prior distributions over latent variables
are used in the same way as the empirical data distributions, namely, generating samples from the
distributions. For explicit likelihood-based models, adversarial autoencoder (AAE) leverages the
adversarial approach to allow implicit prior distributions over latent space. Besides, a few most recent
work [36, 53, 26, 48] extends VAEs by using implicit variational distributions as the inference model.
Indeed, the reparameterization trick in VAEs already resembles construction of implicit variational
distributions (as also seen in the derivations of IWGANs in Eq.19). In these algorithms, adversarial
approach is used to replace intractable minimization of the KL divergence between implicit variational
distributions and priors.

The second difference in terms of space complexity guides us to choose appropriate tools (e.g., adver-
sarial approach v.s. reconstruction optimization, etc) to minimize the distance between distributions to
learn and their targets. However, the tools chosen do not affect the underlying modeling mechanism.
For instance, VAEs and adversarial autoencoder both regularize the model by minimizing the distance
between the variational posterior and certain prior, though VAEs choose KL divergence loss while
AAE selects adversarial loss.

We can further extend the symmetric treatment of visible/latent x/z pair to data/label x/t pair, leading
to a unified view of the generative and discriminative paradigms for unsupervised and semi-supervised
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• No difference in terms of formulations 

• with implicit distributions and black-box NN models
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Figure 5: Symmetric view of generation and inference. There is little difference of the two processes
in terms of formulation: with implicit distribution modeling, both processes only need to perform
simulation through black-box neural transformations between the latent and visible spaces.

activating the adversary mechanism on the VAE models. We see that the adversary activated models
consistently outperform their respective base models. Generally, larger improvement can be obtained
with smaller set of real training data. Table 2, right panel, further shows the classification accuracy
of semi-supervised VAE and its adversary activated variants with different size of labeled training
data. We can observe improved performance of the AA-SVAE model. The full results of standard
deviations are reported in the supplementary materials.

6 Discussions

Our new interpretations of GANs and VAEs have revealed strong connections between them, and
linked the emerging new approaches to the classic wake-sleep algorithm. The generality of the
proposed formulation offers a unified statistical insight of the broad landscape of deep generative
modeling, and encourages mutual exchange of improvement ideas across research lines. It is
interesting to further generalize the framework to connect to other learning paradigms such as
reinforcement learning as previous works have started exploration [14, 44]. GANs simultaneously
learn a metric (defined by the discriminator) to guide the generator learning, which resembles the
iterative teacher-student distillation framework [23, 24] where a teacher network is simultaneously
learned from structured knowledge (e.g., logic rules) and provides knowledge-informed learning
signals for student networks of interest. It will be intriguing to build formal connections between
these approaches and enable incorporation of structured knowledge in deep generative modeling.

z

prior

Symmetric view of generation and inference Traditional modeling approaches usually distin-
guish between latent and visible variables clearly and treat them in very different ways. One of the
key thoughts in our formulation is that it is not necessary to make clear boundary between the two
types of variables (and between generation and inference), but instead, treating them as a symmetric
pair helps with modeling and understanding. For instance, we treat the generation space x in GANs as
latent, which immediately reveals the connection between GANs and adversarial domain adaptation,
and provides a variational inference interpretation of the generation. A second example is the classic
wake-sleep algorithm, where the wake phase reconstructs visibles conditioned on latents, while the
sleep phase reconstructs latents conditioned on visibles (i.e., generated samples). Hence, visible and
latent variables are treated in a completely symmetric manner.

Furthermore, the newly emerging tools such as implicit distribution modeling and black-box neural
transformations have enabled undifferentiated formulation of generation and inference (Figure 5).
Generally, we have prior distributions over latent space, and empirical data distributions over visible
space. Both are pre-defined and can be easily sampled from. There are two major differences.

• Empirical data distributions are usually implicit, i.e., easy to sample from but intractable for
evaluating likelihood. In contrast, priors are usually defined as explicit distributions, amiable for
likelihood evaluation.

• The complexity of the two distributions are different. Visible space is usually complex while latent
space tends (or is designed) to be simpler.
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Conclusions

• Deep generative models research have a long history
• Deep blief nets / Helmholtz machines / Predictability Minimization / …

• Unification of deep generative models
• GANs and VAEs are essentially minimizing KLD in opposite directions

• Extends two phases of classic wake sleep algorithm, respectively
• A general formulation framework useful for

• Analyzing broad class of existing DGM and variants: ADA/InfoGAN/Joint-models/…
• Inspiring new models and algorithms by borrowing ideas across research fields

• Symmetric view of latent/visible variables
• No difference in formulation with implicit prior distributions and black-box NN 

transformations
• Difference in space complexity: choose appropriate tools

Z Hu, Z YANG, R Salakhutdinov, E Xing, 
“On Unifying Deep Generative Models”, arxiv 1706.00550
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