
Toward	Controlled	Generation	
of	Text

Zhiting Hu1,2,	Zichao Yang1,	Xiaodan Liang1,	Ruslan Salakhutdinov1,	Eric	P.	Xing1,2

Carnegie	Mellon	University1

Petuum Inc2

Recent	advances	in	deep	generative	models

• Deep	generative	models
• Variational	autoencoders (VAEs)	[Kingma &	Welling,	2013]
• Generative	adversarial	networks	(GANs)	[Goodfellowet	al.,	2014]
• Auto-regressive	models

• Impressive	success	in	vision	domain
• Image	generation/editing
• Interpretable	representation	learning

[Chen	et	al.,	2016] 2

Limited	success	in	text	generation

• Task-specific	supervised	settings
• Machine	translation	/	image	captioning	/	…
• Seq2seq	models

• Generic	text	generation
• Produces	realistic	sentences	given	arbitrary	hidden	code
• VAEs,	GANs

• Mostly	limited	to	randomized	and	uncontrollable	generation

3

This	paper:	Controlled	generation	of	text

• Generation	of	realistic	sentences

• Control	of	user-specified attributes
• E.g.,	sentiment,	tense,	…
• Generates	sentences	with	sentiment	(negative/positive)	by	simply	setting	the	
sentiment	code	(0/1)

4

code

sentimenttense

.	.	. sentences

Challenge	1:	User-specified	semantics

• Impose	user-specified	semantics	on	each	
part	of	latent	code
• Methods	like	conditional	language	models	
require	large	amount	of	sentences	exhaustively	
annotated	with	all	attributes	of	interest

• This	work:
• Semi-supervised	learning

• Synthesize (sentence,	label)	pairs	for	training
• Independent	dataset	for	each	attribute

5

code

sentimenttense

.	.	.

Exhaustively	annotated	data:
``I hope he’ll make more movies in the future’’
sentiment=positive, tense=future

Independent	data:

``The film is just great’’
sentiment=positive
``I will watch the movie’’
tense=future

Challenge	2:	Non-differentiable	text	samples

• Text	samples	are	discrete	and	non-differentiable
• Disables	holistic	discriminators	that	evaluate	generated	whole	sentences
• Reconstruction-based	methods	(LM,	VAEs)	lose	holistic	view	of	whole	
sentences

• This	work:
• Enables	attribute	discriminator	through	deterministic	softmax approximation

6

Generator 	𝑥# Discriminators
X

Labels

Challenge	3:	Learning	fully	disentangled	representations

• Want	each	part	of	structured	code	to	control	one	and	only	one	
attribute
• Previous	works	lack	necessary	independence	constraints
• Especially,	varying	structured	code	can	change	implicit	attributes
• Toggling	sentiment code	change	content :

• This	work:
• Explicit	independence	constraint

7

code

sentimenttense

.	.	.

All	other	implicit	attributes

structured	code$

unstructured	code

$

Sentiment=1:	“The	movie	is	so	much	fun	.”
Sentiment=0:	“The	acting	is	bad	.”

! " Generator

Discriminators

#$Encoder#Model

• Generator:	

• Encoder:

• Discriminators:
• One	for	each	attribute	to	control
• E.g.,	for	sentiment,	discriminator	is	a	sentiment	classifier

8

Toward Controlled Generation of Text

3.2. Model Structure

We now describe our model in detail, by presenting the
learning of generator and discriminators, respectively.

Generator Learning
The generator G is an LSTM-RNN for generating token
sequence x̂ = {x̂1, . . . , x̂T } conditioned on the latent code
(z, c), which depicts a generative distribution:

ˆ

x ⇠ G(z, c) = pG(ˆx|z, c)
=

Y
t
p(x̂t|ˆx<t

, z, c),

(1)

where x̂

<t indicates the tokens preceding x̂t. The gener-
ation thus involves a sequence of discrete decision mak-
ing which samples a token from a multinomial distribution
parametrized using softmax function at each time step t:

x̂t ⇠ softmax(ot/⌧), (2)

where ot is the logit vector as the inputs to the softmax
function, and ⌧ > 0 is the temperature normally set to 1.

The unstructured part z of the representation is modeled
as continuous variables with standard Gaussian prior p(z),
while the structured code c can contain both continu-
ous and discrete variables to encode different attributes
(e.g., sentiment categories, formality) with appropriate
prior p(c). Given observation x, the base VAE includes
a conditional probabilistic encoder E to infer the latents z:

z ⇠ E(x) = qE(z|x). (3)

Let ✓G and ✓E denote the parameters of the generator G
and the encoder E, respectively. The VAE is then opti-
mized to minimize the reconstruction error of observed real
sentences, and at the same time regularize the encoder to be
close to the prior p(z):

LVAE(✓G,✓E ;x) = � KL(qE(z|x)kp(z))
+ EqE(z|x)qD(c|x) [log pG(x|z, c)] , (4)

where KL(·k·) is the KL-divergence; and qD(c|x) is the
conditional distribution defined by the discriminator D for
each structured variable in c:

D(x) = qD(c|x). (5)

Here, for notational simplicity, we assume only one struc-
tured variable and thus one discriminator, though our
model specification can straightforwardly be applied to
many attributes. The distribution over (z, c) factors into
qE and qD as we are learning disentangled representa-
tions. Note that here the discriminator D and code c are
not learned with the VAE loss, but instead optimized with

the objectives described shortly. Besides the reconstruc-
tion loss which drives the generator to produce realistic
sentences, the discriminator provides extra learning signals
which enforce the generator to produce coherent attribute
that matches the structured code in c. However, as it is
impossible to propagate gradients from the discriminator
through the discrete samples, we resort to a deterministic
continuous approximation. The approximation replaces the
sampled token x̂t (represented as a one-hot vector) at each
step with the probability vector in Eq.(2) which is differ-
entiable w.r.t the generator’s parameters. The probability
vector is used as the output at the current step and the input
to the next step along the sequence of decision making. The
resulting “soft” generated sentence, denoted as e

G⌧ (z, c), is
fed into the discriminator1 to measure the fitness to the tar-
get attribute, leading to the following loss for improving G:

LAttr,c(✓G) = Ep(z)p(c)

h
log qD(c| eG⌧ (z, c))

i
. (6)

The temperature ⌧ (Eq.2) is set to ⌧ ! 0 as training pro-
ceeds, yielding increasingly peaked distributions that fi-
nally emulate discrete case. The simple deterministic ap-
proximation effectively leads to reduced variance and fast
convergence during training, which enables efficient learn-
ing of the conditional generator. The diversity of genera-
tion results is guaranteed since we use the approximation
only for attribute modeling and the base sentence genera-
tion is learned through VAEs.

With the objective in Eq.(6), each structured attribute of
generated sentences is controlled through the correspond-
ing code in c and is independent with other variables in the
latent representation. However, it is still possible that other
attributes not explicitly modeled may also entangle with the
code in c, and thus varying a dimension of c can yield unex-
pected variation of these attributes we are not interested in.
To address this, we introduce the independency constraint
which separates these attributes with c by enforcing them
to be fully captured by the unstructured part z. Therefore,
besides the attributes explicitly encoded in c, we also train
the generator so that other non-explicit attributes can be
correctly recognized from the generated samples and match
the unstructured code z. Instead of building a new discrim-
inator, we reuse the variational encoder E which serves
precisely to infer the latents z in the base VAE. The loss
is in the same form as with Eq.(6) except replacing the dis-
criminator conditional qD with the encoder conditional qE :

LAttr,z(✓G) = Ep(z)p(c)

h
log qE(z| eG⌧ (z, c))

i
. (7)

Note that, as the discriminator in Eq.(6), the encoder now
1The probability vector thus functions to average over the

word embedding matrix to obtain a “soft” word embedding at
each step.

Toward Controlled Generation of Text

3.2. Model Structure

We now describe our model in detail, by presenting the
learning of generator and discriminators, respectively.

Generator Learning
The generator G is an LSTM-RNN for generating token
sequence x̂ = {x̂1, . . . , x̂T } conditioned on the latent code
(z, c), which depicts a generative distribution:

ˆ

x ⇠ G(z, c) = pG(ˆx|z, c)
=

Y
t
p(x̂t|ˆx<t

, z, c),

(1)

where x̂

<t indicates the tokens preceding x̂t. The gener-
ation thus involves a sequence of discrete decision mak-
ing which samples a token from a multinomial distribution
parametrized using softmax function at each time step t:

x̂t ⇠ softmax(ot/⌧), (2)

where ot is the logit vector as the inputs to the softmax
function, and ⌧ > 0 is the temperature normally set to 1.

The unstructured part z of the representation is modeled
as continuous variables with standard Gaussian prior p(z),
while the structured code c can contain both continu-
ous and discrete variables to encode different attributes
(e.g., sentiment categories, formality) with appropriate
prior p(c). Given observation x, the base VAE includes
a conditional probabilistic encoder E to infer the latents z:

z ⇠ E(x) = qE(z|x). (3)

Let ✓G and ✓E denote the parameters of the generator G
and the encoder E, respectively. The VAE is then opti-
mized to minimize the reconstruction error of observed real
sentences, and at the same time regularize the encoder to be
close to the prior p(z):

LVAE(✓G,✓E ;x) = � KL(qE(z|x)kp(z))
+ EqE(z|x)qD(c|x) [log pG(x|z, c)] , (4)

where KL(·k·) is the KL-divergence; and qD(c|x) is the
conditional distribution defined by the discriminator D for
each structured variable in c:

D(x) = qD(c|x). (5)

Here, for notational simplicity, we assume only one struc-
tured variable and thus one discriminator, though our
model specification can straightforwardly be applied to
many attributes. The distribution over (z, c) factors into
qE and qD as we are learning disentangled representa-
tions. Note that here the discriminator D and code c are
not learned with the VAE loss, but instead optimized with

the objectives described shortly. Besides the reconstruc-
tion loss which drives the generator to produce realistic
sentences, the discriminator provides extra learning signals
which enforce the generator to produce coherent attribute
that matches the structured code in c. However, as it is
impossible to propagate gradients from the discriminator
through the discrete samples, we resort to a deterministic
continuous approximation. The approximation replaces the
sampled token x̂t (represented as a one-hot vector) at each
step with the probability vector in Eq.(2) which is differ-
entiable w.r.t the generator’s parameters. The probability
vector is used as the output at the current step and the input
to the next step along the sequence of decision making. The
resulting “soft” generated sentence, denoted as e

G⌧ (z, c), is
fed into the discriminator1 to measure the fitness to the tar-
get attribute, leading to the following loss for improving G:

LAttr,c(✓G) = Ep(z)p(c)

h
log qD(c| eG⌧ (z, c))

i
. (6)

The temperature ⌧ (Eq.2) is set to ⌧ ! 0 as training pro-
ceeds, yielding increasingly peaked distributions that fi-
nally emulate discrete case. The simple deterministic ap-
proximation effectively leads to reduced variance and fast
convergence during training, which enables efficient learn-
ing of the conditional generator. The diversity of genera-
tion results is guaranteed since we use the approximation
only for attribute modeling and the base sentence genera-
tion is learned through VAEs.

With the objective in Eq.(6), each structured attribute of
generated sentences is controlled through the correspond-
ing code in c and is independent with other variables in the
latent representation. However, it is still possible that other
attributes not explicitly modeled may also entangle with the
code in c, and thus varying a dimension of c can yield unex-
pected variation of these attributes we are not interested in.
To address this, we introduce the independency constraint
which separates these attributes with c by enforcing them
to be fully captured by the unstructured part z. Therefore,
besides the attributes explicitly encoded in c, we also train
the generator so that other non-explicit attributes can be
correctly recognized from the generated samples and match
the unstructured code z. Instead of building a new discrim-
inator, we reuse the variational encoder E which serves
precisely to infer the latents z in the base VAE. The loss
is in the same form as with Eq.(6) except replacing the dis-
criminator conditional qD with the encoder conditional qE :

LAttr,z(✓G) = Ep(z)p(c)

h
log qE(z| eG⌧ (z, c))

i
. (7)

Note that, as the discriminator in Eq.(6), the encoder now
1The probability vector thus functions to average over the

word embedding matrix to obtain a “soft” word embedding at
each step.

Toward Controlled Generation of Text

3.2. Model Structure

We now describe our model in detail, by presenting the
learning of generator and discriminators, respectively.

Generator Learning
The generator G is an LSTM-RNN for generating token
sequence x̂ = {x̂1, . . . , x̂T } conditioned on the latent code
(z, c), which depicts a generative distribution:

ˆ

x ⇠ G(z, c) = pG(ˆx|z, c)
=

Y
t
p(x̂t|ˆx<t

, z, c),

(1)

where x̂

<t indicates the tokens preceding x̂t. The gener-
ation thus involves a sequence of discrete decision mak-
ing which samples a token from a multinomial distribution
parametrized using softmax function at each time step t:

x̂t ⇠ softmax(ot/⌧), (2)

where ot is the logit vector as the inputs to the softmax
function, and ⌧ > 0 is the temperature normally set to 1.

The unstructured part z of the representation is modeled
as continuous variables with standard Gaussian prior p(z),
while the structured code c can contain both continu-
ous and discrete variables to encode different attributes
(e.g., sentiment categories, formality) with appropriate
prior p(c). Given observation x, the base VAE includes
a conditional probabilistic encoder E to infer the latents z:

z ⇠ E(x) = qE(z|x). (3)

Let ✓G and ✓E denote the parameters of the generator G
and the encoder E, respectively. The VAE is then opti-
mized to minimize the reconstruction error of observed real
sentences, and at the same time regularize the encoder to be
close to the prior p(z):

LVAE(✓G,✓E ;x) = � KL(qE(z|x)kp(z))
+ EqE(z|x)qD(c|x) [log pG(x|z, c)] , (4)

where KL(·k·) is the KL-divergence; and qD(c|x) is the
conditional distribution defined by the discriminator D for
each structured variable in c:

D(x) = qD(c|x). (5)

Here, for notational simplicity, we assume only one struc-
tured variable and thus one discriminator, though our
model specification can straightforwardly be applied to
many attributes. The distribution over (z, c) factors into
qE and qD as we are learning disentangled representa-
tions. Note that here the discriminator D and code c are
not learned with the VAE loss, but instead optimized with

the objectives described shortly. Besides the reconstruc-
tion loss which drives the generator to produce realistic
sentences, the discriminator provides extra learning signals
which enforce the generator to produce coherent attribute
that matches the structured code in c. However, as it is
impossible to propagate gradients from the discriminator
through the discrete samples, we resort to a deterministic
continuous approximation. The approximation replaces the
sampled token x̂t (represented as a one-hot vector) at each
step with the probability vector in Eq.(2) which is differ-
entiable w.r.t the generator’s parameters. The probability
vector is used as the output at the current step and the input
to the next step along the sequence of decision making. The
resulting “soft” generated sentence, denoted as e

G⌧ (z, c), is
fed into the discriminator1 to measure the fitness to the tar-
get attribute, leading to the following loss for improving G:

LAttr,c(✓G) = Ep(z)p(c)

h
log qD(c| eG⌧ (z, c))

i
. (6)

The temperature ⌧ (Eq.2) is set to ⌧ ! 0 as training pro-
ceeds, yielding increasingly peaked distributions that fi-
nally emulate discrete case. The simple deterministic ap-
proximation effectively leads to reduced variance and fast
convergence during training, which enables efficient learn-
ing of the conditional generator. The diversity of genera-
tion results is guaranteed since we use the approximation
only for attribute modeling and the base sentence genera-
tion is learned through VAEs.

With the objective in Eq.(6), each structured attribute of
generated sentences is controlled through the correspond-
ing code in c and is independent with other variables in the
latent representation. However, it is still possible that other
attributes not explicitly modeled may also entangle with the
code in c, and thus varying a dimension of c can yield unex-
pected variation of these attributes we are not interested in.
To address this, we introduce the independency constraint
which separates these attributes with c by enforcing them
to be fully captured by the unstructured part z. Therefore,
besides the attributes explicitly encoded in c, we also train
the generator so that other non-explicit attributes can be
correctly recognized from the generated samples and match
the unstructured code z. Instead of building a new discrim-
inator, we reuse the variational encoder E which serves
precisely to infer the latents z in the base VAE. The loss
is in the same form as with Eq.(6) except replacing the dis-
criminator conditional qD with the encoder conditional qE :

LAttr,z(✓G) = Ep(z)p(c)

h
log qE(z| eG⌧ (z, c))

i
. (7)

Note that, as the discriminator in Eq.(6), the encoder now
1The probability vector thus functions to average over the

word embedding matrix to obtain a “soft” word embedding at
each step.

Toward Controlled Generation of Text

Zhiting Hu1,2, Zichao Yang1, Xiaodan Liang1,2, Ruslan Salakhutdinov1, and Eric P. Xing1,2

Carnegie Mellon University1, Petuum Inc.2

Introduction

•Resurgence of interests in deep generative models (DGMs)

–VAEs, GANs, auto-regressive networks, ...

• Impressive in vision domain:

– Image generation/editing, interpretable representations, ...

•Limited success in text generation
–Task-specific applications in supervised settings:
machine translation, image captioning, ...

–Not applicable to generic text generation that produces realistic
sentences given abitrary hidden code

–Previous randomized and uncontrollable generic generation

Goal of this paper:

•Generic generation of realistic sentences

•Control of atrributes (e.g., sentiment, tense) by learning disentangled
representations

Challenges to address:

(1) Imposing user-specified semantics on each part of latent code:

•Requires large number of sentences exhaustively annotated
with all attributes of interest

(2)Non-differentiability of descrete text samples:

•Disables holistic discriminators that guides generator learning

(3)Learning fully disentangled latent representations:

•Want each part of code to govern one and only one attribute

•Previous works (e.g., InfoGAN) lack explicit independence con-
traints

Controlled Text Generation Model

Overview of proposed generative model:

(1)VAEs in combination with seperate discriminator for each attribute

•VAE-based reconstruction ensures generating realistic sentences

•Discriminator provides holistic metric for attribute learning

•Each discriminator can be trained seperately using seperate la-
beled data

•Enables semi-supervised learning

(2)Differentiable softmax approximation to text samples

•Deterministic approximation Helps fast convergence

(3)Explicit independence constraint

•Each dimension of structured code control one attribute of interest
• Implicit attributes are compeletely captured by unstructured code

•z: unstructured latent code
•c: structured latent code controlling attributes of interest

•Blue dashed arrows: independence constraint

•Red arrows: gradient propagation enabled by differentiable softmax
approximation

Model structure:
•Generator G: an LSTM-RNN generating sequence x̂ = {x̂1, . . . , x̂T}
conditioning on latent code (z, c):

x̂ ∼ G(z, c) = pG(x̂|z, c) =
∏

t
p(x̂t|x̂

<t, z, c)

x̂t ∼ softmax(ot/τ)
(1)

where ot is logit vector, τ > 0 the temperature normally set to 1.

•A conditional encoder E to infer unstructured code z given x:

z ∼ E(x) = qE(z|x) (2)

•Discriminator D for each attribute variable in structured code c:

D(x) = qD(c|x). (3)

Generator learning:

•Base VAE loss (reconstruction) for realistic sentence generation:

LVAE(θG,θE;x) = − KL(qE(z|x)∥p(z))
+ EqE(z|x)qD(c|x) [log pG(x|z, c)] ,

(4)

•Attribute loss by discriminators for imposing semantics on code c:

LAttr,c(θG) = Ep(z)p(c)

[
log qD(c|G̃τ(z, c))

]
. (5)

–Replace discrete token x̂t with softmax probability vector in Eq.(1)

–Temperature τ → 0: increasingly peaked distributions

–Resulting deterministic differentiable approximation G̃τ(z, c) to
sample G(z, c)

•Explicit independence constraint:

LAttr,z(θG) = Ep(z)p(c)

[
log qE(z|G̃τ(z, c))

]
. (6)

–Enforce implicit attributes to be fully captured by the unstructured
part z, i.e., independent with c

–Train G so that implicit attributes can be correctly recognized from
the generated samples and match the unstructured code z

–Reuse encoderE as an extra discriminator to provide learning signal

• Joint loss: minθG LG = LVAE + λcLAttr,c + λzLAttr,z

Discriminator learning:

•Supervised loss on labeled data (xL, cL) for semantics of c:

Ls(θD) = EXL [log qD(cL|xL)] . (7)

•Unsupervised loss leveraging synthesized data (x̂, c):

Lu(θD) = EpG(x̂|z,c)p(z)p(c)

[
log qD(c|x̂) + βH(qD(c

′|x̂))
]
, (8)

–H(q): Shannon entropy for minimum entropy regularization

• Joint loss: minθD LD = Ls + λuLu

Wake sleep interpretation:

•The proposed model is a combination of VAEs with and extended
wake-sleep (WS) algorithm

•More on unifying deep generative models (VAEs/GANs/WS) [1]

Fig 1: Left: the VAE and
wake procedure, Eq.(4).
Right: the sleep proce-
dure, Eqs.(5)-(6), (8)

Model
Dataset

SST-full SST-small Lexicon

S-VAE 0.822 0.679 0.660
Ours 0.851 0.707 0.701

Tab 1: Sentiment accuracy of sam-
ples evaluated with a pretrained sen-
timent classifier.

Experiments

•Train on IMDB text corpus with 350K sentences (max lenth=15)

•Control sentiment and tense with seperate labeled small datasets

w/ independence constraint w/o independence constraint

the film is strictly routine ! the acting is bad .
the film is full of imagination . the movie is so much fun .

the acting is uniformly bad either . too bland
the performances are uniformly good . highly watchable

this is just awful . none of this is very original .
this is pure genius . highly recommended viewing for its courage .

Varying the unstructured code z

(“negative”, “past”) (“positive”, “past”)
the acting was also kind of hit or miss . his acting was impeccable
i wish i ’d never seen it this was spectacular
by the end i was so lost it was a lot of fun

(“negative”, “future”) (“positive”, “future”)
i wo n’t watch the movie i hope he ’ll make more movies in the future
and that would be devastating ! i will definitely be buying this on dvd
i wo n’t get into the story you will be thinking about it

Reference
[1] Zhiting Hu, Zichao Yang, Ruslan Salakhutdinov, and Eric P Xing. On unifying deep generative models. arXiv preprint

arXiv:1706.00550, 2017

structured	codeunstructured	code

Generator	Learning

• Generate	realistic sentences

9

structured	codeunstructured	code

! " Generator

Discriminators

#$Encoder#

Note on Unification of GANs/VAEs/ADA/...

Zhiting Hu
zhitinghu@gmail.com

zsrc

ztgt

xsrc

xtgt

y

z

xreal

xfake

x

zgen

xgen

xdata

G✓

D�

p✓(x|y)
q�(y|x)/qr�(y|x)

q(r)� (y|x)

q⌘(z|x, y)
qr⇤(y|x)

q(r)⇤ (y|x)
p✓(x|z, y)
p✓(x|z, y)

q(r)� (y|z)

q⌘(z|y)

LVAE(✓G,✓E ;x) = EqE(z|x)qD(c|x) [log pG(x|z, c)]� KL(qE(z|x)kp(z)) (1)

! " Generator

Discriminators

#$Encoder# ! " Generator

Discriminators

#$Encoder#

Note on Unification of GANs/VAEs/ADA/...

Zhiting Hu
zhitinghu@gmail.com

zsrc

ztgt

xsrc

xtgt

y

z

xreal

xfake

x

zgen

xgen

xdata

G✓

D�

p✓(x|y)
q�(y|x)/qr�(y|x)

q(r)� (y|x)

q⌘(z|x, y)
qr⇤(y|x)

q(r)⇤ (y|x)
p✓(x|z, y)
p✓(x|z, y)

q(r)� (y|z)

q⌘(z|y)

LVAE(✓G,✓E ;x) = EqE(z|x)qD(c|x) [log pG(x|z, c)]� KL(qE(z|x)kp(z)) (1)
• Generate	realistic sentences

• Generate	sentences	with	attributes	specified	in	the	code
• Discriminators	evaluate	generated	sentences	and	backpropagategradients
• Deterministic	softmax approximation	of	discrete	text	sentences

• Replace	discrete	token	𝑥#% (one-hot	vector)	with	probability	vector

10

Toward Controlled Generation of Text

3.2. Model Structure

We now describe our model in detail, by presenting the
learning of generator and discriminators, respectively.

Generator Learning
The generator G is an LSTM-RNN for generating token
sequence x̂ = {x̂1, . . . , x̂T } conditioned on the latent code
(z, c), which depicts a generative distribution:

ˆ

x ⇠ G(z, c) = pG(ˆx|z, c)
=

Y
t
p(x̂t|ˆx<t

, z, c),

(1)

where x̂

<t indicates the tokens preceding x̂t. The gener-
ation thus involves a sequence of discrete decision mak-
ing which samples a token from a multinomial distribution
parametrized using softmax function at each time step t:

x̂t ⇠ softmax(ot/⌧), (2)

where ot is the logit vector as the inputs to the softmax
function, and ⌧ > 0 is the temperature normally set to 1.

The unstructured part z of the representation is modeled
as continuous variables with standard Gaussian prior p(z),
while the structured code c can contain both continu-
ous and discrete variables to encode different attributes
(e.g., sentiment categories, formality) with appropriate
prior p(c). Given observation x, the base VAE includes
a conditional probabilistic encoder E to infer the latents z:

z ⇠ E(x) = qE(z|x). (3)

Let ✓G and ✓E denote the parameters of the generator G
and the encoder E, respectively. The VAE is then opti-
mized to minimize the reconstruction error of observed real
sentences, and at the same time regularize the encoder to be
close to the prior p(z):

LVAE(✓G,✓E ;x) = � KL(qE(z|x)kp(z))
+ EqE(z|x)qD(c|x) [log pG(x|z, c)] , (4)

where KL(·k·) is the KL-divergence; and qD(c|x) is the
conditional distribution defined by the discriminator D for
each structured variable in c:

D(x) = qD(c|x). (5)

Here, for notational simplicity, we assume only one struc-
tured variable and thus one discriminator, though our
model specification can straightforwardly be applied to
many attributes. The distribution over (z, c) factors into
qE and qD as we are learning disentangled representa-
tions. Note that here the discriminator D and code c are
not learned with the VAE loss, but instead optimized with

the objectives described shortly. Besides the reconstruc-
tion loss which drives the generator to produce realistic
sentences, the discriminator provides extra learning signals
which enforce the generator to produce coherent attribute
that matches the structured code in c. However, as it is
impossible to propagate gradients from the discriminator
through the discrete samples, we resort to a deterministic
continuous approximation. The approximation replaces the
sampled token x̂t (represented as a one-hot vector) at each
step with the probability vector in Eq.(2) which is differ-
entiable w.r.t the generator’s parameters. The probability
vector is used as the output at the current step and the input
to the next step along the sequence of decision making. The
resulting “soft” generated sentence, denoted as e

G⌧ (z, c), is
fed into the discriminator1 to measure the fitness to the tar-
get attribute, leading to the following loss for improving G:

LAttr,c(✓G) = Ep(z)p(c)

h
log qD(c| eG⌧ (z, c))

i
. (6)

The temperature ⌧ (Eq.2) is set to ⌧ ! 0 as training pro-
ceeds, yielding increasingly peaked distributions that fi-
nally emulate discrete case. The simple deterministic ap-
proximation effectively leads to reduced variance and fast
convergence during training, which enables efficient learn-
ing of the conditional generator. The diversity of genera-
tion results is guaranteed since we use the approximation
only for attribute modeling and the base sentence genera-
tion is learned through VAEs.

With the objective in Eq.(6), each structured attribute of
generated sentences is controlled through the correspond-
ing code in c and is independent with other variables in the
latent representation. However, it is still possible that other
attributes not explicitly modeled may also entangle with the
code in c, and thus varying a dimension of c can yield unex-
pected variation of these attributes we are not interested in.
To address this, we introduce the independency constraint
which separates these attributes with c by enforcing them
to be fully captured by the unstructured part z. Therefore,
besides the attributes explicitly encoded in c, we also train
the generator so that other non-explicit attributes can be
correctly recognized from the generated samples and match
the unstructured code z. Instead of building a new discrim-
inator, we reuse the variational encoder E which serves
precisely to infer the latents z in the base VAE. The loss
is in the same form as with Eq.(6) except replacing the dis-
criminator conditional qD with the encoder conditional qE :

LAttr,z(✓G) = Ep(z)p(c)

h
log qE(z| eG⌧ (z, c))

i
. (7)

Note that, as the discriminator in Eq.(6), the encoder now
1The probability vector thus functions to average over the

word embedding matrix to obtain a “soft” word embedding at
each step.

structured	codeunstructured	code

Generator	Learning

Toward Controlled Generation of Text

3.2. Model Structure

We now describe our model in detail, by presenting the
learning of generator and discriminators, respectively.

Generator Learning
The generator G is an LSTM-RNN for generating token
sequence x̂ = {x̂1, . . . , x̂T } conditioned on the latent code
(z, c), which depicts a generative distribution:

ˆ

x ⇠ G(z, c) = pG(ˆx|z, c)
=

Y
t
p(x̂t|ˆx<t

, z, c),

(1)

where x̂

<t indicates the tokens preceding x̂t. The gener-
ation thus involves a sequence of discrete decision mak-
ing which samples a token from a multinomial distribution
parametrized using softmax function at each time step t:

x̂t ⇠ softmax(ot/⌧), (2)

where ot is the logit vector as the inputs to the softmax
function, and ⌧ > 0 is the temperature normally set to 1.

The unstructured part z of the representation is modeled
as continuous variables with standard Gaussian prior p(z),
while the structured code c can contain both continu-
ous and discrete variables to encode different attributes
(e.g., sentiment categories, formality) with appropriate
prior p(c). Given observation x, the base VAE includes
a conditional probabilistic encoder E to infer the latents z:

z ⇠ E(x) = qE(z|x). (3)

Let ✓G and ✓E denote the parameters of the generator G
and the encoder E, respectively. The VAE is then opti-
mized to minimize the reconstruction error of observed real
sentences, and at the same time regularize the encoder to be
close to the prior p(z):

LVAE(✓G,✓E ;x) = � KL(qE(z|x)kp(z))
+ EqE(z|x)qD(c|x) [log pG(x|z, c)] , (4)

where KL(·k·) is the KL-divergence; and qD(c|x) is the
conditional distribution defined by the discriminator D for
each structured variable in c:

D(x) = qD(c|x). (5)

Here, for notational simplicity, we assume only one struc-
tured variable and thus one discriminator, though our
model specification can straightforwardly be applied to
many attributes. The distribution over (z, c) factors into
qE and qD as we are learning disentangled representa-
tions. Note that here the discriminator D and code c are
not learned with the VAE loss, but instead optimized with

the objectives described shortly. Besides the reconstruc-
tion loss which drives the generator to produce realistic
sentences, the discriminator provides extra learning signals
which enforce the generator to produce coherent attribute
that matches the structured code in c. However, as it is
impossible to propagate gradients from the discriminator
through the discrete samples, we resort to a deterministic
continuous approximation. The approximation replaces the
sampled token x̂t (represented as a one-hot vector) at each
step with the probability vector in Eq.(2) which is differ-
entiable w.r.t the generator’s parameters. The probability
vector is used as the output at the current step and the input
to the next step along the sequence of decision making. The
resulting “soft” generated sentence, denoted as e

G⌧ (z, c), is
fed into the discriminator1 to measure the fitness to the tar-
get attribute, leading to the following loss for improving G:

LAttr,c(✓G) = Ep(z)p(c)

h
log qD(c| eG⌧ (z, c))

i
. (6)

The temperature ⌧ (Eq.2) is set to ⌧ ! 0 as training pro-
ceeds, yielding increasingly peaked distributions that fi-
nally emulate discrete case. The simple deterministic ap-
proximation effectively leads to reduced variance and fast
convergence during training, which enables efficient learn-
ing of the conditional generator. The diversity of genera-
tion results is guaranteed since we use the approximation
only for attribute modeling and the base sentence genera-
tion is learned through VAEs.

With the objective in Eq.(6), each structured attribute of
generated sentences is controlled through the correspond-
ing code in c and is independent with other variables in the
latent representation. However, it is still possible that other
attributes not explicitly modeled may also entangle with the
code in c, and thus varying a dimension of c can yield unex-
pected variation of these attributes we are not interested in.
To address this, we introduce the independency constraint
which separates these attributes with c by enforcing them
to be fully captured by the unstructured part z. Therefore,
besides the attributes explicitly encoded in c, we also train
the generator so that other non-explicit attributes can be
correctly recognized from the generated samples and match
the unstructured code z. Instead of building a new discrim-
inator, we reuse the variational encoder E which serves
precisely to infer the latents z in the base VAE. The loss
is in the same form as with Eq.(6) except replacing the dis-
criminator conditional qD with the encoder conditional qE :

LAttr,z(✓G) = Ep(z)p(c)

h
log qE(z| eG⌧ (z, c))

i
. (7)

Note that, as the discriminator in Eq.(6), the encoder now
1The probability vector thus functions to average over the

word embedding matrix to obtain a “soft” word embedding at
each step.

! " Generator

Discriminators

#$Encoder#

• Generate	realistic sentences

• Generate	sentences	with	attributes	specified	in	the	code
• Discriminators	evaluate	generated	sentences	and	backpropagategradients
• Deterministic	softmax approximation	of	discrete	text	sentences

• Replace	discrete	token	𝑥#% (one-hot	vector)	with	probability	vector

• Independence	constraint
• Implicit	attributes	should	be	fully	modeled	in	𝒛 and	independent	with	𝒄

Generator	Learning

11

Toward Controlled Generation of Text

3.2. Model Structure

We now describe our model in detail, by presenting the
learning of generator and discriminators, respectively.

Generator Learning
The generator G is an LSTM-RNN for generating token
sequence x̂ = {x̂1, . . . , x̂T } conditioned on the latent code
(z, c), which depicts a generative distribution:

ˆ

x ⇠ G(z, c) = pG(ˆx|z, c)
=

Y
t
p(x̂t|ˆx<t

, z, c),

(1)

where x̂

<t indicates the tokens preceding x̂t. The gener-
ation thus involves a sequence of discrete decision mak-
ing which samples a token from a multinomial distribution
parametrized using softmax function at each time step t:

x̂t ⇠ softmax(ot/⌧), (2)

where ot is the logit vector as the inputs to the softmax
function, and ⌧ > 0 is the temperature normally set to 1.

The unstructured part z of the representation is modeled
as continuous variables with standard Gaussian prior p(z),
while the structured code c can contain both continu-
ous and discrete variables to encode different attributes
(e.g., sentiment categories, formality) with appropriate
prior p(c). Given observation x, the base VAE includes
a conditional probabilistic encoder E to infer the latents z:

z ⇠ E(x) = qE(z|x). (3)

Let ✓G and ✓E denote the parameters of the generator G
and the encoder E, respectively. The VAE is then opti-
mized to minimize the reconstruction error of observed real
sentences, and at the same time regularize the encoder to be
close to the prior p(z):

LVAE(✓G,✓E ;x) = � KL(qE(z|x)kp(z))
+ EqE(z|x)qD(c|x) [log pG(x|z, c)] , (4)

where KL(·k·) is the KL-divergence; and qD(c|x) is the
conditional distribution defined by the discriminator D for
each structured variable in c:

D(x) = qD(c|x). (5)

Here, for notational simplicity, we assume only one struc-
tured variable and thus one discriminator, though our
model specification can straightforwardly be applied to
many attributes. The distribution over (z, c) factors into
qE and qD as we are learning disentangled representa-
tions. Note that here the discriminator D and code c are
not learned with the VAE loss, but instead optimized with

the objectives described shortly. Besides the reconstruc-
tion loss which drives the generator to produce realistic
sentences, the discriminator provides extra learning signals
which enforce the generator to produce coherent attribute
that matches the structured code in c. However, as it is
impossible to propagate gradients from the discriminator
through the discrete samples, we resort to a deterministic
continuous approximation. The approximation replaces the
sampled token x̂t (represented as a one-hot vector) at each
step with the probability vector in Eq.(2) which is differ-
entiable w.r.t the generator’s parameters. The probability
vector is used as the output at the current step and the input
to the next step along the sequence of decision making. The
resulting “soft” generated sentence, denoted as e

G⌧ (z, c), is
fed into the discriminator1 to measure the fitness to the tar-
get attribute, leading to the following loss for improving G:

LAttr,c(✓G) = Ep(z)p(c)

h
log qD(c| eG⌧ (z, c))

i
. (6)

The temperature ⌧ (Eq.2) is set to ⌧ ! 0 as training pro-
ceeds, yielding increasingly peaked distributions that fi-
nally emulate discrete case. The simple deterministic ap-
proximation effectively leads to reduced variance and fast
convergence during training, which enables efficient learn-
ing of the conditional generator. The diversity of genera-
tion results is guaranteed since we use the approximation
only for attribute modeling and the base sentence genera-
tion is learned through VAEs.

With the objective in Eq.(6), each structured attribute of
generated sentences is controlled through the correspond-
ing code in c and is independent with other variables in the
latent representation. However, it is still possible that other
attributes not explicitly modeled may also entangle with the
code in c, and thus varying a dimension of c can yield unex-
pected variation of these attributes we are not interested in.
To address this, we introduce the independency constraint
which separates these attributes with c by enforcing them
to be fully captured by the unstructured part z. Therefore,
besides the attributes explicitly encoded in c, we also train
the generator so that other non-explicit attributes can be
correctly recognized from the generated samples and match
the unstructured code z. Instead of building a new discrim-
inator, we reuse the variational encoder E which serves
precisely to infer the latents z in the base VAE. The loss
is in the same form as with Eq.(6) except replacing the dis-
criminator conditional qD with the encoder conditional qE :

LAttr,z(✓G) = Ep(z)p(c)

h
log qE(z| eG⌧ (z, c))

i
. (7)

Note that, as the discriminator in Eq.(6), the encoder now
1The probability vector thus functions to average over the

word embedding matrix to obtain a “soft” word embedding at
each step.

Toward Controlled Generation of Text

3.2. Model Structure

We now describe our model in detail, by presenting the
learning of generator and discriminators, respectively.

Generator Learning
The generator G is an LSTM-RNN for generating token
sequence x̂ = {x̂1, . . . , x̂T } conditioned on the latent code
(z, c), which depicts a generative distribution:

ˆ

x ⇠ G(z, c) = pG(ˆx|z, c)
=

Y
t
p(x̂t|ˆx<t

, z, c),

(1)

where x̂

<t indicates the tokens preceding x̂t. The gener-
ation thus involves a sequence of discrete decision mak-
ing which samples a token from a multinomial distribution
parametrized using softmax function at each time step t:

x̂t ⇠ softmax(ot/⌧), (2)

where ot is the logit vector as the inputs to the softmax
function, and ⌧ > 0 is the temperature normally set to 1.

The unstructured part z of the representation is modeled
as continuous variables with standard Gaussian prior p(z),
while the structured code c can contain both continu-
ous and discrete variables to encode different attributes
(e.g., sentiment categories, formality) with appropriate
prior p(c). Given observation x, the base VAE includes
a conditional probabilistic encoder E to infer the latents z:

z ⇠ E(x) = qE(z|x). (3)

Let ✓G and ✓E denote the parameters of the generator G
and the encoder E, respectively. The VAE is then opti-
mized to minimize the reconstruction error of observed real
sentences, and at the same time regularize the encoder to be
close to the prior p(z):

LVAE(✓G,✓E ;x) = � KL(qE(z|x)kp(z))
+ EqE(z|x)qD(c|x) [log pG(x|z, c)] , (4)

where KL(·k·) is the KL-divergence; and qD(c|x) is the
conditional distribution defined by the discriminator D for
each structured variable in c:

D(x) = qD(c|x). (5)

Here, for notational simplicity, we assume only one struc-
tured variable and thus one discriminator, though our
model specification can straightforwardly be applied to
many attributes. The distribution over (z, c) factors into
qE and qD as we are learning disentangled representa-
tions. Note that here the discriminator D and code c are
not learned with the VAE loss, but instead optimized with

the objectives described shortly. Besides the reconstruc-
tion loss which drives the generator to produce realistic
sentences, the discriminator provides extra learning signals
which enforce the generator to produce coherent attribute
that matches the structured code in c. However, as it is
impossible to propagate gradients from the discriminator
through the discrete samples, we resort to a deterministic
continuous approximation. The approximation replaces the
sampled token x̂t (represented as a one-hot vector) at each
step with the probability vector in Eq.(2) which is differ-
entiable w.r.t the generator’s parameters. The probability
vector is used as the output at the current step and the input
to the next step along the sequence of decision making. The
resulting “soft” generated sentence, denoted as e

G⌧ (z, c), is
fed into the discriminator1 to measure the fitness to the tar-
get attribute, leading to the following loss for improving G:

LAttr,c(✓G) = Ep(z)p(c)

h
log qD(c| eG⌧ (z, c))

i
. (6)

The temperature ⌧ (Eq.2) is set to ⌧ ! 0 as training pro-
ceeds, yielding increasingly peaked distributions that fi-
nally emulate discrete case. The simple deterministic ap-
proximation effectively leads to reduced variance and fast
convergence during training, which enables efficient learn-
ing of the conditional generator. The diversity of genera-
tion results is guaranteed since we use the approximation
only for attribute modeling and the base sentence genera-
tion is learned through VAEs.

With the objective in Eq.(6), each structured attribute of
generated sentences is controlled through the correspond-
ing code in c and is independent with other variables in the
latent representation. However, it is still possible that other
attributes not explicitly modeled may also entangle with the
code in c, and thus varying a dimension of c can yield unex-
pected variation of these attributes we are not interested in.
To address this, we introduce the independency constraint
which separates these attributes with c by enforcing them
to be fully captured by the unstructured part z. Therefore,
besides the attributes explicitly encoded in c, we also train
the generator so that other non-explicit attributes can be
correctly recognized from the generated samples and match
the unstructured code z. Instead of building a new discrim-
inator, we reuse the variational encoder E which serves
precisely to infer the latents z in the base VAE. The loss
is in the same form as with Eq.(6) except replacing the dis-
criminator conditional qD with the encoder conditional qE :

LAttr,z(✓G) = Ep(z)p(c)

h
log qE(z| eG⌧ (z, c))

i
. (7)

Note that, as the discriminator in Eq.(6), the encoder now
1The probability vector thus functions to average over the

word embedding matrix to obtain a “soft” word embedding at
each step.

structured	codeunstructured	code

Note on Unification of GANs/VAEs/ADA/...

Zhiting Hu
zhitinghu@gmail.com

zsrc

ztgt

xsrc

xtgt

y

z

xreal

xfake

x

zgen

xgen

xdata

G✓

D�

p✓(x|y)
q�(y|x)/qr�(y|x)

q(r)� (y|x)

q⌘(z|x, y)
qr⇤(y|x)

q(r)⇤ (y|x)
p✓(x|z, y)
p✓(x|z, y)

q(r)� (y|z)

q⌘(z|y)

LVAE(✓G,✓E ;x) = EqE(z|x)qD(c|x) [log pG(x|z, c)]� KL(qE(z|x)kp(z)) (1)

Toward Controlled Generation of Text

3.2. Model Structure

We now describe our model in detail, by presenting the
learning of generator and discriminators, respectively.

Generator Learning
The generator G is an LSTM-RNN for generating token
sequence x̂ = {x̂1, . . . , x̂T } conditioned on the latent code
(z, c), which depicts a generative distribution:

ˆ

x ⇠ G(z, c) = pG(ˆx|z, c)
=

Y
t
p(x̂t|ˆx<t

, z, c),

(1)

where x̂

<t indicates the tokens preceding x̂t. The gener-
ation thus involves a sequence of discrete decision mak-
ing which samples a token from a multinomial distribution
parametrized using softmax function at each time step t:

x̂t ⇠ softmax(ot/⌧), (2)

where ot is the logit vector as the inputs to the softmax
function, and ⌧ > 0 is the temperature normally set to 1.

The unstructured part z of the representation is modeled
as continuous variables with standard Gaussian prior p(z),
while the structured code c can contain both continu-
ous and discrete variables to encode different attributes
(e.g., sentiment categories, formality) with appropriate
prior p(c). Given observation x, the base VAE includes
a conditional probabilistic encoder E to infer the latents z:

z ⇠ E(x) = qE(z|x). (3)

Let ✓G and ✓E denote the parameters of the generator G
and the encoder E, respectively. The VAE is then opti-
mized to minimize the reconstruction error of observed real
sentences, and at the same time regularize the encoder to be
close to the prior p(z):

LVAE(✓G,✓E ;x) = � KL(qE(z|x)kp(z))
+ EqE(z|x)qD(c|x) [log pG(x|z, c)] , (4)

where KL(·k·) is the KL-divergence; and qD(c|x) is the
conditional distribution defined by the discriminator D for
each structured variable in c:

D(x) = qD(c|x). (5)

Here, for notational simplicity, we assume only one struc-
tured variable and thus one discriminator, though our
model specification can straightforwardly be applied to
many attributes. The distribution over (z, c) factors into
qE and qD as we are learning disentangled representa-
tions. Note that here the discriminator D and code c are
not learned with the VAE loss, but instead optimized with

the objectives described shortly. Besides the reconstruc-
tion loss which drives the generator to produce realistic
sentences, the discriminator provides extra learning signals
which enforce the generator to produce coherent attribute
that matches the structured code in c. However, as it is
impossible to propagate gradients from the discriminator
through the discrete samples, we resort to a deterministic
continuous approximation. The approximation replaces the
sampled token x̂t (represented as a one-hot vector) at each
step with the probability vector in Eq.(2) which is differ-
entiable w.r.t the generator’s parameters. The probability
vector is used as the output at the current step and the input
to the next step along the sequence of decision making. The
resulting “soft” generated sentence, denoted as e

G⌧ (z, c), is
fed into the discriminator1 to measure the fitness to the tar-
get attribute, leading to the following loss for improving G:

LAttr,c(✓G) = Ep(z)p(c)

h
log qD(c| eG⌧ (z, c))

i
. (6)

The temperature ⌧ (Eq.2) is set to ⌧ ! 0 as training pro-
ceeds, yielding increasingly peaked distributions that fi-
nally emulate discrete case. The simple deterministic ap-
proximation effectively leads to reduced variance and fast
convergence during training, which enables efficient learn-
ing of the conditional generator. The diversity of genera-
tion results is guaranteed since we use the approximation
only for attribute modeling and the base sentence genera-
tion is learned through VAEs.

With the objective in Eq.(6), each structured attribute of
generated sentences is controlled through the correspond-
ing code in c and is independent with other variables in the
latent representation. However, it is still possible that other
attributes not explicitly modeled may also entangle with the
code in c, and thus varying a dimension of c can yield unex-
pected variation of these attributes we are not interested in.
To address this, we introduce the independency constraint
which separates these attributes with c by enforcing them
to be fully captured by the unstructured part z. Therefore,
besides the attributes explicitly encoded in c, we also train
the generator so that other non-explicit attributes can be
correctly recognized from the generated samples and match
the unstructured code z. Instead of building a new discrim-
inator, we reuse the variational encoder E which serves
precisely to infer the latents z in the base VAE. The loss
is in the same form as with Eq.(6) except replacing the dis-
criminator conditional qD with the encoder conditional qE :

LAttr,z(✓G) = Ep(z)p(c)

h
log qE(z| eG⌧ (z, c))

i
. (7)

Note that, as the discriminator in Eq.(6), the encoder now
1The probability vector thus functions to average over the

word embedding matrix to obtain a “soft” word embedding at
each step.

! " Generator

Discriminators

#$Encoder#

• Generate	realistic sentences

• Generate	sentences	with	specified	attributes
• Discriminators	evaluate	generated	sentences	and	backpropagategradients
• Deterministic	softmax approximation	of	discrete	text	sentences

• Replace	discrete	token	𝑥#% (one-hot	vector)	with	probability	vector

• Independence	constraint
• Implicit	attributes	should	be	fully	modeled	in	𝒛 and	independent	with	𝒄

Generator	Learning

12

Toward Controlled Generation of Text

3.2. Model Structure

We now describe our model in detail, by presenting the
learning of generator and discriminators, respectively.

Generator Learning
The generator G is an LSTM-RNN for generating token
sequence x̂ = {x̂1, . . . , x̂T } conditioned on the latent code
(z, c), which depicts a generative distribution:

ˆ

x ⇠ G(z, c) = pG(ˆx|z, c)
=

Y
t
p(x̂t|ˆx<t

, z, c),

(1)

where x̂

<t indicates the tokens preceding x̂t. The gener-
ation thus involves a sequence of discrete decision mak-
ing which samples a token from a multinomial distribution
parametrized using softmax function at each time step t:

x̂t ⇠ softmax(ot/⌧), (2)

where ot is the logit vector as the inputs to the softmax
function, and ⌧ > 0 is the temperature normally set to 1.

The unstructured part z of the representation is modeled
as continuous variables with standard Gaussian prior p(z),
while the structured code c can contain both continu-
ous and discrete variables to encode different attributes
(e.g., sentiment categories, formality) with appropriate
prior p(c). Given observation x, the base VAE includes
a conditional probabilistic encoder E to infer the latents z:

z ⇠ E(x) = qE(z|x). (3)

Let ✓G and ✓E denote the parameters of the generator G
and the encoder E, respectively. The VAE is then opti-
mized to minimize the reconstruction error of observed real
sentences, and at the same time regularize the encoder to be
close to the prior p(z):

LVAE(✓G,✓E ;x) = � KL(qE(z|x)kp(z))
+ EqE(z|x)qD(c|x) [log pG(x|z, c)] , (4)

where KL(·k·) is the KL-divergence; and qD(c|x) is the
conditional distribution defined by the discriminator D for
each structured variable in c:

D(x) = qD(c|x). (5)

Here, for notational simplicity, we assume only one struc-
tured variable and thus one discriminator, though our
model specification can straightforwardly be applied to
many attributes. The distribution over (z, c) factors into
qE and qD as we are learning disentangled representa-
tions. Note that here the discriminator D and code c are
not learned with the VAE loss, but instead optimized with

the objectives described shortly. Besides the reconstruc-
tion loss which drives the generator to produce realistic
sentences, the discriminator provides extra learning signals
which enforce the generator to produce coherent attribute
that matches the structured code in c. However, as it is
impossible to propagate gradients from the discriminator
through the discrete samples, we resort to a deterministic
continuous approximation. The approximation replaces the
sampled token x̂t (represented as a one-hot vector) at each
step with the probability vector in Eq.(2) which is differ-
entiable w.r.t the generator’s parameters. The probability
vector is used as the output at the current step and the input
to the next step along the sequence of decision making. The
resulting “soft” generated sentence, denoted as e

G⌧ (z, c), is
fed into the discriminator1 to measure the fitness to the tar-
get attribute, leading to the following loss for improving G:

LAttr,c(✓G) = Ep(z)p(c)

h
log qD(c| eG⌧ (z, c))

i
. (6)

The temperature ⌧ (Eq.2) is set to ⌧ ! 0 as training pro-
ceeds, yielding increasingly peaked distributions that fi-
nally emulate discrete case. The simple deterministic ap-
proximation effectively leads to reduced variance and fast
convergence during training, which enables efficient learn-
ing of the conditional generator. The diversity of genera-
tion results is guaranteed since we use the approximation
only for attribute modeling and the base sentence genera-
tion is learned through VAEs.

With the objective in Eq.(6), each structured attribute of
generated sentences is controlled through the correspond-
ing code in c and is independent with other variables in the
latent representation. However, it is still possible that other
attributes not explicitly modeled may also entangle with the
code in c, and thus varying a dimension of c can yield unex-
pected variation of these attributes we are not interested in.
To address this, we introduce the independency constraint
which separates these attributes with c by enforcing them
to be fully captured by the unstructured part z. Therefore,
besides the attributes explicitly encoded in c, we also train
the generator so that other non-explicit attributes can be
correctly recognized from the generated samples and match
the unstructured code z. Instead of building a new discrim-
inator, we reuse the variational encoder E which serves
precisely to infer the latents z in the base VAE. The loss
is in the same form as with Eq.(6) except replacing the dis-
criminator conditional qD with the encoder conditional qE :

LAttr,z(✓G) = Ep(z)p(c)

h
log qE(z| eG⌧ (z, c))

i
. (7)

Note that, as the discriminator in Eq.(6), the encoder now
1The probability vector thus functions to average over the

word embedding matrix to obtain a “soft” word embedding at
each step.

structured	codeunstructured	code

Note on Unification of GANs/VAEs/ADA/...

Zhiting Hu
zhitinghu@gmail.com

zsrc

ztgt

xsrc

xtgt

y

z

xreal

xfake

x

zgen

xgen

xdata

G✓

D�

p✓(x|y)
q�(y|x)/qr�(y|x)

q(r)� (y|x)

q⌘(z|x, y)
qr⇤(y|x)

q(r)⇤ (y|x)
p✓(x|z, y)
p✓(x|z, y)

q(r)� (y|z)

q⌘(z|y)

LVAE(✓G,✓E ;x) = EqE(z|x)qD(c|x) [log pG(x|z, c)]� KL(qE(z|x)kp(z)) (1)

Toward Controlled Generation of Text

performs inference over generated samples from the prior,
as opposed to observed examples as in VAEs.

Combining Eqs.(4)-(7) we obtain the generator objective:

min

✓G LG = LVAE + �cLAttr,c + �zLAttr,z, (8)

where �c and �z are balancing parameters. The varia-
tional encoder is trained by minimizing the VAE loss, i.e.,
min✓E LVAE.

Discriminator Learning
The discriminator D is trained to accurately infer the sen-
tence attribute and evaluate the error of recovering the de-
sired feature as specified in the latent code. For instance,
for categorical attribute, the discriminator can be formu-
lated as a sentence classifier; while for continuous target
a probabilistic regressor can be used. The discriminator
is learned in a different way compared to the VAE encoder,
since the target attributes can be discrete which are not sup-
ported in the VAE framework. Moreover, in contrast to the
unstructured code z which is learned in an unsupervised
manner, the structured variable c uses labeled examples to
entail designated semantics. We derive an efficient semi-
supervised learning method for the discriminator.

Formally, let ✓D denote the parameters of the discrimina-
tor. To learn specified semantic meaning, we use a set of
labeled examples XL = {(xL, cL)} to train the discrimi-
nator D with the following objective:

Ls(✓D) = EXL [log qD(cL|xL)] . (9)

Besides, the conditional generator G is also capable of syn-
thesizing (noisy) sentence-attribute pairs (x̂, c) which can
be used to augment training data for semi-supervised learn-
ing. To alleviate the issue of noisy data and ensure ro-
bustness of model optimization, we incorporate a minimum
entropy regularization term (Grandvalet et al., 2004; Reed
et al., 2014). The resulting objective is thus:

Lu(✓D) = EpG(x̂|z,c)p(z)p(c)
⇥
log qD(c|ˆx) + �H(qD(c

0|ˆx))⇤,
(10)

where H(qD(c0|x̂)) is the empirical Shannon entropy of
distribution qD evaluated on the generated sentence x̂; and
� is the balancing parameter. Intuitively, the minimum
entropy regularization encourages the model to have high
confidence in predicting labels.

The joint training objective of the discriminator using both
labeled examples and synthesized samples is then given as:

min

✓D LD = Ls + �uLu, (11)

where �u is the balancing parameter.

Algorithm 1 Controlled Generation of Text
Input: A large corpus of unlabeled sentences X = {x}

A few sentence attribute labels XL = {(xL, cL)}
Parameters: �c,�z,�u,� – balancing parameters

1: Initialize the base VAE by minimizing Eq.(4) on X with c

sampled from prior p(c)
2: repeat
3: Train the discriminator D by Eq.(11)
4: Train the generator G and the encoder E by Eq.(8) and

minimizing Eq.(4), respectively.
5: until convergence

Output: Sentence generator G conditioned on disentangled rep-
resentation (z, c)

Figure 2. Left: The VAE and wake procedure, corresponding to
Eq.(4). Right: The sleep procedure, corresponding to Eqs.(6)-
(7) and (10). Black arrows denote inference and generation; red
dashed arrows denote gradient propagation. The two steps in the
sleep procedure, i.e., optimizing the discriminator and the gener-
ator, respectively, are performed in an alternating manner.

Summarization and Discussion
We have derived our model and its learning procedure. The
generator is first initialized by training the base VAE on a
large corpus of unlabeled sentences, through the objective
of minimizing Eq.(4) with the latent code c at this time
sampled from the prior distribution p(c). The full model is
then trained by alternating the optimization of the generator
and the discriminator, as summarized in Algorithm 1.

Our model can be viewed as combining the VAE frame-
work with an extended wake-sleep method, as illustrated in
Figure 2. Specifically, in Eq.(10), samples are produced
by the generator and used as targets for maximum like-
lihood training of the discriminator. This resembles the
sleep phase of wake-sleep. Eqs.(6)-(7) further leverage the
generated samples to improve the generator. We can see
the above together as an extended sleep procedure based
on “dream” samples obtained by ancestral sampling from
the generative network. On the other hand, Eq.(4) samples
c from the discriminator distribution qD(c|x) on observa-
tion x, to form a target for training the generator, which
corresponds to the wake phase. The effective combination
enables discrete latent code, holistic discriminator metrics,
and efficient mutual bootstrapping.

Training of the discriminators need supervised data to im-
pose designated semantics. Discriminators for different at-
tributes can be trained independently on separate labeled
sets. That is, the model does not require a sentence to be

Toward Controlled Generation of Text

3.2. Model Structure

We now describe our model in detail, by presenting the
learning of generator and discriminators, respectively.

Generator Learning
The generator G is an LSTM-RNN for generating token
sequence x̂ = {x̂1, . . . , x̂T } conditioned on the latent code
(z, c), which depicts a generative distribution:

ˆ

x ⇠ G(z, c) = pG(ˆx|z, c)
=

Y
t
p(x̂t|ˆx<t

, z, c),

(1)

where x̂

<t indicates the tokens preceding x̂t. The gener-
ation thus involves a sequence of discrete decision mak-
ing which samples a token from a multinomial distribution
parametrized using softmax function at each time step t:

x̂t ⇠ softmax(ot/⌧), (2)

where ot is the logit vector as the inputs to the softmax
function, and ⌧ > 0 is the temperature normally set to 1.

The unstructured part z of the representation is modeled
as continuous variables with standard Gaussian prior p(z),
while the structured code c can contain both continu-
ous and discrete variables to encode different attributes
(e.g., sentiment categories, formality) with appropriate
prior p(c). Given observation x, the base VAE includes
a conditional probabilistic encoder E to infer the latents z:

z ⇠ E(x) = qE(z|x). (3)

Let ✓G and ✓E denote the parameters of the generator G
and the encoder E, respectively. The VAE is then opti-
mized to minimize the reconstruction error of observed real
sentences, and at the same time regularize the encoder to be
close to the prior p(z):

LVAE(✓G,✓E ;x) = � KL(qE(z|x)kp(z))
+ EqE(z|x)qD(c|x) [log pG(x|z, c)] , (4)

where KL(·k·) is the KL-divergence; and qD(c|x) is the
conditional distribution defined by the discriminator D for
each structured variable in c:

D(x) = qD(c|x). (5)

Here, for notational simplicity, we assume only one struc-
tured variable and thus one discriminator, though our
model specification can straightforwardly be applied to
many attributes. The distribution over (z, c) factors into
qE and qD as we are learning disentangled representa-
tions. Note that here the discriminator D and code c are
not learned with the VAE loss, but instead optimized with

the objectives described shortly. Besides the reconstruc-
tion loss which drives the generator to produce realistic
sentences, the discriminator provides extra learning signals
which enforce the generator to produce coherent attribute
that matches the structured code in c. However, as it is
impossible to propagate gradients from the discriminator
through the discrete samples, we resort to a deterministic
continuous approximation. The approximation replaces the
sampled token x̂t (represented as a one-hot vector) at each
step with the probability vector in Eq.(2) which is differ-
entiable w.r.t the generator’s parameters. The probability
vector is used as the output at the current step and the input
to the next step along the sequence of decision making. The
resulting “soft” generated sentence, denoted as e

G⌧ (z, c), is
fed into the discriminator1 to measure the fitness to the tar-
get attribute, leading to the following loss for improving G:

LAttr,c(✓G) = Ep(z)p(c)

h
log qD(c| eG⌧ (z, c))

i
. (6)

The temperature ⌧ (Eq.2) is set to ⌧ ! 0 as training pro-
ceeds, yielding increasingly peaked distributions that fi-
nally emulate discrete case. The simple deterministic ap-
proximation effectively leads to reduced variance and fast
convergence during training, which enables efficient learn-
ing of the conditional generator. The diversity of genera-
tion results is guaranteed since we use the approximation
only for attribute modeling and the base sentence genera-
tion is learned through VAEs.

With the objective in Eq.(6), each structured attribute of
generated sentences is controlled through the correspond-
ing code in c and is independent with other variables in the
latent representation. However, it is still possible that other
attributes not explicitly modeled may also entangle with the
code in c, and thus varying a dimension of c can yield unex-
pected variation of these attributes we are not interested in.
To address this, we introduce the independency constraint
which separates these attributes with c by enforcing them
to be fully captured by the unstructured part z. Therefore,
besides the attributes explicitly encoded in c, we also train
the generator so that other non-explicit attributes can be
correctly recognized from the generated samples and match
the unstructured code z. Instead of building a new discrim-
inator, we reuse the variational encoder E which serves
precisely to infer the latents z in the base VAE. The loss
is in the same form as with Eq.(6) except replacing the dis-
criminator conditional qD with the encoder conditional qE :

LAttr,z(✓G) = Ep(z)p(c)

h
log qE(z| eG⌧ (z, c))

i
. (7)

Note that, as the discriminator in Eq.(6), the encoder now
1The probability vector thus functions to average over the

word embedding matrix to obtain a “soft” word embedding at
each step.

Toward Controlled Generation of Text

3.2. Model Structure

We now describe our model in detail, by presenting the
learning of generator and discriminators, respectively.

Generator Learning
The generator G is an LSTM-RNN for generating token
sequence x̂ = {x̂1, . . . , x̂T } conditioned on the latent code
(z, c), which depicts a generative distribution:

ˆ

x ⇠ G(z, c) = pG(ˆx|z, c)
=

Y
t
p(x̂t|ˆx<t

, z, c),

(1)

where x̂

<t indicates the tokens preceding x̂t. The gener-
ation thus involves a sequence of discrete decision mak-
ing which samples a token from a multinomial distribution
parametrized using softmax function at each time step t:

x̂t ⇠ softmax(ot/⌧), (2)

where ot is the logit vector as the inputs to the softmax
function, and ⌧ > 0 is the temperature normally set to 1.

The unstructured part z of the representation is modeled
as continuous variables with standard Gaussian prior p(z),
while the structured code c can contain both continu-
ous and discrete variables to encode different attributes
(e.g., sentiment categories, formality) with appropriate
prior p(c). Given observation x, the base VAE includes
a conditional probabilistic encoder E to infer the latents z:

z ⇠ E(x) = qE(z|x). (3)

Let ✓G and ✓E denote the parameters of the generator G
and the encoder E, respectively. The VAE is then opti-
mized to minimize the reconstruction error of observed real
sentences, and at the same time regularize the encoder to be
close to the prior p(z):

LVAE(✓G,✓E ;x) = � KL(qE(z|x)kp(z))
+ EqE(z|x)qD(c|x) [log pG(x|z, c)] , (4)

where KL(·k·) is the KL-divergence; and qD(c|x) is the
conditional distribution defined by the discriminator D for
each structured variable in c:

D(x) = qD(c|x). (5)

Here, for notational simplicity, we assume only one struc-
tured variable and thus one discriminator, though our
model specification can straightforwardly be applied to
many attributes. The distribution over (z, c) factors into
qE and qD as we are learning disentangled representa-
tions. Note that here the discriminator D and code c are
not learned with the VAE loss, but instead optimized with

the objectives described shortly. Besides the reconstruc-
tion loss which drives the generator to produce realistic
sentences, the discriminator provides extra learning signals
which enforce the generator to produce coherent attribute
that matches the structured code in c. However, as it is
impossible to propagate gradients from the discriminator
through the discrete samples, we resort to a deterministic
continuous approximation. The approximation replaces the
sampled token x̂t (represented as a one-hot vector) at each
step with the probability vector in Eq.(2) which is differ-
entiable w.r.t the generator’s parameters. The probability
vector is used as the output at the current step and the input
to the next step along the sequence of decision making. The
resulting “soft” generated sentence, denoted as e

G⌧ (z, c), is
fed into the discriminator1 to measure the fitness to the tar-
get attribute, leading to the following loss for improving G:

LAttr,c(✓G) = Ep(z)p(c)

h
log qD(c| eG⌧ (z, c))

i
. (6)

The temperature ⌧ (Eq.2) is set to ⌧ ! 0 as training pro-
ceeds, yielding increasingly peaked distributions that fi-
nally emulate discrete case. The simple deterministic ap-
proximation effectively leads to reduced variance and fast
convergence during training, which enables efficient learn-
ing of the conditional generator. The diversity of genera-
tion results is guaranteed since we use the approximation
only for attribute modeling and the base sentence genera-
tion is learned through VAEs.

With the objective in Eq.(6), each structured attribute of
generated sentences is controlled through the correspond-
ing code in c and is independent with other variables in the
latent representation. However, it is still possible that other
attributes not explicitly modeled may also entangle with the
code in c, and thus varying a dimension of c can yield unex-
pected variation of these attributes we are not interested in.
To address this, we introduce the independency constraint
which separates these attributes with c by enforcing them
to be fully captured by the unstructured part z. Therefore,
besides the attributes explicitly encoded in c, we also train
the generator so that other non-explicit attributes can be
correctly recognized from the generated samples and match
the unstructured code z. Instead of building a new discrim-
inator, we reuse the variational encoder E which serves
precisely to infer the latents z in the base VAE. The loss
is in the same form as with Eq.(6) except replacing the dis-
criminator conditional qD with the encoder conditional qE :

LAttr,z(✓G) = Ep(z)p(c)

h
log qE(z| eG⌧ (z, c))

i
. (7)

Note that, as the discriminator in Eq.(6), the encoder now
1The probability vector thus functions to average over the

word embedding matrix to obtain a “soft” word embedding at
each step.

! " Generator

Discriminators

#$Encoder#

• Supervised	objective	on	labeled	examples	{(𝒙+, 	𝑐+)}	

• Each	attribute	discriminator	can	be	trained	on	separate labeled	datasets

• Unsupervised	objective	on	synthesized	samples	{(𝒙0, 𝑐)} by	the	generator
• Add	a	minimum	entropy	regularization	to	alleviate	noise

13

Discriminator	Learning

Toward Controlled Generation of Text

performs inference over generated samples from the prior,
as opposed to observed examples as in VAEs.

Combining Eqs.(4)-(7) we obtain the generator objective:

min

✓G LG = LVAE + �cLAttr,c + �zLAttr,z, (8)

where �c and �z are balancing parameters. The varia-
tional encoder is trained by minimizing the VAE loss, i.e.,
min✓E LVAE.

Discriminator Learning
The discriminator D is trained to accurately infer the sen-
tence attribute and evaluate the error of recovering the de-
sired feature as specified in the latent code. For instance,
for categorical attribute, the discriminator can be formu-
lated as a sentence classifier; while for continuous target
a probabilistic regressor can be used. The discriminator
is learned in a different way compared to the VAE encoder,
since the target attributes can be discrete which are not sup-
ported in the VAE framework. Moreover, in contrast to the
unstructured code z which is learned in an unsupervised
manner, the structured variable c uses labeled examples to
entail designated semantics. We derive an efficient semi-
supervised learning method for the discriminator.

Formally, let ✓D denote the parameters of the discrimina-
tor. To learn specified semantic meaning, we use a set of
labeled examples XL = {(xL, cL)} to train the discrimi-
nator D with the following objective:

Ls(✓D) = EXL [log qD(cL|xL)] . (9)

Besides, the conditional generator G is also capable of syn-
thesizing (noisy) sentence-attribute pairs (x̂, c) which can
be used to augment training data for semi-supervised learn-
ing. To alleviate the issue of noisy data and ensure ro-
bustness of model optimization, we incorporate a minimum
entropy regularization term (Grandvalet et al., 2004; Reed
et al., 2014). The resulting objective is thus:

Lu(✓D) = EpG(x̂|z,c)p(z)p(c)
⇥
log qD(c|ˆx) + �H(qD(c

0|ˆx))⇤,
(10)

where H(qD(c0|x̂)) is the empirical Shannon entropy of
distribution qD evaluated on the generated sentence x̂; and
� is the balancing parameter. Intuitively, the minimum
entropy regularization encourages the model to have high
confidence in predicting labels.

The joint training objective of the discriminator using both
labeled examples and synthesized samples is then given as:

min

✓D LD = Ls + �uLu, (11)

where �u is the balancing parameter.

Algorithm 1 Controlled Generation of Text
Input: A large corpus of unlabeled sentences X = {x}

A few sentence attribute labels XL = {(xL, cL)}
Parameters: �c,�z,�u,� – balancing parameters

1: Initialize the base VAE by minimizing Eq.(4) on X with c

sampled from prior p(c)
2: repeat
3: Train the discriminator D by Eq.(11)
4: Train the generator G and the encoder E by Eq.(8) and

minimizing Eq.(4), respectively.
5: until convergence

Output: Sentence generator G conditioned on disentangled rep-
resentation (z, c)

Figure 2. Left: The VAE and wake procedure, corresponding to
Eq.(4). Right: The sleep procedure, corresponding to Eqs.(6)-
(7) and (10). Black arrows denote inference and generation; red
dashed arrows denote gradient propagation. The two steps in the
sleep procedure, i.e., optimizing the discriminator and the gener-
ator, respectively, are performed in an alternating manner.

Summarization and Discussion
We have derived our model and its learning procedure. The
generator is first initialized by training the base VAE on a
large corpus of unlabeled sentences, through the objective
of minimizing Eq.(4) with the latent code c at this time
sampled from the prior distribution p(c). The full model is
then trained by alternating the optimization of the generator
and the discriminator, as summarized in Algorithm 1.

Our model can be viewed as combining the VAE frame-
work with an extended wake-sleep method, as illustrated in
Figure 2. Specifically, in Eq.(10), samples are produced
by the generator and used as targets for maximum like-
lihood training of the discriminator. This resembles the
sleep phase of wake-sleep. Eqs.(6)-(7) further leverage the
generated samples to improve the generator. We can see
the above together as an extended sleep procedure based
on “dream” samples obtained by ancestral sampling from
the generative network. On the other hand, Eq.(4) samples
c from the discriminator distribution qD(c|x) on observa-
tion x, to form a target for training the generator, which
corresponds to the wake phase. The effective combination
enables discrete latent code, holistic discriminator metrics,
and efficient mutual bootstrapping.

Training of the discriminators need supervised data to im-
pose designated semantics. Discriminators for different at-
tributes can be trained independently on separate labeled
sets. That is, the model does not require a sentence to be

Toward Controlled Generation of Text

performs inference over generated samples from the prior,
as opposed to observed examples as in VAEs.

Combining Eqs.(4)-(7) we obtain the generator objective:

min

✓G LG = LVAE + �cLAttr,c + �zLAttr,z, (8)

where �c and �z are balancing parameters. The varia-
tional encoder is trained by minimizing the VAE loss, i.e.,
min✓E LVAE.

Discriminator Learning
The discriminator D is trained to accurately infer the sen-
tence attribute and evaluate the error of recovering the de-
sired feature as specified in the latent code. For instance,
for categorical attribute, the discriminator can be formu-
lated as a sentence classifier; while for continuous target
a probabilistic regressor can be used. The discriminator
is learned in a different way compared to the VAE encoder,
since the target attributes can be discrete which are not sup-
ported in the VAE framework. Moreover, in contrast to the
unstructured code z which is learned in an unsupervised
manner, the structured variable c uses labeled examples to
entail designated semantics. We derive an efficient semi-
supervised learning method for the discriminator.

Formally, let ✓D denote the parameters of the discrimina-
tor. To learn specified semantic meaning, we use a set of
labeled examples XL = {(xL, cL)} to train the discrimi-
nator D with the following objective:

Ls(✓D) = EXL [log qD(cL|xL)] . (9)

Besides, the conditional generator G is also capable of syn-
thesizing (noisy) sentence-attribute pairs (x̂, c) which can
be used to augment training data for semi-supervised learn-
ing. To alleviate the issue of noisy data and ensure ro-
bustness of model optimization, we incorporate a minimum
entropy regularization term (Grandvalet et al., 2004; Reed
et al., 2014). The resulting objective is thus:

Lu(✓D) = EpG(x̂|z,c)p(z)p(c)
⇥
log qD(c|ˆx) + �H(qD(c

0|ˆx))⇤,
(10)

where H(qD(c0|x̂)) is the empirical Shannon entropy of
distribution qD evaluated on the generated sentence x̂; and
� is the balancing parameter. Intuitively, the minimum
entropy regularization encourages the model to have high
confidence in predicting labels.

The joint training objective of the discriminator using both
labeled examples and synthesized samples is then given as:

min

✓D LD = Ls + �uLu, (11)

where �u is the balancing parameter.

Algorithm 1 Controlled Generation of Text
Input: A large corpus of unlabeled sentences X = {x}

A few sentence attribute labels XL = {(xL, cL)}
Parameters: �c,�z,�u,� – balancing parameters

1: Initialize the base VAE by minimizing Eq.(4) on X with c

sampled from prior p(c)
2: repeat
3: Train the discriminator D by Eq.(11)
4: Train the generator G and the encoder E by Eq.(8) and

minimizing Eq.(4), respectively.
5: until convergence

Output: Sentence generator G conditioned on disentangled rep-
resentation (z, c)

Figure 2. Left: The VAE and wake procedure, corresponding to
Eq.(4). Right: The sleep procedure, corresponding to Eqs.(6)-
(7) and (10). Black arrows denote inference and generation; red
dashed arrows denote gradient propagation. The two steps in the
sleep procedure, i.e., optimizing the discriminator and the gener-
ator, respectively, are performed in an alternating manner.

Summarization and Discussion
We have derived our model and its learning procedure. The
generator is first initialized by training the base VAE on a
large corpus of unlabeled sentences, through the objective
of minimizing Eq.(4) with the latent code c at this time
sampled from the prior distribution p(c). The full model is
then trained by alternating the optimization of the generator
and the discriminator, as summarized in Algorithm 1.

Our model can be viewed as combining the VAE frame-
work with an extended wake-sleep method, as illustrated in
Figure 2. Specifically, in Eq.(10), samples are produced
by the generator and used as targets for maximum like-
lihood training of the discriminator. This resembles the
sleep phase of wake-sleep. Eqs.(6)-(7) further leverage the
generated samples to improve the generator. We can see
the above together as an extended sleep procedure based
on “dream” samples obtained by ancestral sampling from
the generative network. On the other hand, Eq.(4) samples
c from the discriminator distribution qD(c|x) on observa-
tion x, to form a target for training the generator, which
corresponds to the wake phase. The effective combination
enables discrete latent code, holistic discriminator metrics,
and efficient mutual bootstrapping.

Training of the discriminators need supervised data to im-
pose designated semantics. Discriminators for different at-
tributes can be trained independently on separate labeled
sets. That is, the model does not require a sentence to be

! " Generator

Discriminators

#$Encoder#

• Supervised	objective	on	labeled	examples	{(𝒙+, 	𝑐+)}	

• Each	attribute	discriminator	can	be	trained	on	separate labeled	datasets

• Unsupervised	objective	on	synthesized	samples	{(𝒙0, 𝑐)} by	the	generator
• Add	a	minimum	entropy	regularization	to	alleviate	noise

14

Discriminator	Learning

Toward Controlled Generation of Text

performs inference over generated samples from the prior,
as opposed to observed examples as in VAEs.

Combining Eqs.(4)-(7) we obtain the generator objective:

min

✓G LG = LVAE + �cLAttr,c + �zLAttr,z, (8)

where �c and �z are balancing parameters. The varia-
tional encoder is trained by minimizing the VAE loss, i.e.,
min✓E LVAE.

Discriminator Learning
The discriminator D is trained to accurately infer the sen-
tence attribute and evaluate the error of recovering the de-
sired feature as specified in the latent code. For instance,
for categorical attribute, the discriminator can be formu-
lated as a sentence classifier; while for continuous target
a probabilistic regressor can be used. The discriminator
is learned in a different way compared to the VAE encoder,
since the target attributes can be discrete which are not sup-
ported in the VAE framework. Moreover, in contrast to the
unstructured code z which is learned in an unsupervised
manner, the structured variable c uses labeled examples to
entail designated semantics. We derive an efficient semi-
supervised learning method for the discriminator.

Formally, let ✓D denote the parameters of the discrimina-
tor. To learn specified semantic meaning, we use a set of
labeled examples XL = {(xL, cL)} to train the discrimi-
nator D with the following objective:

Ls(✓D) = EXL [log qD(cL|xL)] . (9)

Besides, the conditional generator G is also capable of syn-
thesizing (noisy) sentence-attribute pairs (x̂, c) which can
be used to augment training data for semi-supervised learn-
ing. To alleviate the issue of noisy data and ensure ro-
bustness of model optimization, we incorporate a minimum
entropy regularization term (Grandvalet et al., 2004; Reed
et al., 2014). The resulting objective is thus:

Lu(✓D) = EpG(x̂|z,c)p(z)p(c)
⇥
log qD(c|ˆx) + �H(qD(c

0|ˆx))⇤,
(10)

where H(qD(c0|x̂)) is the empirical Shannon entropy of
distribution qD evaluated on the generated sentence x̂; and
� is the balancing parameter. Intuitively, the minimum
entropy regularization encourages the model to have high
confidence in predicting labels.

The joint training objective of the discriminator using both
labeled examples and synthesized samples is then given as:

min

✓D LD = Ls + �uLu, (11)

where �u is the balancing parameter.

Algorithm 1 Controlled Generation of Text
Input: A large corpus of unlabeled sentences X = {x}

A few sentence attribute labels XL = {(xL, cL)}
Parameters: �c,�z,�u,� – balancing parameters

1: Initialize the base VAE by minimizing Eq.(4) on X with c

sampled from prior p(c)
2: repeat
3: Train the discriminator D by Eq.(11)
4: Train the generator G and the encoder E by Eq.(8) and

minimizing Eq.(4), respectively.
5: until convergence

Output: Sentence generator G conditioned on disentangled rep-
resentation (z, c)

Figure 2. Left: The VAE and wake procedure, corresponding to
Eq.(4). Right: The sleep procedure, corresponding to Eqs.(6)-
(7) and (10). Black arrows denote inference and generation; red
dashed arrows denote gradient propagation. The two steps in the
sleep procedure, i.e., optimizing the discriminator and the gener-
ator, respectively, are performed in an alternating manner.

Summarization and Discussion
We have derived our model and its learning procedure. The
generator is first initialized by training the base VAE on a
large corpus of unlabeled sentences, through the objective
of minimizing Eq.(4) with the latent code c at this time
sampled from the prior distribution p(c). The full model is
then trained by alternating the optimization of the generator
and the discriminator, as summarized in Algorithm 1.

Our model can be viewed as combining the VAE frame-
work with an extended wake-sleep method, as illustrated in
Figure 2. Specifically, in Eq.(10), samples are produced
by the generator and used as targets for maximum like-
lihood training of the discriminator. This resembles the
sleep phase of wake-sleep. Eqs.(6)-(7) further leverage the
generated samples to improve the generator. We can see
the above together as an extended sleep procedure based
on “dream” samples obtained by ancestral sampling from
the generative network. On the other hand, Eq.(4) samples
c from the discriminator distribution qD(c|x) on observa-
tion x, to form a target for training the generator, which
corresponds to the wake phase. The effective combination
enables discrete latent code, holistic discriminator metrics,
and efficient mutual bootstrapping.

Training of the discriminators need supervised data to im-
pose designated semantics. Discriminators for different at-
tributes can be trained independently on separate labeled
sets. That is, the model does not require a sentence to be

Toward Controlled Generation of Text

performs inference over generated samples from the prior,
as opposed to observed examples as in VAEs.

Combining Eqs.(4)-(7) we obtain the generator objective:

min

✓G LG = LVAE + �cLAttr,c + �zLAttr,z, (8)

where �c and �z are balancing parameters. The varia-
tional encoder is trained by minimizing the VAE loss, i.e.,
min✓E LVAE.

Discriminator Learning
The discriminator D is trained to accurately infer the sen-
tence attribute and evaluate the error of recovering the de-
sired feature as specified in the latent code. For instance,
for categorical attribute, the discriminator can be formu-
lated as a sentence classifier; while for continuous target
a probabilistic regressor can be used. The discriminator
is learned in a different way compared to the VAE encoder,
since the target attributes can be discrete which are not sup-
ported in the VAE framework. Moreover, in contrast to the
unstructured code z which is learned in an unsupervised
manner, the structured variable c uses labeled examples to
entail designated semantics. We derive an efficient semi-
supervised learning method for the discriminator.

Formally, let ✓D denote the parameters of the discrimina-
tor. To learn specified semantic meaning, we use a set of
labeled examples XL = {(xL, cL)} to train the discrimi-
nator D with the following objective:

Ls(✓D) = EXL [log qD(cL|xL)] . (9)

Besides, the conditional generator G is also capable of syn-
thesizing (noisy) sentence-attribute pairs (x̂, c) which can
be used to augment training data for semi-supervised learn-
ing. To alleviate the issue of noisy data and ensure ro-
bustness of model optimization, we incorporate a minimum
entropy regularization term (Grandvalet et al., 2004; Reed
et al., 2014). The resulting objective is thus:

Lu(✓D) = EpG(x̂|z,c)p(z)p(c)
⇥
log qD(c|ˆx) + �H(qD(c

0|ˆx))⇤,
(10)

where H(qD(c0|x̂)) is the empirical Shannon entropy of
distribution qD evaluated on the generated sentence x̂; and
� is the balancing parameter. Intuitively, the minimum
entropy regularization encourages the model to have high
confidence in predicting labels.

The joint training objective of the discriminator using both
labeled examples and synthesized samples is then given as:

min

✓D LD = Ls + �uLu, (11)

where �u is the balancing parameter.

Algorithm 1 Controlled Generation of Text
Input: A large corpus of unlabeled sentences X = {x}

A few sentence attribute labels XL = {(xL, cL)}
Parameters: �c,�z,�u,� – balancing parameters

1: Initialize the base VAE by minimizing Eq.(4) on X with c

sampled from prior p(c)
2: repeat
3: Train the discriminator D by Eq.(11)
4: Train the generator G and the encoder E by Eq.(8) and

minimizing Eq.(4), respectively.
5: until convergence

Output: Sentence generator G conditioned on disentangled rep-
resentation (z, c)

Figure 2. Left: The VAE and wake procedure, corresponding to
Eq.(4). Right: The sleep procedure, corresponding to Eqs.(6)-
(7) and (10). Black arrows denote inference and generation; red
dashed arrows denote gradient propagation. The two steps in the
sleep procedure, i.e., optimizing the discriminator and the gener-
ator, respectively, are performed in an alternating manner.

Summarization and Discussion
We have derived our model and its learning procedure. The
generator is first initialized by training the base VAE on a
large corpus of unlabeled sentences, through the objective
of minimizing Eq.(4) with the latent code c at this time
sampled from the prior distribution p(c). The full model is
then trained by alternating the optimization of the generator
and the discriminator, as summarized in Algorithm 1.

Our model can be viewed as combining the VAE frame-
work with an extended wake-sleep method, as illustrated in
Figure 2. Specifically, in Eq.(10), samples are produced
by the generator and used as targets for maximum like-
lihood training of the discriminator. This resembles the
sleep phase of wake-sleep. Eqs.(6)-(7) further leverage the
generated samples to improve the generator. We can see
the above together as an extended sleep procedure based
on “dream” samples obtained by ancestral sampling from
the generative network. On the other hand, Eq.(4) samples
c from the discriminator distribution qD(c|x) on observa-
tion x, to form a target for training the generator, which
corresponds to the wake phase. The effective combination
enables discrete latent code, holistic discriminator metrics,
and efficient mutual bootstrapping.

Training of the discriminators need supervised data to im-
pose designated semantics. Discriminators for different at-
tributes can be trained independently on separate labeled
sets. That is, the model does not require a sentence to be

Toward Controlled Generation of Text

performs inference over generated samples from the prior,
as opposed to observed examples as in VAEs.

Combining Eqs.(4)-(7) we obtain the generator objective:

min

✓G LG = LVAE + �cLAttr,c + �zLAttr,z, (8)

where �c and �z are balancing parameters. The varia-
tional encoder is trained by minimizing the VAE loss, i.e.,
min✓E LVAE.

Discriminator Learning
The discriminator D is trained to accurately infer the sen-
tence attribute and evaluate the error of recovering the de-
sired feature as specified in the latent code. For instance,
for categorical attribute, the discriminator can be formu-
lated as a sentence classifier; while for continuous target
a probabilistic regressor can be used. The discriminator
is learned in a different way compared to the VAE encoder,
since the target attributes can be discrete which are not sup-
ported in the VAE framework. Moreover, in contrast to the
unstructured code z which is learned in an unsupervised
manner, the structured variable c uses labeled examples to
entail designated semantics. We derive an efficient semi-
supervised learning method for the discriminator.

Formally, let ✓D denote the parameters of the discrimina-
tor. To learn specified semantic meaning, we use a set of
labeled examples XL = {(xL, cL)} to train the discrimi-
nator D with the following objective:

Ls(✓D) = EXL [log qD(cL|xL)] . (9)

Besides, the conditional generator G is also capable of syn-
thesizing (noisy) sentence-attribute pairs (x̂, c) which can
be used to augment training data for semi-supervised learn-
ing. To alleviate the issue of noisy data and ensure ro-
bustness of model optimization, we incorporate a minimum
entropy regularization term (Grandvalet et al., 2004; Reed
et al., 2014). The resulting objective is thus:

Lu(✓D) = EpG(x̂|z,c)p(z)p(c)
⇥
log qD(c|ˆx) + �H(qD(c

0|ˆx))⇤,
(10)

where H(qD(c0|x̂)) is the empirical Shannon entropy of
distribution qD evaluated on the generated sentence x̂; and
� is the balancing parameter. Intuitively, the minimum
entropy regularization encourages the model to have high
confidence in predicting labels.

The joint training objective of the discriminator using both
labeled examples and synthesized samples is then given as:

min

✓D LD = Ls + �uLu, (11)

where �u is the balancing parameter.

Algorithm 1 Controlled Generation of Text
Input: A large corpus of unlabeled sentences X = {x}

A few sentence attribute labels XL = {(xL, cL)}
Parameters: �c,�z,�u,� – balancing parameters

1: Initialize the base VAE by minimizing Eq.(4) on X with c

sampled from prior p(c)
2: repeat
3: Train the discriminator D by Eq.(11)
4: Train the generator G and the encoder E by Eq.(8) and

minimizing Eq.(4), respectively.
5: until convergence

Output: Sentence generator G conditioned on disentangled rep-
resentation (z, c)

Figure 2. Left: The VAE and wake procedure, corresponding to
Eq.(4). Right: The sleep procedure, corresponding to Eqs.(6)-
(7) and (10). Black arrows denote inference and generation; red
dashed arrows denote gradient propagation. The two steps in the
sleep procedure, i.e., optimizing the discriminator and the gener-
ator, respectively, are performed in an alternating manner.

Summarization and Discussion
We have derived our model and its learning procedure. The
generator is first initialized by training the base VAE on a
large corpus of unlabeled sentences, through the objective
of minimizing Eq.(4) with the latent code c at this time
sampled from the prior distribution p(c). The full model is
then trained by alternating the optimization of the generator
and the discriminator, as summarized in Algorithm 1.

Our model can be viewed as combining the VAE frame-
work with an extended wake-sleep method, as illustrated in
Figure 2. Specifically, in Eq.(10), samples are produced
by the generator and used as targets for maximum like-
lihood training of the discriminator. This resembles the
sleep phase of wake-sleep. Eqs.(6)-(7) further leverage the
generated samples to improve the generator. We can see
the above together as an extended sleep procedure based
on “dream” samples obtained by ancestral sampling from
the generative network. On the other hand, Eq.(4) samples
c from the discriminator distribution qD(c|x) on observa-
tion x, to form a target for training the generator, which
corresponds to the wake phase. The effective combination
enables discrete latent code, holistic discriminator metrics,
and efficient mutual bootstrapping.

Training of the discriminators need supervised data to im-
pose designated semantics. Discriminators for different at-
tributes can be trained independently on separate labeled
sets. That is, the model does not require a sentence to be

Alternative	view:	VAE	+	extended	wake-sleep

15

VAE	/	Extended	wake	procedure:
• Use	real	data	

Toward Controlled Generation of Text

performs inference over generated samples from the prior,
as opposed to observed examples as in VAEs.

Combining Eqs.(4)-(7) we obtain the generator objective:

min

✓G LG = LVAE + �cLAttr,c + �zLAttr,z, (8)

where �c and �z are balancing parameters. The varia-
tional encoder is trained by minimizing the VAE loss, i.e.,
min✓E LVAE.

Discriminator Learning
The discriminator D is trained to accurately infer the sen-
tence attribute and evaluate the error of recovering the de-
sired feature as specified in the latent code. For instance,
for categorical attribute, the discriminator can be formu-
lated as a sentence classifier; while for continuous target
a probabilistic regressor can be used. The discriminator
is learned in a different way compared to the VAE encoder,
since the target attributes can be discrete which are not sup-
ported in the VAE framework. Moreover, in contrast to the
unstructured code z which is learned in an unsupervised
manner, the structured variable c uses labeled examples to
entail designated semantics. We derive an efficient semi-
supervised learning method for the discriminator.

Formally, let ✓D denote the parameters of the discrimina-
tor. To learn specified semantic meaning, we use a set of
labeled examples XL = {(xL, cL)} to train the discrimi-
nator D with the following objective:

Ls(✓D) = EXL [log qD(cL|xL)] . (9)

Besides, the conditional generator G is also capable of syn-
thesizing (noisy) sentence-attribute pairs (x̂, c) which can
be used to augment training data for semi-supervised learn-
ing. To alleviate the issue of noisy data and ensure ro-
bustness of model optimization, we incorporate a minimum
entropy regularization term (Grandvalet et al., 2004; Reed
et al., 2014). The resulting objective is thus:

Lu(✓D) = EpG(x̂|z,c)p(z)p(c)
⇥
log qD(c|ˆx) + �H(qD(c

0|ˆx))⇤,
(10)

where H(qD(c0|x̂)) is the empirical Shannon entropy of
distribution qD evaluated on the generated sentence x̂; and
� is the balancing parameter. Intuitively, the minimum
entropy regularization encourages the model to have high
confidence in predicting labels.

The joint training objective of the discriminator using both
labeled examples and synthesized samples is then given as:

min

✓D LD = Ls + �uLu, (11)

where �u is the balancing parameter.

Algorithm 1 Controlled Generation of Text
Input: A large corpus of unlabeled sentences X = {x}

A few sentence attribute labels XL = {(xL, cL)}
Parameters: �c,�z,�u,� – balancing parameters

1: Initialize the base VAE by minimizing Eq.(4) on X with c

sampled from prior p(c)
2: repeat
3: Train the discriminator D by Eq.(11)
4: Train the generator G and the encoder E by Eq.(8) and

minimizing Eq.(4), respectively.
5: until convergence

Output: Sentence generator G conditioned on disentangled rep-
resentation (z, c)

	"# ∼ %(',))

')

" ∼ +

,-(.|0, 1)
,2(0|.) ,3(1|.)

')

,-(.|0, 1)

,3(1|.)

4(0) 4(1)

Figure 2. Left: The VAE and wake procedure, corresponding to
Eq.(4). Right: The sleep procedure, corresponding to Eqs.(6)-
(7) and (10). Black arrows denote inference and generation; red
dashed arrows denote gradient propagation. The two steps in the
sleep procedure, i.e., optimizing the discriminator and the gener-
ator, respectively, are performed in an alternating manner.

Summarization and Discussion
We have derived our model and its learning procedure. The
generator is first initialized by training the base VAE on a
large corpus of unlabeled sentences, through the objective
of minimizing Eq.(4) with the latent code c at this time
sampled from the prior distribution p(c). The full model is
then trained by alternating the optimization of the generator
and the discriminator, as summarized in Algorithm 1.

Our model can be viewed as combining the VAE frame-
work with an extended wake-sleep method, as illustrated in
Figure 2. Specifically, in Eq.(10), samples are produced
by the generator and used as targets for maximum like-
lihood training of the discriminator. This resembles the
sleep phase of wake-sleep. Eqs.(6)-(7) further leverage the
generated samples to improve the generator. We can see
the above together as an extended sleep procedure based
on “dream” samples obtained by ancestral sampling from
the generative network. On the other hand, Eq.(4) samples
c from the discriminator distribution qD(c|x) on observa-
tion x, to form a target for training the generator, which
corresponds to the wake phase. The effective combination
enables discrete latent code, holistic discriminator metrics,
and efficient mutual bootstrapping.

Training of the discriminators need supervised data to im-
pose designated semantics. Discriminators for different at-
tributes can be trained independently on separate labeled
sets. That is, the model does not require a sentence to be

Toward Controlled Generation of Text

performs inference over generated samples from the prior,
as opposed to observed examples as in VAEs.

Combining Eqs.(4)-(7) we obtain the generator objective:

min

✓G LG = LVAE + �cLAttr,c + �zLAttr,z, (8)

where �c and �z are balancing parameters. The varia-
tional encoder is trained by minimizing the VAE loss, i.e.,
min✓E LVAE.

Discriminator Learning
The discriminator D is trained to accurately infer the sen-
tence attribute and evaluate the error of recovering the de-
sired feature as specified in the latent code. For instance,
for categorical attribute, the discriminator can be formu-
lated as a sentence classifier; while for continuous target
a probabilistic regressor can be used. The discriminator
is learned in a different way compared to the VAE encoder,
since the target attributes can be discrete which are not sup-
ported in the VAE framework. Moreover, in contrast to the
unstructured code z which is learned in an unsupervised
manner, the structured variable c uses labeled examples to
entail designated semantics. We derive an efficient semi-
supervised learning method for the discriminator.

Formally, let ✓D denote the parameters of the discrimina-
tor. To learn specified semantic meaning, we use a set of
labeled examples XL = {(xL, cL)} to train the discrimi-
nator D with the following objective:

Ls(✓D) = EXL [log qD(cL|xL)] . (9)

Besides, the conditional generator G is also capable of syn-
thesizing (noisy) sentence-attribute pairs (x̂, c) which can
be used to augment training data for semi-supervised learn-
ing. To alleviate the issue of noisy data and ensure ro-
bustness of model optimization, we incorporate a minimum
entropy regularization term (Grandvalet et al., 2004; Reed
et al., 2014). The resulting objective is thus:

Lu(✓D) = EpG(x̂|z,c)p(z)p(c)
⇥
log qD(c|ˆx) + �H(qD(c

0|ˆx))⇤,
(10)

where H(qD(c0|x̂)) is the empirical Shannon entropy of
distribution qD evaluated on the generated sentence x̂; and
� is the balancing parameter. Intuitively, the minimum
entropy regularization encourages the model to have high
confidence in predicting labels.

The joint training objective of the discriminator using both
labeled examples and synthesized samples is then given as:

min

✓D LD = Ls + �uLu, (11)

where �u is the balancing parameter.

Algorithm 1 Controlled Generation of Text
Input: A large corpus of unlabeled sentences X = {x}

A few sentence attribute labels XL = {(xL, cL)}
Parameters: �c,�z,�u,� – balancing parameters

1: Initialize the base VAE by minimizing Eq.(4) on X with c

sampled from prior p(c)
2: repeat
3: Train the discriminator D by Eq.(11)
4: Train the generator G and the encoder E by Eq.(8) and

minimizing Eq.(4), respectively.
5: until convergence

Output: Sentence generator G conditioned on disentangled rep-
resentation (z, c)

	"# ∼ %(',))

')

" ∼ +

,-(.|0, 1)
,2(0|.) ,3(1|.)

')

,-(.|0, 1)

,3(1|.)

4(0) 4(1)

Figure 2. Left: The VAE and wake procedure, corresponding to
Eq.(4). Right: The sleep procedure, corresponding to Eqs.(6)-
(7) and (10). Black arrows denote inference and generation; red
dashed arrows denote gradient propagation. The two steps in the
sleep procedure, i.e., optimizing the discriminator and the gener-
ator, respectively, are performed in an alternating manner.

Summarization and Discussion
We have derived our model and its learning procedure. The
generator is first initialized by training the base VAE on a
large corpus of unlabeled sentences, through the objective
of minimizing Eq.(4) with the latent code c at this time
sampled from the prior distribution p(c). The full model is
then trained by alternating the optimization of the generator
and the discriminator, as summarized in Algorithm 1.

Our model can be viewed as combining the VAE frame-
work with an extended wake-sleep method, as illustrated in
Figure 2. Specifically, in Eq.(10), samples are produced
by the generator and used as targets for maximum like-
lihood training of the discriminator. This resembles the
sleep phase of wake-sleep. Eqs.(6)-(7) further leverage the
generated samples to improve the generator. We can see
the above together as an extended sleep procedure based
on “dream” samples obtained by ancestral sampling from
the generative network. On the other hand, Eq.(4) samples
c from the discriminator distribution qD(c|x) on observa-
tion x, to form a target for training the generator, which
corresponds to the wake phase. The effective combination
enables discrete latent code, holistic discriminator metrics,
and efficient mutual bootstrapping.

Training of the discriminators need supervised data to im-
pose designated semantics. Discriminators for different at-
tributes can be trained independently on separate labeled
sets. That is, the model does not require a sentence to be

Extended	sleep	procedure
• Use	generated	data

[Hu	et	al.,	2017]	“On	unifying	deep	generative	models”

Experiments

• Sentence	corpus
• 350K	IMDB	movie	reviews
• Maximum	sentence	length	=	15

• Control	sentiment and	tense
• Sentiment	dataset:	IMDB,	SST	with	labels	∈ {positive,	negative}:	0.1-6K	labels
• Tense	dataset:	phrases/words	with	labels	∈ {past,	present,	future}:	~5K	labels

16

Generation	accuracy

17

Toward Controlled Generation of Text

annotated with all attributes, but instead needs only inde-
pendent labeled data for each individual attribute. More-
over, as the labeled data are used only for learning attribute
semantics instead of direct sentence generation, we are al-
lowed to extend the data scope beyond labeled sentences
to, e.g., labeled words or phrases. As shown in the experi-
ments (section 4), our method is able to effectively lift the
word level knowledge to sentence level and generate con-
vincing sentences. Finally, with the augmented unsuper-
vised training in the sleep phrase, we show a little supervi-
sion is sufficient for learning structured representations.

4. Experiments
We apply our model to generate short sentences (length 
15) with controlled sentiment and tense. Quantitative ex-
periments using trained classifiers as evaluators show our
model gives improved generation accuracy. Disentangled
representation is learned with a few labels or only word
annotations. We also validate the effect of the proposed
independency constraint for interpretable generation.

Datasets
Sentence corpus. We use a large IMDB text corpus (Diao
et al., 2014) for training the generative models. This is
a collection of 350K movie reviews. We select sentences
containing at most 15 words, and replace infrequent words
with the token “<unk>”. The resulting dataset contains
around 1.4M sentences with the vocabulary size of 16K.

Sentiment. To control the sentiment (“positive” or “neg-
ative”) of generated sentences, we test on the following la-
beled sentiment data: (1) Stanford Sentiment Treebank-2
(SST-full) (Socher et al., 2013) consists of 6920/872/1821
movie review sentences with binary sentiment annotations
in the train/dev/test sets, respectively. We use the 2837
training examples with sentence length  15, and evalu-
ate classification accuracy on the original test set. (2) SST-
small. To study the size of labeled data required in the
semi-supervised learning for accurate attribute control, we
sample a small subset from SST-full, containing only 250
labeled sentences for training. (3) Lexicon. We also in-
vestigate the effectiveness of our model in terms of using
word-level labels for sentence-level control. The lexicon
from (Wilson et al., 2005) contains 2700 words with senti-
ment labels. We use the lexicon for training by treating the
words as sentences, and evaluate on the SST-full test set.
(4) IMDB. We collect a dataset from the IMDB corpus
by randomly selecting positive and negative movie reviews.
The dataset has 5K/1K/10K sentences in train/dev/test.

Tense. The second attribute is the tense of the main verb
in a sentence. Though no corpus with sentence tense an-
notations is readily available, our method is able to learn
from only labeled words and generate desired sentences.

Model Dataset

SST-full SST-small Lexicon

S-VAE 0.822 0.679 0.660
Ours 0.851 0.707 0.701

Table 1. Sentiment accuracy of generated sentences. S-VAE
(Kingma et al., 2014) and our model are trained on the three sen-
timent datasets and generate 30K sentences, respectively.

We compile from the TimeBank (timeml.org) dataset and
obtain a lexicon of 5250 words and phrases labeled with
one of {“past”, “present”, “future”}. The lexicon mainly
consists of verbs in different tenses (e.g., “was”, “will be”)
as well as time expressions (e.g., “in the future”).

Note that our method requires only separate labeled copora
for each attribute. And for the tense attribute only anno-
tated words/phrases are used.

Parameter Setting
The generator and encoder are set as single-layer LSTM
RNNs with input/hidden dimension of 300 and max sample
length of 15. Discriminators are set as ConvNets. Detailed
configurations are in the supplements. To avoid vanishingly
small KL term in the VAE module (Eq.4) (Bowman et al.,
2015), we use a KL term weight linearly annealing from 0
to 1 during training. Balancing parameters are set to �c =
�z = �u = 0.1, and � is selected on the dev sets. At test
time sentences are generated with Eq.(1).

4.1. Accuracy of Generated Attributes

We quantitatively measure sentence attribute control by
evaluating the accuracy of generating designated sentiment,
and the effect of using samples for training classifiers.
We compare with semi-supervised VAE (S-VAE) (Kingma
et al., 2014), one of the few existing deep models capable
of conditional text generation. S-VAE learns to reconstruct
observed sentences given attribute code, and no discrimi-
nators are used. See §2 and 3.1 for more discussions.

We use a state-of-the-art sentiment classifier (Hu et al.,
2016a) which achieves 90% accuracy on the SST test set, to
automatically evaluate the sentiment generation accuracy.
Specifically, we generate sentences given sentiment code c,
and use the pre-trained sentiment classifier to assign senti-
ment labels to the generated sentences. The accuracy is
calculated as the percentage of the predictions that match
the sentiment code c. Table 1 shows the results on 30K
sentences by the two models which are trained with SST-
full, SST-small, and Lexicon, respectively. We see that our
method consistently outperforms S-VAE on all datasets. In
particular, trained with only 250 labeled examples in SST-
small, our model achieves reasonable generation accuracy,
demonstrating the ability of learning disentangled repre-

Toward Controlled Generation of Text

Figure 3. Test-set accuracy of classifiers trained on four sentiment
datasets augmented with different methods (see text for details).
The first three datasets use the SST-full test set for evaluation.

sentations with very little supervision. More importantly,
given only word-level annotations in Lexicon, our model
successfully transfers the knowledge to sentence level and
generates desired sentiments reasonably well. Compared to
our method that drives learning by directly assessing gen-
erated sentences, S-VAE attempts to capture sentiment se-
mantics only by reconstructing labeled words, which is less
efficient and gives inferior performance.

We next use the generated samples to augment the sen-
timent datasets and train sentiment classifiers. While
not aiming to build best-performing classifiers on these
datasets, the classification accuracy serves as an auxiliary
measure of the sentence generation quality. That is, higher-
quality sentences with more accurate sentiment attribute
can predictably help yield stronger sentiment classifiers.
Figure 3 shows the accuracy of classifiers trained on the
four datasets with different augmentations. “Std” is a Con-
vNet trained on the standard original datasets, with the
same network structure as with the sentiment discriminator
in our model. “H-reg” additionally imposes the minimum
entropy regularization on the generated sentences. “Ours”
incorporates the minimum entropy regularization and the
sentiment attribute code c of the generated sentences, as
in Eq.(10). S-VAE uses the same protocol as our method
to augment with the data generated by the S-VAE model.
Comparison in Figure 3 shows that our method consistently
gives the best performance on four datasets. For instance,
on Lexicon, our approach achieves 0.733 accuracy, com-
pared to 0.701 of “Std”. The improvement of “H-Reg”
over “Std” shows positive effect of the minimum entropy
regularization on generated sentences. Further incorporat-
ing the conditioned sentiment code of the generated sam-
ples, as in “Ours” and “S-VAE”, provides additional perfor-
mance gains, indicating the advantages of conditional gen-
eration for automatic creation of labeled data. Consistent
with the above experiment, our model outperforms S-VAE.

4.2. Disentangled Representation

We study the interpretability of generation and the explicit
independency constraint (Eq.7) for disentangled control.

Table 2 compares the samples generated by models with
and without the constraint term, respectively. In the left
column where the constraint applies, each pair of sen-
tences, conditioned on different sentiment codes, are highly
relevant in terms of, e.g., subject, tone, and wording which
are not explicitly modeled in the structured code c while in-
stead implicitly encoded in the unstructured code z. Vary-
ing the sentiment code precisely changes the sentiment of
the sentences (and paraphrases slightly to ensure fluency),
while keeping other aspects unchanged. In contrast, the
results in the right column, where the independency con-
straint is unactivated, show that varying the sentiment code
not only changes the polarity of samples, but can also
change other aspects unexpected to control, making the
generation results less interpretable and predictable.

We demonstrate the power of learned disentangled repre-
sentation by varying one attribute variable at a time. Table 3
shows the generation results. We see that each attribute
variable in our model successfully controls its correspond-
ing attribute, and is disentangled with other attribute code.
The right column of the table shows meaningful variation
of sentence tense as the tense code varies. Note that the
semantic of tense is learned only from a lexicon without
complete sentence examples. Our model successfully cap-
tures the key ingredients (e.g., verb “was” for past tense and
“will be” for future tense) and combines with the knowl-
edge of well-formed sentences to generate realistic samples
with specified tense attributes. Table 4 further shows gen-
erated sentences with varying code z in different settings
of structured attribute factors. We obtain samples that are
diverse in content while consistent in sentiment and tense.

We also occasionally observed failure cases as in Table 5,
such as implausible sentences, unexpected variations of
irrelevant attributes, and inaccurate attribute generations.
Improved modeling is expected such as using dilated con-
volutions as decoder, and decoding with beam search, etc.
Better systematic quantitative evaluations are also desired.

5. Discussions
We have proposed a deep generative model that learns in-
terpretable latent representations and generates sentences
with specified attributes. We obtained meaningful genera-
tion with restricted sentence length, and improved accuracy
on sentiment and tense attributes. In the future we would
like to improve the modeling and training as above, and
extend to generate longer sentences/paragraphs and control
more attributes with fine-grained structures.

Our approach combines VAEs with attribute discrim-
inators and imposes explicit independency constraints
on attribute controls, enabling disentangled latent code.
Semi-supervised learning within the joint VAE/wake-sleep

Sentiment	accuracy	of	generated	sentences	
evaluated	with	a	pre-trained	sentiment	
classifier Test-set	accuracy	of	sentiment	classifiers	

trained	on	generated	sentences

Independence	constraintToward Controlled Generation of Text

w/ independency constraint w/o independency constraint
the film is strictly routine ! the acting is bad .
the film is full of imagination . the movie is so much fun .

after watching this movie , i felt that disappointed . none of this is very original .
after seeing this film , i ’m a fan . highly recommended viewing for its courage , and ideas .

the acting is uniformly bad either . too bland
the performances are uniformly good . highly watchable

this is just awful . i can analyze this movie without more than three words .
this is pure genius . i highly recommend this film to anyone who appreciates music .

Table 2. Samples from models with or without independency constraint on attribute control (i.e., Eq.7). Each pair of sentences are
generated with sentiment code set to “negative” and “positive”, respectively, while fixing the unstructured code z. The SST-full dataset
is used for learning the sentiment representation.

Varying the code of tense
i thought the movie was too bland and too much this was one of the outstanding thrillers of the last decade
i guess the movie is too bland and too much this is one of the outstanding thrillers of the all time
i guess the film will have been too bland this will be one of the great thrillers of the all time

Table 3. Each triple of sentences is generated by varying the tense code while fixing the sentiment code and z.

Varying the unstructured code z

(“negative”, “past”) (“positive”, “past”)

the acting was also kind of hit or miss . his acting was impeccable
i wish i ’d never seen it this was spectacular , i saw it in theaters twice
by the end i was so lost i just did n’t care anymore it was a lot of fun

(“negative”, “present”) (“positive”, “present”)

the movie is very close to the show in plot and characters this is one of the better dance films
the era seems impossibly distant i ’ve always been a big fan of the smart dialogue .
i think by the end of the film , it has confused itself i recommend you go see this, especially if you hurt

(“negative”, “future”) (“positive”, “future”)

i wo n’t watch the movie i hope he ’ll make more movies in the future
and that would be devastating ! i will definitely be buying this on dvd
i wo n’t get into the story because there really is n’t one you will be thinking about it afterwards, i promise you

Table 4. Samples by varying the unstructured code z given sentiment (“positive”/“negative”) and tense (“past”/“present”/“future”) code.

Failure cases
the plot is not so original it does n’t get any better the other dance movies
the plot weaves us into <unk> it does n’t reach them , but the stories look

he is a horrible actor ’s most part i just think so
he ’s a better actor than a standup i just think !

Table 5. Failure cases when varying sentiment code with other codes fixed.

18

Toward Controlled Generation of Text

w/ independency constraint w/o independency constraint
the film is strictly routine ! the acting is bad .
the film is full of imagination . the movie is so much fun .

after watching this movie , i felt that disappointed . none of this is very original .
after seeing this film , i ’m a fan . highly recommended viewing for its courage , and ideas .

the acting is uniformly bad either . too bland
the performances are uniformly good . highly watchable

this is just awful . i can analyze this movie without more than three words .
this is pure genius . i highly recommend this film to anyone who appreciates music .

Table 2. Samples from models with or without independency constraint on attribute control (i.e., Eq.7). Each pair of sentences are
generated with sentiment code set to “negative” and “positive”, respectively, while fixing the unstructured code z. The SST-full dataset
is used for learning the sentiment representation.

Varying the code of tense
i thought the movie was too bland and too much this was one of the outstanding thrillers of the last decade
i guess the movie is too bland and too much this is one of the outstanding thrillers of the all time
i guess the film will have been too bland this will be one of the great thrillers of the all time

Table 3. Each triple of sentences is generated by varying the tense code while fixing the sentiment code and z.

Varying the unstructured code z

(“negative”, “past”) (“positive”, “past”)

the acting was also kind of hit or miss . his acting was impeccable
i wish i ’d never seen it this was spectacular , i saw it in theaters twice
by the end i was so lost i just did n’t care anymore it was a lot of fun

(“negative”, “present”) (“positive”, “present”)

the movie is very close to the show in plot and characters this is one of the better dance films
the era seems impossibly distant i ’ve always been a big fan of the smart dialogue .
i think by the end of the film , it has confused itself i recommend you go see this, especially if you hurt

(“negative”, “future”) (“positive”, “future”)

i wo n’t watch the movie i hope he ’ll make more movies in the future
and that would be devastating ! i will definitely be buying this on dvd
i wo n’t get into the story because there really is n’t one you will be thinking about it afterwards, i promise you

Table 4. Samples by varying the unstructured code z given sentiment (“positive”/“negative”) and tense (“past”/“present”/“future”) code.

Failure cases
the plot is not so original it does n’t get any better the other dance movies
the plot weaves us into <unk> it does n’t reach them , but the stories look

he is a horrible actor ’s most part i just think so
he ’s a better actor than a standup i just think !

Table 5. Failure cases when varying sentiment code with other codes fixed.

More	examples

Toward Controlled Generation of Text

w/ independency constraint w/o independency constraint
the film is strictly routine ! the acting is bad .
the film is full of imagination . the movie is so much fun .

after watching this movie , i felt that disappointed . none of this is very original .
after seeing this film , i ’m a fan . highly recommended viewing for its courage , and ideas .

the acting is uniformly bad either . too bland
the performances are uniformly good . highly watchable

this is just awful . i can analyze this movie without more than three words .
this is pure genius . i highly recommend this film to anyone who appreciates music .

Table 2. Samples from models with or without independency constraint on attribute control (i.e., Eq.7). Each pair of sentences are
generated with sentiment code set to “negative” and “positive”, respectively, while fixing the unstructured code z. The SST-full dataset
is used for learning the sentiment representation.

Varying the code of tense
i thought the movie was too bland and too much this was one of the outstanding thrillers of the last decade
i guess the movie is too bland and too much this is one of the outstanding thrillers of the all time
i guess the film will have been too bland this will be one of the great thrillers of the all time

Table 3. Each triple of sentences is generated by varying the tense code while fixing the sentiment code and z.

Varying the unstructured code z

(“negative”, “past”) (“positive”, “past”)

the acting was also kind of hit or miss . his acting was impeccable
i wish i ’d never seen it this was spectacular , i saw it in theaters twice
by the end i was so lost i just did n’t care anymore it was a lot of fun

(“negative”, “present”) (“positive”, “present”)

the movie is very close to the show in plot and characters this is one of the better dance films
the era seems impossibly distant i ’ve always been a big fan of the smart dialogue .
i think by the end of the film , it has confused itself i recommend you go see this, especially if you hurt

(“negative”, “future”) (“positive”, “future”)

i wo n’t watch the movie i hope he ’ll make more movies in the future
and that would be devastating ! i will definitely be buying this on dvd
i wo n’t get into the story because there really is n’t one you will be thinking about it afterwards, i promise you

Table 4. Samples by varying the unstructured code z given sentiment (“positive”/“negative”) and tense (“past”/“present”/“future”) code.

Failure cases
the plot is not so original it does n’t get any better the other dance movies
the plot weaves us into <unk> it does n’t reach them , but the stories look

he is a horrible actor ’s most part i just think so
he ’s a better actor than a standup i just think !

Table 5. Failure cases when varying sentiment code with other codes fixed.

19

More	examples

20

Toward Controlled Generation of Text

w/ independency constraint w/o independency constraint
the film is strictly routine ! the acting is bad .
the film is full of imagination . the movie is so much fun .

after watching this movie , i felt that disappointed . none of this is very original .
after seeing this film , i ’m a fan . highly recommended viewing for its courage , and ideas .

the acting is uniformly bad either . too bland
the performances are uniformly good . highly watchable

this is just awful . i can analyze this movie without more than three words .
this is pure genius . i highly recommend this film to anyone who appreciates music .

Table 2. Samples from models with or without independency constraint on attribute control (i.e., Eq.7). Each pair of sentences are
generated with sentiment code set to “negative” and “positive”, respectively, while fixing the unstructured code z. The SST-full dataset
is used for learning the sentiment representation.

Varying the code of tense
i thought the movie was too bland and too much this was one of the outstanding thrillers of the last decade
i guess the movie is too bland and too much this is one of the outstanding thrillers of the all time
i guess the film will have been too bland this will be one of the great thrillers of the all time

Table 3. Each triple of sentences is generated by varying the tense code while fixing the sentiment code and z.

Varying the unstructured code z

(“negative”, “past”) (“positive”, “past”)

the acting was also kind of hit or miss . his acting was impeccable
i wish i ’d never seen it this was spectacular , i saw it in theaters twice
by the end i was so lost i just did n’t care anymore it was a lot of fun

(“negative”, “present”) (“positive”, “present”)

the movie is very close to the show in plot and characters this is one of the better dance films
the era seems impossibly distant i ’ve always been a big fan of the smart dialogue .
i think by the end of the film , it has confused itself i recommend you go see this, especially if you hurt

(“negative”, “future”) (“positive”, “future”)

i wo n’t watch the movie i hope he ’ll make more movies in the future
and that would be devastating ! i will definitely be buying this on dvd
i wo n’t get into the story because there really is n’t one you will be thinking about it afterwards, i promise you

Table 4. Samples by varying the unstructured code z given sentiment (“positive”/“negative”) and tense (“past”/“present”/“future”) code.

Failure cases
the plot is not so original it does n’t get any better the other dance movies
the plot weaves us into <unk> it does n’t reach them , but the stories look

he is a horrible actor ’s most part i just think so
he ’s a better actor than a standup i just think !

Table 5. Failure cases when varying sentiment code with other codes fixed.

Conclusions

• A	new	text	generation	model
• Incorporates	attribute	discriminators	for	effective	attribute	semantic	learning
• Enables	semi-supervised	learning	of	both	generator	and	discriminators
• Requires	only	separate	annotated	data	for	each	attribute
• Imposes	explicit	independence	constraints

• Future	work
• A	general	framework	of	collaborative generator-discriminator	learning
• Interpretable	code	representation	provides	an	interface	connecting	end-to-
end	neural	models	with	conventional	structured	methods
• Combine	structured	knowledge	with	neural	generative	models	[Hu	et	al.,	
2016]
• Plug	into	dialog	systems

21

