

A Unified View of Deep Generative Models

Zhiting Hu and Eric Xing Petuum Inc. Carnegie Mellon University

- Define probabilistic distributions over a set of variables
- "Deep" means multiple layers of hidden variables!

• Hierarchical Bayesian models

Sigmoid brief nets [Neal 1992

- Hierarchical Bayesian models
 - Sigmoid brief nets [Neal 1992]
- •Neural network models
 - Helmholtz machines [Dayan et al., 1995]

- Hierarchical Bayesian models
 - Sigmoid brief nets [Neal 1992]
- Neural network models
 - Helmholtz machines [Dayan et al., 1995]
 - Predictability minimization [Schmidhuber 1995]

- •Training of DGMs via an EM style framework
 - Sampling / data augmentation

Variational inference

 $\log p(\mathbf{x}) \ge E_{q_{\phi}(\mathbf{Z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}, \mathbf{z})] - KL(q_{\phi}(\mathbf{z}|\mathbf{x}) || p(\mathbf{z})) \coloneqq \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x})$ $\max_{\boldsymbol{\theta}, \boldsymbol{\phi}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x})$

Wake sleep

Wake: $\min_{\theta} \mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)]$ Sleep: $\min_{\phi} \mathbb{E}_{p_{\theta}(x|z)}[\log q_{\phi}(z|x)]$

Resurgence of deep generative models

Variational autoencoders (VAEs) [Kingma & Welling, 2014]
 / Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 2014]

Figure courtesy: Kingma & Welling, 2014

Resurgence of deep generative models

Variational autoencoders (VAEs) [Kingma & Welling, 2014]
 / Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 2014]

• Generative adversarial networks (GANs)

- Theoretical Basis of deep generative models
 - Wake sleep algorithm
 - Variational autoencoders
 - Generative adversarial networks
- A unified view of deep generative models
 - New formulations of deep generative models
 - Symmetric modeling of latent and visible variables

- Posterior Distribution -> Inference model
 - Variational approximation
 - Recognition model
 - Inference network (if parameterized as neural networks)
 - Recognition network (if parameterized as neural networks)
 - (Probabilistic) encoder
- "The Model" (prior + conditional, or joint) -> Generative model
 - The (data) likelihood model
 - Generative network (if parameterized as neural networks)
 - Generator
 - (Probabilistic) decoder

Recap: Variational Inference

- Consider a generative model p_θ(x|z), and prior p(z)
 Joint distribution: p_θ(x, z) = p_θ(x|z)p(z)
- Assume variational distribution $q_{\phi}(\mathbf{z}|\mathbf{x})$
- Objective: Maximize lower bound for log likelihood

$$\log p(\mathbf{x})$$

$$= KL \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}|\mathbf{x}) \right) + \int_{\mathbf{z}} q_{\phi} \left(\mathbf{z}|\mathbf{x} \right) \log \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})}$$

$$\geq \int_{\mathbf{z}} q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})}$$

$$\coloneqq \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x})$$

• Equivalently, minimize free energy

$$F(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}) = -\log p(\boldsymbol{x}) + KL(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) || p_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x}))$$

Maximize the variational lower bound $\mathcal{L}(\theta, \phi; x)$

• E-step: maximize \mathcal{L} wrt. ϕ with $\boldsymbol{\theta}$ fixed

 $\max_{\phi} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}) = \mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] + KL(q_{\phi}(z|x)||p(z))$

• If with closed form solutions

 $q_{\phi}^*(z|x) \propto \exp[\log p_{\theta}(x,z)]$

• M-step: maximize $\mathcal L$ wrt. $\boldsymbol heta$ with $\boldsymbol \phi$ fixed

 $\max_{\theta} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}) = \mathbb{E}_{q_{\phi}(Z|X)}[\log p_{\theta}(x|z)] + KL(q_{\phi}(z|x)||p(z))$

- [Hinton et al., Science 1995]
- Train a separate inference model along with the generative model
 - Generally applicable to a wide range of generative models, e.g., Helmholtz machines
- Consider a generative model $p_{\theta}(\mathbf{x}|\mathbf{z})$ and prior $p(\mathbf{z})$
 - Joint distribution $p_{\theta}(\mathbf{x}, \mathbf{z}) = p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})$
 - E.g., multi-layer brief nets
- Inference model $q_{\phi}(\mathbf{z}|\mathbf{x})$
- Maximize data log-likelihood with two steps of loss relaxation:
 - Maximize the lower bound of log-likelihood, or equivalently, minimize the free energy $E(\theta, \phi; x) = -\log n(x) + KL(a, (z|x)) + n(z|x))$

$$F(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}) = -\log p(\boldsymbol{x}) + KL(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) || p_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x}))$$

- Minimize a different objective (reversed KLD) wrt ϕ to ease the optimization
 - Disconnect to the original variational lower bound loss

 $F'(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}) = -\log p(\boldsymbol{x}) + KL(p_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x}) || q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}))$

• Free energy:

 $F(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}) = -\log p(\boldsymbol{x}) + KL(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) || p_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x}))$

• Minimize the free energy wrt. θ of $p_{\theta} \rightarrow wake$ phase

 $\max_{\boldsymbol{\theta}} \mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z}) \right]$

- Get samples from $q_{\phi}(z|x)$ through inference on hidden variables
- Use the samples as targets for updating the generative model $p_{\theta}(\boldsymbol{z}|\boldsymbol{x})$
- Correspond to the variational M step

• Free energy:

 $F(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}) = -\log p(\boldsymbol{x}) + KL(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) || p_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x}))$

- Minimize the free energy wrt. ϕ of $q_{\phi}(\boldsymbol{z}|\boldsymbol{x})$
 - Correspond to the variational E step
 - Difficulties:

$$p_{\theta}(z,x)$$

- Optimal $q_{\phi}^{*}(z|x) = \frac{p_{\theta}(z,x)}{\int p_{\theta}(z,x) dz}$ intractable
- High variance of direct gradient estimate $\nabla_{\phi} F(\theta, \phi; x) = \cdots + \nabla_{\phi} \mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(z, x)] + \cdots$
 - Gradient estimate with the log-derivative trick:

 $\nabla_{\phi} \mathbb{E}_{q_{\phi}}[\log p_{\theta}] = \int \nabla_{\phi} q_{\phi} \log p_{\theta} = \int q_{\phi} \log p_{\theta} \nabla_{\phi} \log q_{\phi} = \mathbb{E}_{q_{\phi}}[\log p_{\theta} \nabla_{\phi} \log q_{\phi}]$

• Monte Carlo estimation:

 $\nabla_{\phi} \mathbb{E}_{q_{\phi}}[\log p_{\theta}] \approx \mathbb{E}_{z_{i} \sim q_{\phi}}[\log p_{\theta}(x, z_{i}) \nabla_{\phi} q_{\phi}(z_{i}|x)]$

- The scale factor $\log p_{\theta}$ of the derivative $\, \nabla_{\! \phi} \log q_{\phi}$ can have arbitrary large magnitude

• Free energy:

 $F(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}) = -\log p(\boldsymbol{x}) + KL(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) || p_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x}))$

- WS works around the difficulties with the sleep phase approximation
- Minimize the following objective \rightarrow *sleep* phase

 $F'(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}) = -\log p(\boldsymbol{x}) + KL(p_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x}) || q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}))$ $\max_{\boldsymbol{\phi}} E_{p_{\boldsymbol{\theta}}(\boldsymbol{z}, \boldsymbol{x})} \left[\log q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})\right]$

- "Dreaming" up samples from $p_{\theta}(\mathbf{x}|\mathbf{z})$ through top-down pass
- Use the samples as targets for updating the inference model
- (Recent approaches other than sleep phase is to reduce the variance of gradient estimate: slides later)

[Figure courtesy: Maei's slides]

Wake sleep

- Parametrized inference model $q_{\phi}(\mathbf{z}|\mathbf{x})$
- Wake phase:
 - minimize $\textit{KL}(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) \mid\mid p_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x}))$ wrt. $\boldsymbol{\theta}$
 - $\mathbf{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\nabla_{\theta} \log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) \right]$
- Sleep phase:
 - minimize $KL(p_{\theta}(\boldsymbol{z}|\boldsymbol{x}) \mid\mid q_{\phi}(\boldsymbol{z}|\boldsymbol{x}))$ wrt. ϕ
 - $\mathbf{E}_{p_{\theta}(\boldsymbol{z},\boldsymbol{x})} \left[\nabla_{\phi} \log q_{\phi}(\boldsymbol{z},\boldsymbol{x}) \right]$
 - low variance
 - Learning with generated samples of x
- Two objective, not guaranteed to converge

Variational EM

- Variational distribution $q_{\phi}(\mathbf{z}|\mathbf{x})$
- Variational M step:
 - minimize $\textit{KL}(q_{\phi}(\pmb{z}|\pmb{x}) \mid\mid p_{\theta}(\pmb{z}|\pmb{x}))$ wrt. θ
 - $E_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\nabla_{\theta} \log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) \right]$
- Variational E step:
 - minimize $\textit{KL}(q_{\phi}(\pmb{z}|\pmb{x}) \mid\mid p_{\theta}(\pmb{z}|\pmb{x}))$ wrt. ϕ
 - $q_{\phi}^* \propto \exp[\log p_{\theta}]$ if with closed-form
 - $\nabla_{\phi} \mathbb{E}_{q_{\phi}}[\log p_{\theta}(z, x)]$
 - need variance-reduce in practice
 - Learning with real data \boldsymbol{x}
- Single objective, guaranteed to converge

Variational Autoencoders (VAEs)

- [Kingma & Welling, 2014]
- Use variational inference with an inference model
 - Enjoy similar applicability with wake-sleep algorithm
- Generative model $p_{\theta}(\mathbf{x}|\mathbf{z})$, and prior $p(\mathbf{z})$ • Joint distribution $p_{\theta}(\mathbf{x}, \mathbf{z}) = p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})$
- Inference model $q_{\phi}(\mathbf{z}|\mathbf{x})$

Figure courtesy: Kingma & Welling, 2014

Variational Autoencoders (VAEs)

Variational lower bound

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}) = \mathrm{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{Z}|\boldsymbol{x})}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z})] - \mathrm{KL}(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) || p(\boldsymbol{z}))$$

- Optimize $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x})$ wrt. $\boldsymbol{\theta}$ of $p_{\boldsymbol{\theta}}(\boldsymbol{x} | \boldsymbol{z})$
 - The same with the wake phase
- Optimize $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x})$ wrt. $\boldsymbol{\phi}$ of $q_{\boldsymbol{\phi}}(\boldsymbol{z} | \boldsymbol{x})$

 $\nabla_{\phi} \mathcal{L}(\theta, \phi; x) = \dots + \nabla_{\phi} \mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] + \dots$

- Use *reparameterization trick* to reduce variance
- Alternatives: use control variates as in reinforcement learning [Mnih & Gregor, 2014; Paisley et al., 2012]

Reparametrized gradient

- Optimize $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x})$ wrt. $\boldsymbol{\phi}$ of $q_{\boldsymbol{\phi}}(\boldsymbol{z} | \boldsymbol{x})$
 - Recap: gradient estimate with log-derivative trick:

 $\nabla_{\phi} \mathbb{E}_{q_{\phi}}[\log p_{\theta}(\boldsymbol{x}, \boldsymbol{z})] = \mathbb{E}_{q_{\phi}}[\log p_{\theta}(\boldsymbol{x}, \boldsymbol{z}) \nabla_{\phi} \log q_{\phi}]$

- High variance: $\nabla_{\phi} \mathbb{E}_{q_{\phi}}[\log p_{\theta}] \approx \mathbb{E}_{z_{i} \sim q_{\phi}}[\log p_{\theta}(x, z_{i}) \nabla_{\phi} q_{\phi}(z_{i}|x)]$
 - The scale factor $\log p_{\theta}(x,z_i)$ of the derivative $\nabla_{\phi}\log q_{\phi}$ can have arbitrary large magnitude
- gradient estimate with *reparameterization trick*

$$\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x}) \iff \mathbf{z} = g_{\phi}(\boldsymbol{\epsilon}, \mathbf{x}), \quad \boldsymbol{\epsilon} \sim p(\boldsymbol{\epsilon})$$
$$\nabla_{\phi} E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}, \mathbf{z})] = E_{\boldsymbol{\epsilon} \sim p(\boldsymbol{\epsilon})} \left[\nabla_{\phi} \log p_{\theta}\left(\mathbf{x}, \mathbf{z}_{\phi}(\boldsymbol{\epsilon})\right) \right]$$

- (Empirically) lower variance of the gradient estimate
- E.g., $\boldsymbol{z} \sim N(\boldsymbol{\mu}(\boldsymbol{x}), \boldsymbol{L}(\boldsymbol{x})\boldsymbol{L}(\boldsymbol{x})^T) \iff \boldsymbol{\epsilon} \sim N(0,1), \ \boldsymbol{z} = \boldsymbol{\mu}(\boldsymbol{x}) + \boldsymbol{L}(\boldsymbol{x})\boldsymbol{\epsilon}$

 VAEs tend to generate blurred images due to the mode covering behavior (more later)

Celebrity faces [Radford 2015]

- Latent code interpolation and sentences generation from VAEs [Bowman et al., 2015].
- "i want to talk to you . "
 "i want to be with you . "
 "i do n't want to be with you . "
 i do n't want to be with you .
 she did n't want to be with him .

Generative Adversarial Nets (GANs)

- [Goodfellow et al., 2014]
- Generative model $\mathbf{x} = G_{\theta}(\mathbf{z}), \ \mathbf{z} \sim p(\mathbf{z})$
 - Map noise variable z to data space x
 - Define an implicit distribution over \mathbf{x} : $p_{g_{\theta}}(\mathbf{x})$
 - a stochastic process to simulate data \boldsymbol{x}
 - Intractable to evaluate likelihood
- Discriminator $D_{\phi}(\mathbf{x})$
 - Output the probability that \boldsymbol{x} came from the data rather than the generator
- No explicit inference model
- No obvious connection to previous models with inference networks like VAEs
 - We will build formal connections between GANs and VAEs later

Generative Adversarial Nets (GANs)

- Learning
 - A minimax game between the generator and the discriminator
 - Train *D* to maximize the probability of assigning the correct label to both training examples and generated samples
 - Train G to fool the discriminator

$$\max_{D} \mathcal{L}_{D} = \mathbb{E}_{\boldsymbol{x} \sim p_{data}(\boldsymbol{x})} \left[\log D(\boldsymbol{x}) \right] + \mathbb{E}_{\boldsymbol{x} \sim G(\boldsymbol{z}), \boldsymbol{z} \sim p(\boldsymbol{z})} \left[\log(1 - D(\boldsymbol{x})) \right]$$
$$\min_{G} \mathcal{L}_{G} = \mathbb{E}_{\boldsymbol{x} \sim G(\boldsymbol{z}), \boldsymbol{z} \sim p(\boldsymbol{z})} \left[\log(1 - D(\boldsymbol{x})) \right].$$

[Figure courtesy: Kim's slides]

Generated bedrooms [Radford et al., 2016]

- Variational autoencoders (VAEs) [Kingma & Welling, 2014]
 - Adversarial autoencoder [Makhzani et al., 2015]
 - Importance weighted autoencoder [Burda et al., 2015]
 - Implicit variational autoencoder [Mescheder., 2017]
- Generative adversarial networks (GANs) [Goodfellos et al., 2014]
 - InfoGAN [Chen et al., 2016]
 - CycleGAN [Zhu et al., 2017]
 - Wasserstein GAN [Arjovsky et al., 2017]
- Autoregressive neural networks
 - PixeIRNN / PixeICNN [Oord et al., 2016]
 - RNN (e.g., for language modeling)
- Generative moment matching networks (GMMNs) [Li et al., 2015; Dziugaite et al., 2015]
- Retricted Boltzmann Machines (RBMs) [Smolensky, 1986]

- Theoretical backgrounds of deep generative models
 - Wake sleep algorithm
 - Variational autoencoders
 - Generative adversarial networks
- A unified view of deep generative models
 - New formulations of deep generative models
 - Symmetric modeling of latent and visible variables

Z Hu, Z YANG, R Salakhutdinov, E Xing, "**On Unifying Deep Generative Models**", arxiv 1706.00550

Generative Adversarial Nets (GANs):

• Implicit distribution over $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{y})$

$$p_{\theta}(\boldsymbol{x}|y) = \begin{cases} p_{g_{\theta}}(\boldsymbol{x}) & y = 0\\ p_{data}(\boldsymbol{x}) & y = 1. \end{cases}$$

(distribution of generated images)

•
$$\boldsymbol{x} \sim p_{g_{\theta}}(\boldsymbol{x}) \Leftrightarrow \boldsymbol{x} = G_{\theta}(\boldsymbol{z}), \ \boldsymbol{z} \sim p(\boldsymbol{z}|\boldsymbol{y}=\boldsymbol{0})$$

• $\boldsymbol{x} \sim p_{data}(\boldsymbol{x})$

- the code space of z is degenerated
- sample directly from data

A new formulation

- Rewrite GAN objectives in the "variational-EM" format
- Recap: conventional formulation:

$$\begin{aligned} \max_{\boldsymbol{\phi}} \mathcal{L}_{\boldsymbol{\phi}} &= \mathbb{E}_{\boldsymbol{x}=G_{\boldsymbol{\theta}}(\boldsymbol{z}), \boldsymbol{z} \sim p(\boldsymbol{z}|\boldsymbol{y}=0)} \left[\log(1 - D_{\boldsymbol{\phi}}(\boldsymbol{x})) \right] + \mathbb{E}_{\boldsymbol{x} \sim p_{data}(\boldsymbol{x})} \left[\log D_{\boldsymbol{\phi}}(\boldsymbol{x}) \right] \\ \max_{\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{\theta}} &= \mathbb{E}_{\boldsymbol{x}=G_{\boldsymbol{\theta}}(\boldsymbol{z}), \boldsymbol{z} \sim p(\boldsymbol{z}|\boldsymbol{y}=0)} \left[\log D_{\boldsymbol{\phi}}(\boldsymbol{x}) \right] + \mathbb{E}_{\boldsymbol{x} \sim p_{data}(\boldsymbol{x})} \left[\log(1 - D_{\boldsymbol{\phi}}(\boldsymbol{x})) \right] \\ &= \mathbb{E}_{\boldsymbol{x}=G_{\boldsymbol{\theta}}(\boldsymbol{z}), \boldsymbol{z} \sim p(\boldsymbol{z}|\boldsymbol{y}=0)} \left[\log D_{\boldsymbol{\phi}}(\boldsymbol{x}) \right] \end{aligned}$$

- Rewrite in the new form
 - Implicit distribution over $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{y})$

 $\boldsymbol{x} = G_{\theta}(\boldsymbol{z}), \ \boldsymbol{z} \sim p(\boldsymbol{z}|\boldsymbol{y})$

• Discriminator distribution $q_{\phi}(y|\mathbf{x})$

$$q'_{\phi}(y|\mathbf{x}) = q_{\phi}(1-y|\mathbf{x})$$

 $\max_{\boldsymbol{\phi}} \mathcal{L}_{\boldsymbol{\phi}} = \mathbb{E}_{p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{y})p(\boldsymbol{y})} \left[\log q_{\boldsymbol{\phi}}(\boldsymbol{y}|\boldsymbol{x}) \right]$ $\max_{\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{\theta}} = \mathbb{E}_{p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{y})p(\boldsymbol{y})} \left[\log q_{\boldsymbol{\phi}}^{r}(\boldsymbol{y}|\boldsymbol{x}) \right]$

Variational EM

• Objectives

 $\max_{\phi} \mathcal{L}_{\phi,\theta} = \mathbb{E}_{q_{\phi}(z|x)} [\log p_{\theta}(x|z)] + KL \left(q_{\phi}(z|x) || p(z) \right)$

 $\max_{\theta} \mathcal{L}_{\phi,\theta} = \mathbb{E}_{q_{\phi}(z|x)} [\log p_{\theta}(x|z)] + KL \left(q_{\phi}(z|x) || p(z) \right)$

- Single objective for both heta and ϕ
- Extra prior regularization by p(z)
- The reconstruction term: maximize the conditional log-likelihood of x with the generative distribution $p_{\theta}(x|z)$ conditioning on the latent code z inferred by $q_{\phi}(z|x)$

- $p_{\theta}(x|z)$ is the generative model
- $q_{\phi}(z|x)$ is the inference model

GAN

- Objectives $\max_{\phi} \mathcal{L}_{\phi} = \mathbb{E}_{p_{\theta}(\boldsymbol{x}|\boldsymbol{y})p(\boldsymbol{y})} \left[\log q_{\phi}(\boldsymbol{y}|\boldsymbol{x})\right]$ $\max_{\theta} \mathcal{L}_{\theta} = \mathbb{E}_{p_{\theta}(\boldsymbol{x}|\boldsymbol{y})p(\boldsymbol{y})} \left[\log q_{\phi}^{r}(\boldsymbol{y}|\boldsymbol{x})\right]$
 - Two objectives
 - Have global optimal state in the game theoretic view
- The objectives: maximize the conditional log-likelihood of y (or 1 y) with the distribution $q_{\phi}(y|x)$ conditioning on data/generation x inferred by $p_{\theta}(x|y)$
- Interpret $q_{\phi}(y|x)$ as the generative model
- Interpret $p_{\theta}(x|y)$ as the inference model

Variational EM

• Objectives

 $\max_{\phi} \mathcal{L}_{\phi,\theta} = \mathbb{E}_{q_{\phi}(z|x)} [\log p_{\theta}(x|z)] + KL \left(q_{\phi}(z|x) || p(z) \right)$

 $\max_{\theta} \mathcal{L}_{\phi,\theta} = \mathbb{E}_{q_{\phi}(z|x)} [\log p_{\theta}(x|z)] + KL \left(q_{\phi}(z|x) || p(z) \right)$

- Single objective for both heta and ϕ
- Extra prior regularization by p(z)
- The reconstruction term: maximize the conditional log-likelihood of x with the generative distribution $p_{\theta}(x|z)$ conditioning on the latent code z inferred by $q_{\phi}(z|x)$

- $p_{\theta}(x|z)$ is the generative model
- $q_{\phi}(z|x)$ is the inference model

- Interpret *x* as latent variables
- Interpret generation of *x* as performing inference over latent

GAN

- Objectives $\max_{\boldsymbol{\phi}} \mathcal{L}_{\boldsymbol{\phi}} = \mathbb{E}_{p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{y})p(\boldsymbol{y})} \left[\log q_{\boldsymbol{\phi}}(\boldsymbol{y}|\boldsymbol{x})\right]$ $\max_{\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{\theta}} = \mathbb{E}_{p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{y})p(\boldsymbol{y})} \left[\log q_{\boldsymbol{\phi}}^{r}(\boldsymbol{y}|\boldsymbol{x})\right]$
 - Two objectives
 - Have global optimal state in the game theoretic view
- The objectives: maximize the conditional log-likelihood of y (or 1 y) with the distribution $q_{\phi}(y|x)$ conditioning on data/generation x inferred by $p_{\theta}(x|y)$
- Interpret $q_{\phi}(y|x)$ as the generative model
- Interpret $p_{\theta}(x|y)$ as the inference model

- As in Variational EM, we can further rewrite in the form of minimizing KLD to reveal more insights into the optimization problem
- For each optimization step of $p_{\theta}(\mathbf{x}|\mathbf{y})$ at point $(\theta = \theta_0, \phi = \phi_0)$, let
 - p(y): uniform prior distribution
 - $p_{\theta=\theta_0}(\mathbf{x}) = \mathbb{E}_{p(y)}[p_{\theta=\theta_0}(\mathbf{x}|y)]$
 - $q^r(\mathbf{x}|\mathbf{y}) \propto q^r_{\phi=\phi_0}(\mathbf{y}|\mathbf{x})p_{\theta=\theta_0}(\mathbf{x})$
- Lemma 1: The updates of $\boldsymbol{\theta}$ at $\boldsymbol{\theta}_0$ have

$$\nabla_{\theta} \Big[-\mathbb{E}_{p_{\theta}(\boldsymbol{x}|\boldsymbol{y})p(\boldsymbol{y})} \left[\log q_{\phi=\phi_{0}}^{r}(\boldsymbol{y}|\boldsymbol{x}) \right] \Big] \Big|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{0}} = \nabla_{\theta} \Big[\mathbb{E}_{p(\boldsymbol{y})} \left[KL\left(p_{\theta}(\boldsymbol{x}|\boldsymbol{y}) \| q^{r}(\boldsymbol{x}|\boldsymbol{y}) \right) \right] - JSD\left(p_{\theta}(\boldsymbol{x}|\boldsymbol{y}=0) \| p_{\theta}(\boldsymbol{x}|\boldsymbol{y}=1) \right) \Big] \Big|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{0}}$$

- KL: KL divergence
- JSD: Jensen-shannon divergence

• Lemma 1: The updates of $\boldsymbol{\theta}$ at $\boldsymbol{\theta}_0$ have

$$\nabla_{\theta} \Big[- \mathbb{E}_{p_{\theta}(\boldsymbol{x}|\boldsymbol{y})p(\boldsymbol{y})} \left[\log q_{\phi=\phi_0}^r(\boldsymbol{y}|\boldsymbol{x}) \right] \Big]_{\boldsymbol{\theta}=\boldsymbol{\theta}_0} =$$

 $\nabla_{\theta} \Big[\mathbb{E}_{p(y)} \left[\mathsf{KL} \left(p_{\theta}(\boldsymbol{x}|y) \| q^{r}(\boldsymbol{x}|y) \right) \right] - \mathsf{JSD} \left(p_{\theta}(\boldsymbol{x}|y=0) \| p_{\theta}(\boldsymbol{x}|y=1) \right) \Big] \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{0}}$

- Connection to variational inference
 - See x as latent variables, y as visible
 - $p_{\theta=\theta_0}(\mathbf{x})$: prior distribution
 - $q^r(\mathbf{x}|\mathbf{y}) \propto q^r_{\phi=\phi_0}(\mathbf{y}|\mathbf{x})p_{\theta=\theta_0}(\mathbf{x})$: posterior distribution
 - $p_{\theta}(\mathbf{x}|\mathbf{y})$: variational distribution
 - Amortized inference: updates model parameter $\pmb{\theta}$
- Suggests relations to VAEs, as we will explore shortly

- Minimizing the KLD drives $p_{g_{\theta}}(\mathbf{x})$ to $p_{data}(\mathbf{x})$
 - By definition: $p_{\theta=\theta_0}(\mathbf{x}) = \mathbb{E}_{p(y)}[p_{\theta=\theta_0}(\mathbf{x}|y)] = (p_{g_{\theta=\theta_0}}(\mathbf{x}) + p_{data}(\mathbf{x}))/2$
 - $KL(p_{\theta}(x|y=1)||q^{r}(x|y=1)) = KL(p_{data}(x)||q^{r}(x|y=1))$: constant, no free parameters

 $p_{\theta}(\boldsymbol{x}|y)$

- $KL(p_{\theta}(x|y=0)||q^{r}(x|y=0)) = KL(p_{g_{\theta}}(x)||q^{r}(x|y=0))$: parameter θ to optimize $q_{\phi}^{(r)}(y|\boldsymbol{x})$
 - $q^r(\mathbf{x}|\mathbf{y}=0) \propto q^r_{\phi=\phi_0}(\mathbf{y}=0|\mathbf{x})p_{\theta=\theta_0}(\mathbf{x})$
 - seen as a mixture of $p_{g_{\theta=\theta_0}}(x)$ and $p_{data}(x)$
 - mixing weights induced from $q_{\phi=\phi_0}^r(y=0|\mathbf{x})$
 - Drives $p_{g_{\theta}}(\boldsymbol{x}|\boldsymbol{y})$ to mixture of $p_{g_{\theta=\theta_0}}(\boldsymbol{x})$ and $p_{data}(\boldsymbol{x})$ \Rightarrow Drives $p_{g_{\theta}}(\mathbf{x})$ to $p_{data}(\mathbf{x})$

- Missing mode phenomena of GANs
 - Asymmetry of KLD
 - Concentrates $p_{\theta}(\mathbf{x}|\mathbf{y} = 0)$ to large modes of $q^{r}(\mathbf{x}|\mathbf{y})$
 - $\Rightarrow p_{g_{\theta}}(\mathbf{x})$ misses modes of $p_{data}(\mathbf{x})$
 - Symmetry of JSD
 - Does not affect the behavior of mode missing

 $KL\left(p_{g_{\theta}}(x)||q^{r}(x|y=0)\right)$ $=\int p_{g_{\theta}}(x)\log\frac{p_{g_{\theta}}(x)}{q^{r}(x|y=0)}dx$

- Large positive contribution to the KLD in the regions of x space where $q^r(x|y=0)$ is small, unless $p_{g_{\theta}}(x)$ is also small
- $\Rightarrow p_{g_{\theta}}(x)$ tends to avoid regions where $q^{r}(x|y=0)$ is small

• *Lemma 1*: The updates of $\boldsymbol{\theta}$ at $\boldsymbol{\theta}_0$ have $\nabla_{\theta} \Big[-\mathbb{E}_{p_{\theta}(\boldsymbol{x}|\boldsymbol{y})p(\boldsymbol{y})} \left[\log q_{\phi_{0}}^{r}(\boldsymbol{y}|\boldsymbol{x}) \right] \Big] \Big|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{0}} =$

 $\nabla_{\theta} \Big[\mathbb{E}_{p(y)} \left[\frac{KL(p_{\theta}(\boldsymbol{x}|\boldsymbol{y}) \| q^{r}(\boldsymbol{x}|\boldsymbol{y}))}{1 - JSD(p_{\theta}(\boldsymbol{x}|\boldsymbol{y}=0) \| p_{\theta}(\boldsymbol{x}|\boldsymbol{y}=1))} \right] \Big|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{0}}$ • No assumption on optimal discriminator $q_{\boldsymbol{\phi}_{0}}^{r}(\boldsymbol{y}|\boldsymbol{x})$

- - Previous results usually rely on (near) optimal discriminator

•
$$q^*(y = 1 | \mathbf{x}) = p_{data}(\mathbf{x}) / (p_{data}(\mathbf{x}) + p_g(\mathbf{x}))$$

- Optimality assumption is impractical: limited expressiveness of D_{ϕ} [Arora et al 2017]
- Our result is a generalization of the previous theorem [Arjovsky & Bottou 2017]
 - Plug the optimal discriminator into the above equation, we recover the theorem

$$\nabla_{\theta} \left[-\mathbb{E}_{p_{\theta}(\boldsymbol{x}|\boldsymbol{y})p(\boldsymbol{y})} \left[\log q_{\phi_{0}}^{r}(\boldsymbol{y}|\boldsymbol{x}) \right] \right] \Big|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{0}} = \nabla_{\theta} \left[\frac{1}{2} \mathrm{KL} \left(p_{g_{\theta}} \| p_{data} \right) - \mathrm{JSD} \left(p_{g_{\theta}} \| p_{data} \right) \right] \Big|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{0}}$$

Give insights on the generator training when discriminator is optimal

In summary:

- Reveal connection to variational inference
 - Build connections to VAEs (slides soon)
 - Inspire new model variants based on the connections
- Offer insights into the generator training
 - Formal explanation of the missing mode behavior of GANs
 - Still hold when the discriminator does not achieve its optimum at each iteration

 $\max_{\boldsymbol{\phi}} \mathcal{L}_{\boldsymbol{\phi}} = \mathbb{E}_{p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{y})p(\boldsymbol{y})} \left[\log q_{\boldsymbol{\phi}}(\boldsymbol{y}|\boldsymbol{x}) \right]$ $\max_{\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{\theta}} = \mathbb{E}_{p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{y})p(\boldsymbol{y})} \left[\log q_{\boldsymbol{\phi}}^{r}(\boldsymbol{y}|\boldsymbol{x}) \right]$

 $\max_{\boldsymbol{\phi}} \mathcal{L}_{\boldsymbol{\phi}} = \mathbb{E}_{p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{y})p(\boldsymbol{y})} \left[\log q_{\boldsymbol{\eta}}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y}) q_{\boldsymbol{\phi}}(\boldsymbol{y}|\boldsymbol{x}) \right]$ $\max_{\boldsymbol{\theta},\boldsymbol{\eta}} \mathcal{L}_{\boldsymbol{\theta},\boldsymbol{\eta}} = \mathbb{E}_{p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{y})p(\boldsymbol{y})} \left[\log q_{\boldsymbol{\eta}}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y}) q_{\boldsymbol{\phi}}^{r}(\boldsymbol{y}|\boldsymbol{x}) \right]$

- Resemblance of GAN generator learning to variational inference
 - Suggest strong relations between VAEs and GANs
- Indeed, VAEs are basically minimizing KLD with an opposite direction, and with a degenerated adversarial discriminator

		GANs (InfoGAN)	VAEs		
	Generative distribution	$p_{\theta}(\boldsymbol{x} y) = \begin{cases} p_{g_{\theta}}(\boldsymbol{x}) & y = 0\\ p_{data}(\boldsymbol{x}) & y = 1. \end{cases}$	$p_{ heta}(oldsymbol{x} oldsymbol{z},y) = egin{cases} p_{ heta}(oldsymbol{x} oldsymbol{z}) & y = 0 \ p_{data}(oldsymbol{x}) & y = 1. \end{cases}$		
	Discriminator distribution	$q_{\phi}(y \mathbf{x})$	$q_*(y \mathbf{x})$, perfect, degenerated		
	<i>z</i> -inference model	$q_{\eta}(\boldsymbol{z} \boldsymbol{x}, y)$ of InfoGAN	$q_{\eta}(\boldsymbol{z} \boldsymbol{x}, y)$		
	KLD to minimize	$\min_{\theta} \operatorname{KL} \left(p_{\theta}(\boldsymbol{x} \boldsymbol{y}) \mid q^{r}(\boldsymbol{x} \boldsymbol{z},\boldsymbol{y}) \right)$	$\min_{\theta} \mathrm{KL}\left(q_{\eta}(\boldsymbol{z} \boldsymbol{x},\boldsymbol{y})q_{*}^{r}(\boldsymbol{y} \boldsymbol{x}) \mid p_{\theta}(\boldsymbol{z},\boldsymbol{y} \boldsymbol{x})\right)$		
		$\sim \min_{\theta} \operatorname{KL}(P_{\theta} \mid\mid Q)$	$\sim \min_{\theta} \mathrm{KL}(Q \mid\mid P_{\theta})$		

	GANs (InfoGAN)	VAEs
KLD to minimize	$\min_{\theta} \operatorname{KL} (p_{\theta}(\boldsymbol{x} \boldsymbol{y}) q^{r}(\boldsymbol{x} \boldsymbol{z}, \boldsymbol{y})) \\ \sim \min_{\theta} \operatorname{KL}(P_{\theta} Q)$	$\min_{\theta} \mathrm{KL}(q_{\eta}(\boldsymbol{z} \boldsymbol{x},\boldsymbol{y})q_{*}^{r}(\boldsymbol{y} \boldsymbol{x}) p_{\theta}(\boldsymbol{z},\boldsymbol{y} \boldsymbol{x}))$ ~ $\min_{\theta} \mathrm{KL}(Q P_{\theta})$

- Asymmetry of KLDs inspires combination of GANs and VAEs
 - GANs: $\min_{\theta} KL(P_{\theta} || Q)$ tends to missing mode
 - VAEs: $\min_{\theta} KL(Q||P_{\theta})$ tends to cover regions with small values of p_{data}

[Figure courtesy: PRML]

Mode covering

Mode missing

Mutual exchanges of ideas: augment the loss

	GANs (InfoGAN)	VAEs
KLD to minimize	$\min_{\theta} \operatorname{KL} (p_{\theta}(\boldsymbol{x} \boldsymbol{y}) q^{r}(\boldsymbol{x} \boldsymbol{z},\boldsymbol{y})) \\ \sim \min_{\theta} \operatorname{KL}(P_{\theta} Q)$	$\min_{\theta} \mathrm{KL}(q_{\eta}(\boldsymbol{z} \boldsymbol{x},\boldsymbol{y})q_{*}^{r}(\boldsymbol{y} \boldsymbol{x}) p_{\theta}(\boldsymbol{z},\boldsymbol{y} \boldsymbol{x}))$ ~ $\min_{\theta} \mathrm{KL}(Q P_{\theta})$

- Asymmetry of KLDs inspires combination of GANs and VAEs
 - GANs: $\min_{\theta} KL(P_{\theta} || Q)$ tends to missing mode
 - VAEs: $\min_{\theta} KL(Q||P_{\theta})$ tends to cover regions with small values of p_{data}
 - Augment VAEs with GAN loss [Larsen et al., 2016]
 - Alleviate the mode covering issue of VAEs
 - Improve the sharpness of VAE generated images
 - Augment GANs with VAE loss [Che et al., 2017]
 - Alleviate the mode missing issue of GAN

Mutual exchanges of ideas: augment the model

	GANs (InfoGAN)	VAEs
Discriminator distribution	$q_{\phi}(y \mathbf{x})$	$q_*(y \mathbf{x})$, perfect, degenerated

- Activate the adversarial mechanism in VAEs
 - Enable adaptive incorporation of fake samples for learning
 - Straightforward derivation by making symbolic analog to GANs

Adversary Activated VAEs (AAVAE)

• Vanilla VAEs:

 $\max_{\boldsymbol{\theta},\boldsymbol{\eta}} \mathcal{L}_{\boldsymbol{\theta},\boldsymbol{\eta}}^{\text{vae}} = \mathbb{E}_{p_{\boldsymbol{\theta}_0}(\boldsymbol{x})} \left[\mathbb{E}_{q_{\boldsymbol{\eta}}(\boldsymbol{z}|\boldsymbol{x},y)\boldsymbol{q}_*^r(\boldsymbol{y}|\boldsymbol{x})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z},y) \right] - \text{KL}(q_{\boldsymbol{\eta}}(\boldsymbol{z}|\boldsymbol{x},y)\boldsymbol{q}_*^r(\boldsymbol{y}|\boldsymbol{x}) \| p(\boldsymbol{z}|y)p(y)) \right]$

• Replace $q_*(y|x)$ with learnable one $q_{\phi}(y|x)$ with parameters ϕ • As usual, denote reversed distribution $q_{\phi}^r(y|x) = q_{\phi}(y|x)$

 $\max_{\boldsymbol{\theta},\boldsymbol{\eta}} \mathcal{L}_{\boldsymbol{\theta},\boldsymbol{\eta}}^{\text{aavae}} = \mathbb{E}_{p_{\boldsymbol{\theta}_0}(\boldsymbol{x})} \left[\mathbb{E}_{q_{\boldsymbol{\eta}}(\boldsymbol{z}|\boldsymbol{x},y)\boldsymbol{q}_{\boldsymbol{\phi}}^{\boldsymbol{r}}(\boldsymbol{y}|\boldsymbol{x})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z},y) \right] - \text{KL}(q_{\boldsymbol{\eta}}(\boldsymbol{z}|\boldsymbol{x},y)\boldsymbol{q}_{\boldsymbol{\phi}}^{\boldsymbol{r}}(\boldsymbol{y}|\boldsymbol{x}) \| p(\boldsymbol{z}|y)p(y)) \right]$

- Applied the adversary activating method on
 - vanilla VAEs
 - class-conditional VAEs (CVAE)
 - semi-supervised VAEs (SVAE)
- Evaluated test-set variational lower bound on MNIST
 - The higher the better

Train Data Size	VAE	AA-VAE	CVAE	AA-CVAE	SVAE	AA-SVAE
$1\% \\ 10\% \\ 100\%$	-122.89 -104.49 -92.53	-122.15 -103.05 -92.42	-125.44 -102.63 -93.16	-122.88 -101.63 -92.75	-108.22 -99.44	-107.61 -98.81

- X-axis: the ratio of training data for learning: (1%, 10%, 100%)
- Y-axis: value of test-set lower bound

• Evaluated classification accuracy of SVAE and AA-SVAE

• Used 1% and 10% data labels in MNIST

Importance weighted GANs (IWGAN)

• Generator learning in vanilla GANs $\max_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{y})p(\boldsymbol{y})} \left[\log q_{\phi_0}^r(\boldsymbol{y}|\boldsymbol{x})\right]$

• Generator learning in IWGAN

$$\max_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{x}_1,\dots,\boldsymbol{x}_k \sim p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{y})p(\boldsymbol{y})} \left[\sum_{i=1}^k \frac{q_{\phi_0}^r(\boldsymbol{y}|\boldsymbol{x}_i)}{q_{\phi_0}(\boldsymbol{y}|\boldsymbol{x}_i)} \log q_{\phi_0}^r(\boldsymbol{y}|\boldsymbol{x}_i) \right]$$

 Assigns higher weights to samples that are more realistic and fool the discriminator better

- Evaluated on MNIST and SVHN
- Used pretrained NN to evaluate:
 - Inception scores of samples from GANs and IW-GAN
 - Confidence of a pre-trained classifier on generated samples + diversity of generated samples

	MNIST	SVHN
GAN	8.34±.03	5.18±.03
WGAN	8.45±.04	5.34±.03

• Classification accuracy of samples from CGAN and IW-CGAN

	MNIST	SVHN
CGAN	0.985±.002	0.797±.005
IWCGAN	0.987±.002	0.798±.006

Symmetric modeling of latent & visible variables

Empirical distributions over visible variables

- Impossible to be explicit distribution
 - The only information we have is the observe data examples
 - Do not know the true parametric form of data distribution
- Naturally an implicit distribution
 - Easy to sample from, hard to evaluate likelihood

Prior distributions over latent variables

- Traditionally defined as explicit distributions, e.g., Gaussian prior distribution
 - Amiable for likelihood evaluation
 - We can assume the parametric form according to our prior knowledge
- New tools to allow implicit priors and models
 - GANs, density ratio estimation, approximate Bayesian computations
 - E.g., adversarial autoencoder [Makhzani et al., 2015] replaces the Gaussian prior of vanilla VAEs with implicit priors

Symmetric modeling of latent & visible variables

- No difference in terms of formulations
 - with implicit distributions and black-box NN models
 - just swap the symbols x and z

Symmetric modeling of latent & visible variables

- No difference in terms of formulations
 - with implicit distributions and black-box NN models
- Difference in terms of space complexity
 - depend on the problem at hand
 - choose appropriate tools:
 - implicit/explicit distribution, adversarial/maximum-likelihood optimization, ...

Z Hu, Z YANG, R Salakhutdinov, E Xing, "**On Unifying Deep Generative Models**", arxiv 1706.00550

- Deep generative models research have a long history
 - Deep blief nets / Helmholtz machines / Predictability Minimization / ...
- Unification of deep generative models
 - GANs and VAEs are essentially minimizing KLD in opposite directions
 - Extends two phases of classic wake sleep algorithm, respectively
 - A general formulation framework useful for
 - Analyzing broad class of existing DGM and variants: ADA/InfoGAN/Joint-models/...
 - Inspiring new models and algorithms by borrowing ideas across research fields
- Symmetric view of latent/visible variables
 - No difference in formulation with implicit prior distributions and black-box NN transformations
 - Difference in space complexity: choose appropriate tools

Thank You