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Abstract—Social community detection is a growing field of
interest in the area of social network applications, and many
approaches have been developed, including graph partitioning,
latent space model, block model and spectral clustering. Most
existing work purely focuses on network structure information
which is, however, often sparse, noisy and lack of interpretability.
To improve the accuracy and interpretability of community
discovery, we propose to infer users’ social communities by in-
corporating their spatiotemporal data and semantic information.
Technically, we propose a unified probabilistic generative model,
User-Community-Geo-Topic (UCGT), to simulate the generative
process of communities as a result of network proximities,
spatiotemporal co-occurrences and semantic similarity. With a
well-designed multi-component model structure and a parallel
inference implementation to leverage the power of multicores and
clusters, our UCGT model is expressive while remaining efficient
and scalable to growing large-scale geo-social networking data.
We deploy UCGT to two application scenarios of user behavior
predictions: check-in prediction and social interaction prediction.
Extensive experiments on two large-scale geo-social networking
datasets show that UCGT achieves better performance than
existing state-of-the-art comparison methods.

I. INTRODUCTION

As social networks (e.g., Facebook and Twitter) gain promi-

nence, the first obvious question that comes to a researcher’s

mind in observing these networks is: how to extract mean-

ingful knowledge from these data? In seeking a response, the

network structure proves to be of utmost importance. Iden-

tifying high-order structures within networks yields insights

into their functional organizations, which in turn contributes

more knowledge to support many practical applications, in-

cluding user behavior predictions and online marketing. Thus,

discovering community structures from social networks has

attracted considerable research interests. Many approaches

have been developed for clustering on graph that serves the

purpose of community extraction or discovery, including graph

partitioning [11], latent space model [24], block model [1],

spectral clustering [17], etc.

However, after investigating multiple social media datasets,

an important observation is made that in some cases, reliable

social structure information is available for users, while in

many cases, these data is unavailable, incomplete or unre-

liable, either due to the privacy issue or because the user

declines to share the true information. Therefore, discovering

2 1 3

Colleagues in

IT company

Meet at 

Outdoors Club

Hiking

IT Gadgets
? ?

312

Colleagues Affiliation Outdoors Club Member Affiliation

Fig. 1. Toy Example

communities simply based on pure network structure becomes

problematic in some scenarios. (1) Consider a spammer in a

social network who builds social connections with many users,

which leads to a problem to all community discovery methods

based on topology structure. (2) Aside from the possible bias

in the network topology due to unwanted connections, existing

methods also suffer from the lack of interpretation. Given a

group of users discovered as a community, a natural question

is why they form a community? The methods based on the

pure network topology fall short in answering such questions.

For the ease of understanding the importance of the in-

terpretability of communities, we provide a toy example in

Figure 1. Actor 1 connects Actor 2 because they work in the

same IT company, and connects to Actor 3 because they often

meet each other in the same outdoors club. Given the label

information that Actor 1 is interested in both Hiking and IT

Gadgets, can we infer Actor 2 and 3’s interests? If we do not

know the interpretations of the communities and treat these

two connections homogeneously, we guess that both Actors 2

and 3 are also interested in Hiking and IT Gadgets. But if we

know how Actor 1 connects to them, it is more reasonable to

conjecture that Actor 2 is more interested in IT gadgets and

Actor 3 likes Hiking. The accurate inference of users’ interests

on social networks is critical for social networking advertising,

recommendation and search.

To overcome the challenges from low-quality network data

and improve the interpretability of discovered communities,
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we propose to infer users’ social communities by incorporating

their spatiotemporal data and the associated contents. Recently,

the advances in location acquisition and wireless communi-

cation technologies enable people to add a location dimen-

sion to social networks, fostering a profusion of geo-social

networks, such as location-based social networks (LBSNs)

and event-based social networks (EBSNs) [16], [22]. LBSNs

(e.g., Foursquare, Yelp and Google Place) provide users an

online platform to check-in at points of interests (e.g., cinemas,

galleries and hotels) and share their life experiences with

their online friends. Moreover, newly emerging EBSNs (e.g.,

Meetup and Plancast) enable users to check-in and share more

specific activities/events held in the physical world, ranging

from informal get-togethers (e.g., movie nights and dining

out) to formal activities (e.g., business meetings). Thus, the

geo-social network contains a “4W” (i.e., who, when, where

and what) information layout, corresponding to four distinct

information layers as shown in Figure 2. The dimensions of

space-time and semantic imply extensive knowledge about

users’ behaviors and interests by bridging the gap between

online social networks and the physical world, enabling us to

better understand the formation of communities.

Specifically, for one thing, users’ spatiotemporal data pro-

vides a rich source of information for studying users’ social

communities (e.g., affiliations). Some recent studies [21], [26]

showed that there is a correlation between people’s spatiotem-

poral co-occurrences (i.e., two people appear at the same

places at the same time) and their social connections, and the

co-occurrence frequency (i.e., how often two people co-locate

at the same time) has been widely used to measure the strength

of social relationship between two people. The intuition is that

if two people often co-occur at the same places, there is a good

chance that they are socially related and belong to the same

community. For another, as suggested in the established social

science theory of homophily [19], “birds of a feather flock

together”. Similarity breeds connections in real-world social

networks. In terms of social media, users sharing the same

interests and enjoying the same contents tend to belong to the

same communities.

In this paper, we approach the problem of community detec-

tion using a probabilistic generative model based on Bayesian

network, named User-Community-Geo-Topic (UCGT), which

models the formation of communities as a result of network

proximity, spatiotemporal co-occurrences and semantic sim-

ilarity among social actors. To effectively infer the UCGT

model, we propose an entropy filtering-based Gibbs sampling

method. To demonstrate the potential of our model in practical

applications, we evaluate its performance on challenging user

behavior predictions: check-in prediction and social interaction

prediction. In these two prediction problems, we take advan-

tage of the community members’ collective behavior patterns

and network structures to overcome the sparsity and volatility

of individuals’ behaviors and connections.

To summarize, we make the following contributions:

1. Novelty Perspective. We identify the problem of com-

munity discovery beyond network structure by incorporating

both spatiotemporal co-occurrences and semantic similarity. It

brings up new insights into the community formation process.

2. Comprehensive Model. We propose a Bayesian model

UCGT to simulate the generative process of communities as a

result of network proximities, spatiotemporal co-occurrences

and semantic similarity. To improve the performance of UCGT,

we incorporate the idea of entropy filtering to Gibbs sampling.

3. Scalable Inference. To adapt to large-scale geo-social

data, we develop a scalable parallel implementation of the

UCGT by harnessing the powers of multicores and clusters.

4. Inspiring Prediction and Exploration. We deploy

UCGT to user behavior predictions (i.e., check-in prediction

and social interaction prediction) without any modification

to the model itself, showing its superiority and significant

improvement over existing state-of-the-art methods.

The remainder of the paper is organized as follows. Section

2 formulates the problem and introduces the model. Section 3

describes the inference algorithm and parallel implementation.

Section 4 illustrates the applications of UCGT. We report the

experimental results in Section 5. We review related literatures

in Section 6 and conclude the paper in Section 7.

II. COMMUNITY DISCOVERY FROM GEO-SOCIAL

NETWORK

A. Problem Formulation

Notation. Through this paper, all vectors are column vectors

and are denoted by bold lower case letters (e.g., θ and φ). We

use calligraphic letters to represent sets (e.g., U and V). For

simplicity, we use their corresponding normal letters to denote

their cardinalities (e.g., V = |V|).
Definition 1: (Interaction Network). As a mathematical

abstraction, we define the interaction network as a directed

graph G = (U , E), where U is a set of nodes/users, and

E is a set of edges. The link set E denotes interactions

between users and can be derived from various types of user

interactions such as following, retweeting, emailing and co-

authoring. A directed link (u, u′) ∈ E indicates that there



TABLE I
NOTATIONS OF PARAMETERS

Variable Interpretation

πu
the community memberships of user u, expressed
by a multinomial distribution over communities

θc
the interests of community c, expressed by

a multinomial distribution over topics

ϑc
a multinomial distribution over spatial items

specific to community c

φz
a multinomial distribution over words

specific to topic z

ψc,c′
the general interaction strength
between communities c and c′

λ0, λ1 Beta priors on ψ

hc,v
the bandwidth vector of the kernel function

specific to (c, v)

α, β, γ, η
Dirichlet priors to multinomial distributions

θc, φz , πu and ϑc, respectively

exists communication from user u to u′. We use Eu to denote

the set of links from u to other users.

Definition 2: (Spatial Item) A spatial item v ∈ V is defined

as a uniquely identified specific site (e.g., a restaurant or a

cinema) or an event (e.g., a conference or an exhibition).

Definition 3: (Check-in Activity) A check-in activity is

made of a four-tuple (u, v, t, D) that means user u checks-

in at spatial item v at time t. D denotes a collection of

words extracted from user comments or the descriptions/tags

associated with v. For each user u, we use Lu to denote the

collection of her check-in activities.

A community is a collection of users with more intense

interactions amongst its members than other users. It can

be characterized not only by social link structures, but also

geographical and topical preferences. Therefore, we associate

each community with a distribution over topics representing its

interests, a distribution over spatial items indicating its spatial

activities, and an interaction vector representing its interaction

strengths with other communities. A formal definition of

community is given below.

Definition 4: (Community). A community c ∈ C has

three components: (1) a multinomial distribution over topics

θc, where each component θc,z represents the probability

that community c is interested in topic z; (2) a multinomial

distribution over spatial items ϑc, where each component

ϑc,v represents the probability that community c visits spatial

item v; (3) a probability vector ψc, where each component

ψc,c′ is the mean of a Bernoulli distribution representing the

interaction probability between communities c and c′.

In social networks, users usually have multiple roles and

belong to multiple affiliations [28]. We therefore employ the

mixed-membership approach: each user u is associated with

a multinomial distribution over communities πu, where πu,c
indicates her affiliation degree to community c.

Definition 5: (Topic). Given a collection of words W , a

topic z is defined as a multinomial distribution over W , i.e.,

φz = {φz,w : w ∈ W} where each component φz,w denotes

the probability of word w generated from topic z. Generally,

a topic is a semantic-coherent soft cluster of words.
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Fig. 3. Graphical Representation of UCGT. The latent variable c
′ is repre-

sented by a dashed circle since it is drawn from πu′ which is not shown in
the graph model.

B. Model Structure

To detect user communities from geo-social networking

data, we propose a probabilistic generative model, User-

Community-Geo-Topic (UCGT), which jointly models both

users’ check-in behaviors Lu and interaction behaviors Eu. It

considers the formation of communities as a result of spa-

tiotemporal co-occurrences, semantic similarity and network

proximity among social actors.

Figure 3 shows the graphical structure of UCGT, and the

notations of the model are listed in Table I. By jointly consid-

ering the two types of user behaviors with properly separated

generative process, UCGT naturally combines check-in data

and network data while still keeping the model tractable.

Specifically, there are three components in UCGT: the check-in

component captures the spatiotemporal patterns of communi-

ties and uncovers the semantic topics; the network component

accounts for the link structure; and the user membership

component models user membership to communities, which

also serves to seamlessly unify the other two components.

User Membership Component. Generally, users have mul-

tiple affiliations in the real world. Correspondingly, users in a

social network also have multiple community memberships.

We associate each user u with a community probability

vector πu. A community c is assigned to a check-in activity

(u, v, t, D) ∈ Lu, denoting the community membership (e.g.,

the role) of user u when visiting spatial item v. In addition, a

community pair (c, c′) is assigned to a positive link eu,u′ ∈ Eu,

which denotes the community memberships of users u and u′

when they build the social link.

Check-in Component. Since each check-in activity

(u, v, t, D) ∈ Lu contains both spatiotemporal and semantic

information, this component consists of two subcomponents:

Spatiotemporal Subcomponent and Semantic Subcomponent.

Spatiotemporal Subcomponent. Users with the same roles

or affiliations tend to visit the same places and attend the

same events. To model this observation, each community c



is associated with a probabilistic distribution ϑc over spatial

items, and each component ϑc,v denotes the probability of

community c visiting spatial item v. In addition, the activity

time of a community’s members tend to be close to each other.

Thus, for simplicity and speed, we propose to use Kernel

Density Estimation (KDE) method to model the continuous

time density of users from the same community c visiting the

same spatial item v.

KDE is a non-parametric model for estimating density from

sample points. Following the kernel density model, we define

the probability of a user from community c visiting spatial

item v at time t as in Equation 1.

P (t|hc,v) =
1

|Tc,v|

∑

t′∈Tc,v

K
ht′
c,v

(t− t
′) (1)

where Tc,v is a collection of time stamps Tc,v at which all

other users from community c visit POI v, and Kht′
c,v

(t− t′)

is defined as follows:

K
ht′
c,v

(t− t
′) =

1

2πht′
c,v

exp (
−(t− t′)2

2ht′
c,v

2
) (2)

where K(·) is a Gaussian kernel function, and ht
′

c,v > 0 is an

adaptive bandwidth parameter [15] for the data point t′. In our

model, we choose to use an adaptive bandwidth parameter ht
′

c,v

for each data point t′, instead of a fixed bandwidth parameter

hc,v for all data points in Tc,v , because it is difficult to choose

a suitable common bandwidth parameter hc,v for all data

points in Tc,v . P (t|hc,v) is highly sensitive to the value of the

bandwidth hc,v , producing densities that are sharply peaked

around the data points in Tc,v when hc,v is too small, and

leading to an overly smooth estimate that may omit important

structure in the data (such as multiple modes) when hc,v is

too large.

Semantic Subcomponent. Users with the same communities

tend to have the same interests and enjoy the same contents.

In each check-in activity (u, v, t, D), D is a bag of words

describing the check-in contents. We therefore associate D
with a latent variable z generated from the community’s

interest distribution θc to indicate its topic. Note that in the

traditional topic models [2] such as LDA, a document contains

a mixture of topics, and each word has a hidden topic label.

This is reasonable for long documents. However, the document

D in a check-in activity (e.g., tags of a restaurant) is usually

short, and is most likely to be about a single topic. Thus in

UCGT, all the words in D are assigned with a single topic z,

and they are generated from the same word distribution φz .

Network Component. We use pairwise community

Bernoulli distributions ψ to model the presence and absence of

links between pairs of users. For each link (u, u′), a boolean

indicator e(u, u′) is drawn from ψc,c′ which represents the

interaction strength between community c and c′.
Social networks are typically sparse, thus we only model

positive links: the variables c and c′ exist if and only if

e(u, u′) ∈ Eu. As in [9], the negative links e(u, u′) are implic-

itly modeled in a Bayesian fashion: we use a Beta(λ0, λ1)
prior on each ψc,c′ , and set λ0 = κ · ln(nneg/C

2) and

λ1 = 0.1, where nneg = U(U − 1) −
∑

uEu is the number

Algorithm 1: Probabilistic generative process in UCGT

for each community c ∈ C do
Sample the distribution over topics θc ∼ Dirichlet(·|α);
Sample the distribution over spatial items
ϑc ∼ Dirichlet(·|η);
for each community c′ ∈ C do

Sample community-community link probability
ψc,c′ ∼ Beta(λ0, λ1);

end
end
for each topic z ∈ Z do

Sample the distributions over words φz ∼ Dirichlet(·|β);
end
for each user u ∈ U do

Sample the distribution over communities
πu ∼ Dirichlet(·|γ);
for each check-in activity (u, v, t, D) ∈ Lu do

Sample a community indicator c ∼Multi(πu);
Sample a topic indicator z ∼Multi(θc);
Sample a spatial item v ∼Multi(ϑc);
Sample time t according to Equation (1);
for each word w ∈ D do

Sample word w ∼Multi(φz);
end

end

for each positive link e(u, u′) ∈ Eu do
Sample a community indicator c ∼Multi(πu);
Sample a community indicator c′ ∼Multi(πu

′);
Sample social link eu,u′ ∼ Bernoulli(ψc,c′);

end
end

of negative links, and κ is a tunable weight. In this way,

we reduce large amount of computation and achieve linear

complexity on network modeling, as shown in Section III-A.

Joint Modeling of Three Components. Note that, to avoid

overfitting, we place a Dirichlet prior over each multinomial

distribution. For example, Dirichlet prior parameter α is in-

corporated for θc, as follows:

P (θc|α) =
Γ(

∑

z
α)

∏

z
Γ(α)

∏

z

θ
α−1

c,z , (3)

where Γ(·) is the gamma function. Similarly, priors over

ϑc, φz and πu are imposed with parameters η, β and γ,

respectively. Based on the three components described above,

we obtain the joint distribution of the observed and hidden

variables as described in Equation 4, where we use different

colors to represent different components (User Membership

Component, Check-in Component, and Network Component).

C. Generative Process

The generative process is summarized in Algorithm 1.

Consider a user u who visits spatial items and interacts with

others. When she visits a spatial item v, she first selects the

community membership c (e.g., her role) by her community

distribution πu, then selects a topic z by the community’s

topic distribution θc. With the chosen community c, spatial

item v is generated from the community’s spatial distribution

ϑc. With the chosen community c and spatial item v, time

t is generated from the community’s temporal distribution

w.r.t. spatial item v. With the chosen topic z, words in D
are generated from the topic’s word distribution. On the other

hand, when she interacts with another user u′, a community is



P (v, t,D, e, c, z, θ,π,φ,ϑ,ψ|α, β, γ, η, λ0, λ1,h)

=P (π|γ)P (c|π)P (ϑ|η)P (v|c,ϑ)P (t|c, v,h)P (θ|α)P (z|θ)P (φ|β)P (D|z,φ)P (ψ|λ0, λ1)P (e|c,ψ)
(4)

sampled for each of them according to their own community

distributions, and the link is formed by the community-

community interaction strength ψc,c′ .

III. INFERENCE & IMPLEMENTATION

In this section, we first present the basic inference algorithm

using Gibbs sampling method. To improve the performance of

Gibbs sampling, we incorporate the idea of entropy filtering.

Then, to adapt to the large-scale geo-social data, we develop

a parallel implementation of UCGT to ensure high scalability.

A. Gibbs Sampling

Exact inference of UCGT model is difficult due to the

intractable normalizing constant of the posterior distribution.

We therefore adopt collapsed Gibbs sampling [33], [10] for

approximate inference. As a widely used Markov chain Monte

Carlo (MCMC) algorithm, Gibbs sampling iteratively samples

latent variables (i.e., {c, z} in UCGT) from a Markov chain,

whose stationary distribution is the posterior. The samples can

therefore be used to estimate the distributions of interest (i.e.,

{θ,ϑ,π,φ,ψ}). As for the hyperparameters α, β, γ and η, for

simplicity, we take a fix value, i.e., α = 50/Z, γ = 50/C and

β = η = 0.01, following the studies [33], [10], where Z and

C are the numbers of topics and communities, respectively.

At each iteration of our Gibbs sampler, for each check-

in activity, we sample both the corresponding community

indicator c and the topic indicator z; for each link eu,u′ , we

sample the corresponding community indicators c and c′. Due

to space constraints, we show only the derived Gibbs sampling

formulas, omitting the detailed derivation process.

For each user check-in activity (u, v, t, D), we first sample

community c according to the following posterior probability:

P (c|c¬, z,v, t, u, ·) ∝ (n¬
u,c + γ)

×
n¬
c,z + α

∑

z′
(n¬

c,z′
+ α)

n¬
c,v + η

∑

v′(n¬
c,v′ + η)

P (t|ĥc,v)
(5)

where c¬ represents community assignments for all check-in

records except the current one; nu,c is the number of times that

latent community c is sampled from user u; nc,z is the number

of times that topic z is generated by community c; nc,v is the

number of times that spatial item v is generated by community

c; and the number n¬ with superscript ¬ denotes a quantity

excluding the current instance. For the adaptive bandwidth

parameter hc,v , we let ht
′

c,v be the Euclidean distance of t′ to

its k-th nearest neighbor in Tc,v , following recent study [15].

Tc,v is the collection of time stamps at which users from

community c visit spatial item v, except the current one.

After c is sampled, we sample topic z conditioned on the

newly sampled c, as follows:

P (z|z¬, c,d, ·) ∝ (n¬
c,z + α)

∏

w∈D

n¬
z,w + β

∑

w′(n¬
z,w′ + β) (6)

where nz,w is the number of times that word w is generated

from topic z.

For each social link e(u, u′), we sample communities c and

c′ according to:

P (c, c′|eu,u′ = 1, e¬, c, ·)

∝(n¬
u,c + γ)(n¬

u′,c′ + γ)
n¬
c,c′ + λ1

n¬
c,c′

+ λ1 + λ0

(7)

where n¬c,c′ is the number of positive links, with current link

excluded, whose community indicators are c and c′.
Inference Framework. After a sufficient number of sam-

pling iterations, the approximated posteriors can be used to

estimate parameters by examining the counts of z and c

assignments to check-in records and social links. The de-

tailed inference framework is shown in Algorithm 2 where

L =
⋃

u∈U Lu. We first randomly initialize the topic and

community assignments for each check-in record (Lines 2-

4) and community-community assignments for each positive

link (Lines 5-7). Afterwards, in each iteration, sampling For-

mulas (5, 6) are utilized to update the community and topic

assignments for each check-in record (u, v, t, D) (Lines

10-13), and Formula (7) is used to update the community

pair assignment for each positive link e(u, u′) (Lines 14-

16). For speed and efficiency, we use the widely adopted

late update strategy [25] to defer the update of adaptive

bandwidth parameters to the end of each iteration (Lines 17-

21). The iteration is repeated until convergence (Lines 9-

26). In addition, a burn-in process is introduced in the first

several hundreds of iterations to remove unreliable sampling

results (Lines 22-25). We also introduce the sample lag (i.e.,

the interval between samples after burn-in) to sample only

periodically thereafter to avoid correlations between samples.

Time Complexity. We now analyze the time complexity

of our inference algorithm. It is shown that the devised

algorithm scales linearly in terms of the size of data, i.e.,

the number of check-in records and positive links. In each

iteration, the communities of user check-in activities are first

sampled. Since all the counters (e.g., nc,z and nc,v) and

adaptive bandwidth parameters involved in Equation (5) can

be cached and updated in constant time for each community

c being sampled, Equation (5) can be calculated in constant

time. Thus, sampling all c takes linear time w.r.t. the number of

check-in records. Similarly, sampling all z by Equation (6) is

also linear to the number of check-in records. Next, we sample

community indicators c and c′ using Equation (7). Since we

have implicitly modeled negative links in Bayesian prior (i.e.,

the Beta prior for ψc,c′ ), we only need to sample c and c′

for positive links e(u, u′). Hence the complexity is reduced

from quadratic (w.r.t. the number of users) to linear (w.r.t. the

number of positive links). It significantly saves computation

cost due to the sparseness of networks.

B. Gibbs Sampling With Entropy Filtering

Conventionally, the social relationship has been measured

by meeting frequency (i.e., how often two people co-locate



26). In addition, a burn-in process is introduced in the first

results (Lines 22-25). We also introduce the sample lag (i.e.,

Algorithm 2: Inference Framework of UCGT

Input: user check-in collection L, social link collection E ,
number of iteration I , number of burnin Ib, sample lag
Is, Priors α, γ, β, η, λ0 and λ1

Output: estimated parameters θ̂, ϑ̂, φ̂, π̂, ψ̂, ĥ

1 Create temporary variables θsum, ϑsum, φsum, πsum and
ψsum, and initialize them with zero;

2 for each check-in activity (u, v, t, D) ∈ L do
3 Sample community and topic randomly;
4 end

5 for each positive link e(u, u′) ∈ E do
6 Sample community pair randomly;
7 end
8 Initialize variable count with zero;
9 for iteration = 1 to I do

10 for each check-in activity (u, v, t, D) ∈ L do
11 Sample community c according to Equation (5);
12 Sample topic z according to Equation (6);
13 end

14 for each positive link e(u, u′) ∈ E do

15 Sample community pair (c, c′) according to
Equation (7);

16 end
17 for each community c ∈ C do
18 for each spatial item v associated with c do

19 Update the adaptive bandwidth parameters ĥc,v;
20 end
21 end
22 if (iteration > Ib) and (iteration mod Is == 0) then
23 count = count+ 1;
24 Update θsum, ϑsum, πsum φsum and ψsum as

follows:

θ
sum
c,z + =

nc,z + α
∑

z′
(nc,z′ + α)

ϑ
sum
c,v + =

nc,v + η
∑

v′(nc,v′ + η)

π
sum
u,c + =

nu,c + γ
∑

c′
(nu,c′ + γ)

φ
sum
z,w + =

nz,w + β
∑

w′(nz,w′ + β)

ψ
sum
c,c′ + =

nc,c′ + λ1

nc,c′ + λ1 + λ0

25 end
26 end

27 Return model parameters θ̂ = θsum

count
, ϑ̂ = ϑsum

count
, π̂ = πsum

count
,

φ̂ = φsum

count
, ψ̂ = ψsum

count
and ĥ;

at the same time) [7]. However, we argue that these meeting

events should not be treated equally, and propose to consider

the popularity information of spatial items. Some spatial items

are very popular and frequently visited by many people, such

as the downtown in the city and a popular restaurant, whereas

other locations are more specific only to a few people, such as

a private house. In a popular public place, it is more likely for

two strangers to co-locate by coincidence. Thus, such meeting

events are less indicative for a relationship. In contrast, a

meeting event in a private place often indicates a strong social

relationship. Therefore, the Gibbs sampling may yield poor

performance by including many popular spatial items.

In light of this, we incorporate the idea of entropy filtering

into the Gibbs sampling, resulting in Entropy Filtering-Gibbs

sampling algorithm (EnF-Gibbs) which can automatically re-

move check-in records associated with the non-informative

spatial items based on entropy measure [21]. During the

procedure of EnF-Gibbs sampling, the algorithm keeps and

maintains a set of spatial items called TrashCan that are

not informative. Intuitively, the spatial items that are popular

among many communities are put into TrashCan. After Ib
times of iterations in Algorithm 2, we start to ignore the check-

in records that contain spatial items that are already in the

TrashCan. We quantify the informativeness of a spatial item v
by its entropy defined in Equation 8. If the entropy of a spatial

item v is larger than a threshold and not yet in TrashCan, we

add it into TrashCan.

Entropy(v) = −
∑

c∈C

P (v|c)logP (v|c) (8)

where P (v|c) is computed as follows:

P (v|c) =
nc,v + η

∑

v′ nc,v′ + η
(9)

In the above equation, the count nc,v is dynamically updated

in the Gibbs sampling procedure, thus, TrashCan is also

automatically updated.

C. Parallel Implementation

To apply UCGT to large-scale geo-social data, paralleliz-

ing the inference algorithm of UCGT is inevitable. Each

user’s check-in collection Lu or social link collection Eu
can be treated as a document. Many recently developed

parallel computation frameworks for machine learning, such

as MapReduce [20], make a parallel implementation of Gibbs

sampling as follows. Given M processors, a collection of

documents are partitioned into M blocks which are processed

independently. After each pass the document statistics are

synchronized in a separate step. However, on multiprocessor

system this approach automatically leads to an O(M) increase

in allocated memory and thereby out-of-memory situations

when many cores are involved.

To ensure the scalability of our model in terms of memory

and computation time, we first implemented a parallel UCGT

inference algorithm by leveraging the strength of multicore

processors. The state of the sampler comprises the community-

topic count matrix nc,z , community-spatial item count matrix

nc,v , topic-word count matrix nz,w, community-community

count matrix nc,c′ and user-community count matrix nu,c. The

key idea for parallelizing the sampler in the multicore setting

is that the first four count matrices (which we will refer to as

state of the system) change only little given the changes in a

single check-in collection Lu or a single social link collection

Eu. Hence, we can assume that nc,z , nc,v , nz,w and nc,c′ are

essentially constant while sampling communities and topics

for a single Lu or Eu. This means that there is no need to

update nc,z , nc,v , nz,w and nc,c′ during the sampling process

and we can defer this action to a separate synchronization

thread which takes actions once a single Lu or Eu has been

entirely processed. Consequently, we can execute a large

number of sampling threads simultaneously to process a single

Lu or Eu , which is called intra-document parallelization.

Thus, we only need a single set of state variables (e.g., nc,z ,

nc,v , nz,w and nc,c′ ) per computer rather than per core. This



dramatically reduces the memory requirements per machine

compared with traditional inter-document parallelization.

To further speed up the model training and adapt to large-

scale geo-social data, we use a distributed implementation

based on the blackboard architecture in [25] to take advantage

of the power of clusters. The key idea is to have a global

consensus of the state variables and to reconcile their values

one entry in the count matrix at a time asynchronously for all

samplers. The advantage is that no synchronization is required

between samplers/nodes. When processing Lu, community-

topic, community-spatial item and topic-word count matrices

are shared across users and maintained in a distributed hash

table using memcached1. The user-community count is user-

specific and can be maintained locally in each node. We

distribute all users’ check-in data across M nodes. We apply

the intra-document parallelization strategy for each node to

execute multiple foreground threads to sample communities

and topics according to Equations 5 and 6. Besides, each

node executes a background thread that synchronizes its local

copies of community-topic, community-spatial item and topic-

word count matrices with the global copy in memcached.

When processing user network data Eu, user-community and

community-community count matrices also need to be main-

tained in the memcached for sharing.

IV. USER BEHAVIOR PREDICTION

In this section, we deploy UCGT to two types of user be-

havior predictions: check-in and social interaction predictions.

Our solution to user behavior predictions takes advantage of

the community members’ collective behavior patterns which

are stable and predictable. In contrast, traditional methods

such as matrix factorization and collaborative filtering can be

ineffective due to the volatility of individual’s behaviors and

the sparsity of individual’s check-ins and social connections.

A. Check-in Prediction

Based on the learnt model parameters Ψ =
{θ̂, ϑ̂, φ̂, ψ̂, π̂, ĥ} in the UCGT, given a target user u
and time t, we estimate the probability of user u to visit each

unvisited spatial item v, as follows:

P (v|u, t, Ψ̂) =
P (v, t|u, Ψ̂)

∑

v′ P (v′, t|u, Ψ̂)

∝P (v, t|u, Ψ̂)

=
∑

c

π̂u,cϑ̂c,vP (t|ĥc,v)
∑

z

θ̂c,z

(

∏

w∈D

φ̂z,w

)

1

D

(10)

where D is a collection of words extracted from v’s descrip-

tions/tags or comments from other users. We adopt geometric

mean for the probability of topic z generating word set D, i.e.,

P (D|z, φ̂) =

(

∏

w∈D φ̂z,w

)
1

D

, considering that the number

of words for different spatial items may be different. After

computing the check-in probability for each unvisited item v,

we can select the top-N ones with the highest probabilities as

recommendations.

1http://memcached.org/

TABLE II
BASIC STATISTICS OF FOURSQUARE AND DOUBAN EVENT DATASETS

Foursquare Douban Event

# of users 4,163 295,395
# of spatial item 21,142 350,629
# of check-ins 483,813 18,928,476

# of social links 32,512 30,068,754
time span Dec 2009-Jul 2013 Sep 2005-Dec 2012

B. Social Interaction Prediction

Social interaction prediction (i.e., link prediction) is defined

to estimate the probability of a link. The probability of a link

from user u to u′ is computed as follows:

P (u′|u, Ψ̂) =
∑

c

∑

c′

P (c|u)P (c′|c)P (u′|c′)

∝
∑

c

∑

c′

P (c|u)P (c′|c)P (c′|u′)P (u′)

∝
∑

c

∑

c′

π̂u,cψ̂c,c′ π̂u′,c′P (u′)

(11)

where P (u′) denotes the prior probability of user u′, indicating

her activeness. In our experiment, we use the normalized

number of her followers to represent P (u′).

V. EXPERIMENTS

In this section, we evaluate the performance of the proposed

UCGT model in terms of prediction accuracy and model train-

ing efficiency on two real-world large-scale datasets. We also

use a case study to qualitatively demonstrate its effectiveness

in detecting communities.

A. Datasets

Our experiments are conducted on two real geo-social

networking datasets: Foursquare and Douban Event. Their

basic statistics are shown in Table II.

Foursquare. Foursquare is a popular location-based social

network. The dataset used in our experiment contains the

check-in history of 4,163 users who live in the California,

USA. For each user, it contains her social networks, check-in

POI IDs, location of each check-in POI in terms of latitude

and longitude, check-in time and the contents of each check-

in POI. Each check-in is stored as user-ID, POI-ID, check-in

time, check-in content, and each record in the social network

is stored as user-ID, friend-ID.

Douban Event. Douban Event2 is a Chinese online social

event service that helps people publish and participate in social

events which are held offline. On Douban Event, a social event

is created by a user or an organizer by specifying when, where

and what the event is. Then, other users express their intent to

join the event by online check-in. We collected a real dataset

for events and users by crawling Douban Event from Sep

2005 to Dec 2012. For each event, its content introduction,

geographical location, start time information, and a list of

registered users for attending were collected. For each user,

we acquired her event attendance list and social friend list.

2http://www.douban.com/events



B. Performance in User Check-in Prediction

We compare our proposed UCGT models (UCGT-Gibbs in

Section III-A and UCGT-EnF-Gibbs in Section III-B) to some

representative user check-in (or mobility) prediction methods

in the geo-social networks. Table III lists the characters

of these methods where we use UCGT-G and UCGT-EG

to denote UCGT-Gibbs and UCGT-EnF-Gibbs, respectively.

SVDFeature is a general feature-based factorization model,

while Geo-SAGE, CBPF and Rank-GeoFM are designed for

spatial item, event and POI recommendations, respectively.

SVDFeature. SVDFeature [3] is a feature-based matrix

factorization model. We implement it by incorporating more

side information beyond the user-item matrix, including item

content, item location and check-in time. A user-user interac-

tion matrix is also incorporated, inspired by [18].

Geo-SAGE. Geo-SAGE [27] is a geographical sparse addi-

tive generative model for predicting user check-in behaviors.

This model considers both user’s personal interests and the

preferences of the crowd traveling or living in the same target

region, by exploiting both the co-occurrence pattern of spatial

items and the content of spatial items.

CBPF. CBPF [36] is a collective Bayesian Poisson fac-

torization model for event prediction/recommendation. CBPF

takes Bayesian Poisson factorization as its basic unit to model

user response to events, social relation, and content text

separately. Then, it further jointly connects these units by the

idea of standard collective matrix factorization model.

Rank-GeoFM. Rank-GeoFM [13] is a ranking based ge-

ographical factorization method for POI recommendation,

which processes the users’ check-in data as implicit feedback

information. This model incorporates both geographical influ-

ence and temporal influence.

Evaluation Method. To evaluate the prediction accuracy

of our models, we first rank the check-in records in each Lu

according to their check-in timestamps. Then, we use the 80-

th percentile as the cut-off point so that check-ins before this

point will be used for training and the rest are for testing.

We adopt the measurement Accuracy@N proposed in [33].

Specifically, for each check-in (u, v, t, D) in Ltest: 1) We

compute the probability of u visiting v and all other spatial

items which are within the circle with center v and radius

100km and unvisited by u previously, instead of all available

ones, since only those ones which are geographically close to

v are comparable with v. This design can effectively simulate

the local competition effect and user behavior of choices. 2)

We form a ranked list by ordering all of these spatial items

according to their checked-in probabilities. Let p denote the

position of v within this list. The best result corresponds to the

case where v precedes all the unvisited ones (that is, p = 1). 3)

We form a top-N prediction list by picking the N top ranked

ones from the list. If p ≤ N , we have a hit (i.e., the ground

truth v is successfully predicted). Otherwise, we have a miss.

The computation of Accuracy@N proceeds as follows. We

define hit@N for a single test case as either the value 1, if

the ground truth item v appears in the top-N results, or the

TABLE III
FEATURES OF DIFFERENT METHODS.

Methods
Features

Spatial Temporal Social Textual

UCGT-G • • • •
UCGT-EG • • • •

SVDFeature • • • •
Geo-SAGE • •

CBPF • • •
Rank-GeoFM • •

PMTLM • •
COLD • • •
EBM • •

value 0, if otherwise. The overall Accuracy@N is defined by

averaging over all test cases:

Accuracy@N =
#hit@N

Ltest

where #hit@N denotes the number of hits in the test set, and

Ltest is the number of all test cases in Ltest.

Experimental Results. Figure 4 presents the results of all

comparison methods. Clearly, our proposed UCGT models

outperform other competitor models significantly and con-

sistently. The main reason is that our UCGT models take

advantage of the community members’ collective check-in

behavior patterns to overcome the sparsity and volatility of

individuals’ check-in behaviors. Another reason is that UCGT

models have the powerful modeling ability to exploit all the

information associated with each user in a geo-social network

such as her social links, communities, contents and temporal-

spatial behaviors, in a unified manner.

Several other observations are also made from the results: 1)

UCGT models perform much better than SVDFeature although

they use the same types of features and information, showing

the advantage of the well-designed probabilistic generative

model incorporating geo-social domain knowledge over the

general feature-based matrix factorization model which treats

all features equally. 2) UCGT-EG achieves higher predic-

tion accuracy than UCGT-G, showing the benefits of the

proposed entropy filtering-based Gibbs sampling. 3) Rank-

GeoFM and SVDFeature outperform Geo-SAGE and CBPF

in the Foursquare dataset while Geo-SAGE and CBPF exceed

Rank-GeoFM and SVDFeature in the Douban Event dataset.

The performance disparity may lie in that the location-based

social network (e.g., Foursquare) and event-based social net-

work (e.g., Douban Event) have different characteristics. For

example, the temporal effect on users’ check-in activities is

very obvious and thus plays an important role in improving us-

er check-in prediction in LBSNs [8], [35]; while this temporal

effect becomes weak in EBSNs, and the content information

of events becomes more important.

Parameter Sensitivity Analysis. Tuning model parameters,

such as the number of communities (C) and the number of

topics (Z) is critical to the performance of our UCGT models.

We therefore study the effect of tuning model parameters. As

for the hyperparameters α, β, γ and η, for simplicity, we take

a fixed value, i.e., α = 50/Z, γ = 50/C and β = η = 0.01,
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Fig. 4. User Check-in Behavior Prediction Accuracy.

following the studies [33], [10]. We try different setups and

find that the performance of UCGT models is not sensitive to

these hyperparameters. We test the performance of UCGT-EG

model by varying the number of topics and communities, and

present the results in Tables IV and V. From the results on the

Foursquare dataset, we observe that the prediction accuracy

first increases with the increasing number of communities,

and then it does not change significantly when the number

of community is larger than 40. Similar observation is made

for increasing the number of topics (i.e., Z): the prediction

accuracy increases with the increasing number of topics, and

then it does not change much when the number of topics

is larger than 30. The reason is that C and Z represent the

model complexity. When C and Z are too small, the model

has limited ability to describe the data. On the other hand,

when C and Z exceed a threshold, the model is expressive

enough to handle the data. At this point, it is less helpful to

improve the model performance by increasing C and Z. It

should be noted that the performance reported in Figure 4(a)

is achieved with 40 latent communities (i.e., C = 40) and 30

latent topics (i.e., Z = 30). Similar observations are also made

on the Douban Event dataset, and the experimental results

presented in Figure 4(b) are obtained with the parameter

settings C = 200 and Z = 150.

C. Performance in Social Interaction Prediction

We compare our proposed UCGT models with several latest

competitors in the application of link prediction. Table III lists

the characters of these methods.

Poisson Mixed-Topic Link Model (PMTLM).

PMTLM [37] defines a generative process for both text

and links between users. Text generation follows the LDA

model, and links are modeled as a Poisson distribution. In

PMTLM, links and text are generated by the same latent

factor, which means one community is bounded to one topic.

Community Level Diffusion Model (COLD). COLD [10]

models both topics and communities in a unified latent frame-

work, and extracts inter-community influence dynamics.

Entropy-Based Model (EBM). Pham et al. [21] proposed

an entropy-based model to infer social connections and esti-

mate the strength of social connections by analyzing people’s

co-occurrences in space and time.

TABLE IV
PREDICTION ACCURACY@10 ON FOURSQUARE DATASET.

Z
C

C=10 C=20 C=30 C=40 C=50 C=60

Z=10 0.187 0.205 0.216 0.223 0.223 0.223

Z=20 0.219 0.240 0.253 0.261 0.261 0.261

Z=30 0.228 0.250 0.264 0.272 0.272 0.272

Z=40 0.228 0.250 0.264 0.272 0.272 0.273

Z=50 0.229 0.250 0.264 0.272 0.272 0.273

TABLE V
PREDICTION ACCURACY@10 ON DOUBAN EVENT DATASET.

Z
C

C=50 C=100 C=150 C=200 C=250 C=300

Z=30 0.219 0.240 0.253 0.261 0.261 0.261

Z=50 0.243 0.266 0.280 0.289 0.289 0.289

Z=100 0.253 0.277 0.292 0.301 0.301 0.302

Z=150 0.261 0.286 0.301 0.311 0.311 0.311

Z=200 0.261 0.286 0.301 0.311 0.311 0.312

Z=250 0.261 0.286 0.302 0.311 0.312 0.312

Evaluation Method. Since most link prediction methods

aim to estimate the probability of a link between two users

whereas there is no pre-defined threshold for link existence,

we turn to area under the receiver operating characteristic

curve (AUC) as the prediction accuracy. Given a rank of

all non-observed links, the AUC value can be interpreted as

the probability that a randomly chosen true positive link is

ranked above a randomly chosen true negative link. We adopt

a standard 5-fold cross validation, and each time we use 20%
of the positive links and randomly select 1% of the negative

links to evaluate AUC. The remaining links and all check-

in records are used to train the model. As the ground truth

of communities is rarely available on social networks, the

evaluation of link prediction has been widely used as the proxy

of the quantitative measurement of the models developed for

community discovery, especially in the mixed-membership

community setting without community labels [10].

Experimental Results. Figure 5 shows the AUC values for

the five models. Our proposed UCGT models outperform all

other methods consistently on the two datasets. This is because

UCGT models have the comprehensive modeling ability to

exploit all the information of a geo-social network such as
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Fig. 5. User Social Interaction Prediction Accuracy.

links, contents and users’ temporal-spatial behaviors, and can

effectively capture the network proximity, spatiotemporal co-

occurrences and semantic similarity among social actors in a

unified manner. In contrast, all other network models utilize

only portions of the available social networking information,

as shown in Table III. Another observation is that the benefit

brought by our proposed entropy-based filtering on the Douban

Event dataset is not as obvious as on the Foursquare dataset,

since most events in the Douban Event dataset are enjoyed

by a small group of users with some special interests (e.g.,

photographing, hiking and IT technology) while most POIs in

the Foursquare dataset provide functions or services for the

general public (e.g., shopping centers, hospitals and cinemas).

Parameter Sensitivity Analysis. We also study the impact

of varying parameters in UCGT-EG, e.g., the number of

communities (C) and the number of topics (Z), and present

the results in Tables VI and VII. From the results, we make

the similar observation to what is found in Tables IV and V:

the link prediction accuracy of UCGT first increases with the

increasing numbers of communities and topics, and then it

does not change much when the numbers of communities and

topics are larger than a threshold.

TABLE VI
LINK PREDICTION ACCURACY (AUC) ON FOURSQUARE DATASET.

Z
C

C=10 C=20 C=30 C=40 C=50 C=60

Z=10 0.793 0.848 0.884 0.902 0.902 0.902

Z=20 0.837 0.894 0.932 0.951 0.951 0.951

Z=30 0.862 0.921 0.960 0.980 0.980 0.980

Z=40 0.862 0.921 0.960 0.980 0.980 0.980

Z=50 0.862 0.921 0.960 0.980 0.980 0.980

TABLE VII
LINK PREDICTION ACCURACY (AUC) ON DOUBAN EVENT DATASET.

Z
C

C=50 C=100 C=150 C=200 C=250 C=300

Z=30 0.691 0.757 0.799 0.823 0.823 0.823

Z=50 0.766 0.838 0.884 0.911 0.911 0.911

Z=100 0.799 0.875 0.922 0.951 0.951 0.951

Z=150 0.823 0.902 0.951 0.980 0.980 0.980

Z=200 0.823 0.902 0.951 0.980 0.980 0.980

Z=250 0.823 0.902 0.951 0.980 0.980 0.981

D. Model Training Efficiency

In this experiment, we evaluate the efficiency of UCGT

model training on the large-scale Douban Event dataset. To

tackle the challenge of large data size and ensure the scalability

of our UCGT models, we deploy our inference algorithm

of UCGT to three parallel computation settings: Multicore,

Cluster and their combination Multicore-Cluster. We conduct

this experiment on a cluster consisting of 10 servers (Dell

R630 Rack Server). Each server is equipped with 2 processors

(Intel Xeon E5-v3), 32 cores and 64 GB memory. We run 10

threads in each server node. Besides, we also compare our

developed parallel mechanisms with the MapReduce frame-

work implemented by Hadoop on the same cluster. To fairly

compare with our methods, we use Memcached instead of

HDFS in MapReduce.
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Fig. 6. Model Training Time

Figure 6 shows the running time of different methods on

the Douban Event dataset. Although the basic implementation

of UCGT (i.e., UCGT-Single in Figure 6) is costly, our

parallel implementations guarantee the efficiency. Specifically,

we reduce the training time for 18.9M check-in records and

30M links from hundreds of hours (320) to just a few hours

(6.4). This clearly shows the advantage of parallel processing

by leveraging the power of multicores and clusters. The model

structure of UCGT is loosely coupled enough to facilitate

parallel processing. Thus, our proposed UCGT models are

scalable to large-scale geo-social networking data. Besides, our

developed three parallel implementations, especially UCGT-

Multicore-Cluster, outperform MapReduce due to the fol-

lowing reasons: 1) MapReduce only takes advantage of the

parallelization brought by the cluster and ignores the potential

of the multicores. 2) Due to a number of reasons (system,

disk access, general job load, sampler burn-in), the time of

each node to process the geo-social data may differ widely.

Waiting for the last node to finish before synchronization can

occur, introduces potentially long idle times in MapReduce.

E. Qualitative Analysis of Detected Communities

In this experiment, we use a case study method to demon-

strate the effectiveness of UCGT in detecting communities

qualitatively. For an intuitive understanding of the discovered

communities, we choose the top-20 words with the highest

generation probabilities for each community on the Douban

Event dataset. Specifically, given a community c and a word

w, the probability of c generating w is computed as follows:

P (w|c, Ψ̂) =
∑

z

θ̂c,zφ̂z,w.
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Fig. 7. Semantic and Geographical Interpretations of Discovered Communities.

Based on the top words and their corresponding generation

probabilities, we create word clouds for each discovered

community. We present four example word clouds in Figure 7.

Besides, for each community c, we also present the locations

of the top-20 events with the highest generation probabilities

ϑc,v on Google Maps.

From the results, we observe that all these four commu-

nities were living in Beijing, China, but they focused on

different subjects. For example, the members of the third

community were interested in data mining techniques, and

they often attended the salons, seminars or lectures related

with data mining techniques together. From the corresponding

geographical map, we can see that most of these events

were held in Zhongguancun, Haidian District Beijing, such

as Peking University, Tsinghua University and MSR Asia.

Thus, the communities discovered by UCGT are semantically

and geographically interpretable. Capturing the communities’

interests and spatial ranges of activity are critical to improve

recommendations, search and target ads for a group of users.

VI. RELATED WORK

Community Detection. Communities are natural groups

formed by users with close connections and similar inter-

ests [12]. A mixed membership stochastic block model was

introduced in [1] where each user has a probability distribution

over communities. A growing number of recent works [10],

[37] incorporated both the network structure and content to

improve community detection performance. In these models,

content and links are both generated by the same latent

variables. Thus communities are limited to have one-to-one

correspondence with topics. Our model decomposes these two

factors, which opens up an array of meaningful and desired ex-

traction such as community interests over topics. Qi et al. [23]

proposed to leverage edge content to improve the effectiveness

of community detection in email networks. However, the edge

content is not available in most of online social networks,

especially the geo-social networks. Moreover, to the best of

our knowledge, this is the first work to consider spatiotemporal

co-occurrence information for community discovery.

Inferring Social Ties from Geographic Coincidences.

Using the geographical records to infer users’ social be-

haviors and relationships is a hot topic in spatiotemporal

data mining [21], [6], [26]. The methods proposed in [6]

have investigated the meeting events that occur at different

times (e.g., weekdays vs. weekends or day vs. night) to infer

different types of relationships such as friends and colleagues.

Meanwhile, Crawnshaw et al. [6] extracted a set of features

from both meeting events and the individual mobility patterns

and learned a model to identify the friendship from users’

check-in data. Pham et al. [21], [26] further considered the

diversity of meeting locations to handle cases that two users

meet by coincidence. However, all these methods have not

considered the semantic information of meeting events, nor

the existing social network structure, thus they cannot interpret

why the meeting events occur.

Check-in Behavior Prediction. Many recent studies [29],

[5] showed that there is a strong correlation between user

check-in activities and geographical distance as well as social

connections, thus most existing check-in behavior predic-

tion (or location recommendation) work mainly focuses on

leveraging the geographical and social influences to improve

prediction accuracy. For example, Ye et al. [29] delved in-

to POI recommendation by investigating the geographical

influences among locations and proposed a framework that

combines user preferences, social influence and geographi-

cal influence. Cheng et al. [4] investigated the geographical

influence through combining a multi-center Gaussian model,

matrix factorization and social influence together for location

prediction. Lian et al. [14] incorporated spatial clustering phe-

nomenon resulted by geographical influence into a weighted

matrix factorization framework to deal with the challenge from

matrix sparsity. The temporal effect of user check-in activities

in LBSNs has also attracted much attention from researchers.

The prediction methods with temporal effect mainly leverage

temporal cyclic patterns and temporal chronological patterns

on LBSNs [8], [35]. Yin et al. [32] was the first to study

the problem of real-time POI recommendation. Most recently,

researchers explored the content information of spatial items

to alleviate the problem of data sparsity, especially in the out-

of-town recommendation [27], [34], [30], [31]. Compared with

our UCGT models, these existing models utilize only portions



or a few aspects of geo-social network information and lack

a comprehensive modeling ability. Besides, our UCGT makes

most of the community members’ collective behavior patterns

to overcome the sparsity of individual’s check-in behaviors.

VII. CONCLUSION

In this paper, we studied how to discover interpretable

communities from a geo-social network by capturing all its

information such as social links, semantic contents, spatial

and temporal information in a unified manner. Technically, we

proposed a Bayesian model UCGT to define the generative

process of communities as a result of network proximities,

spatiotemporal co-occurrences and semantic similarity. To

improve the performance of UCGT, we incorporated the idea

of entropy filtering to Gibbs Sampling. To adapt to large-scale

geo-social data, we developed a scalable parallel implementa-

tion of the UCGT by harnessing the powers of multicores and

clusters. UCGT can also be used to address various practical

problems, such as check-in prediction and link prediction.

We evaluated the performance of UCGT on two large-scale

geo-social networking datasets, and the experimental results

demonstrated its superiority in terms of prediction accuracy,

modeling training efficiency and community interpretability.
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